! Object Oriented Testing

Filippo Ricca
DISI, Universita di Genova, Italy
ricca@disi.unige.it

i OO Testing

= Research confirms that testing methods
proposed for procedural approach are not
adequate for OO approach

= Ex. Statement coverage

= OO software testing poses additional
problems due to the distinguishing

characteristics of OO
= EX. Inheritance

= Testing time for OO software found to be
increased compared to testing procedural

software

15.2

* Characteristics of OO Software

= Typical 00 software
characteristics that impact
testing ...

» State dependent behavior
« Encapsulation
Inheritance

Abstract and generic classes
Exception handling

They simplify developing but complicate Testing!

Initial

create

add

add delete

Empty .

> Holdmg

Final |+

delete
I add || delete
destro delete
destroy

destroy

Full

OO definitions of unit and
iIntegration testing

+

= Procedural software

unit = single program, function, or procedure

= Object oriented software

unit = class
unit testing = intra-class testing

integration testing = inter-class testing
= Cluster of classes

dealing with single methods separately is usually
too expensive (complex scaffolding), so methods
are usually tested in the context of the class they
belong to

v! State-based Testing

i State-based Testing (1)

= Natural representation with finite state
machines

« States correspond to certain values of the
attributes

= Transitions correspond to methods

= FSM can be used as basis for testing

= e.g. 'drive” the class through all transitions, and
verify the response and the resulting state

= [est cases are sequences of method calls that
traverse the state machine

i State-based Testing (2)

s State machine model can be derived
from:
= Specification

= code
also using reverse engineering techniques

= Or both ...

= Accessing the state
= add inspector method, e.g. getState()

FSM derived by code

class TrafficLigh

public static final int RED = 0;
public static final int YELLOW = 1;
public static final int GREEN = 2;
rivate int currentColor = RED;
public int change
switch (currentColor) {
case RED:
currentColor = GREEN;
break;
case YELLOW:
currentColor = RED;
break;
case GREEN:
currentColor = YELLOW;
break;
b

return currentColor;

s

public int getCurrentColor() {
return currentColor;

TrafficLight

+ int currentColor:{RED,
YELLOW, GREEN}

« int change()
« int getCurrentColor()

change

change

et

[change

i Example Stack

= States:
= Initial: before creation
= Empty: number of elements = 0

=« Holding: number of elements >0, but less than
the max Capacity

= Full: number elements = max
= Final: after destruction

= Transitions:
= Create, destroy

= actions that triggers the transition
= eX. Add, delete

i Examples of transitions

Initial -> Empty: action = “create”
= e.g."s = new Stack()” in Java
Empty -> Holding: action = “add”
Empty -> Full: action = “add”

« If MAXcapacity=1

Empty -> Final: action = “destroy”

= e.g. destructor call in C++, garbage

collection in Java

Holding -> Empty: action = “delete”
= Ifs.size() =1

10

* Finite State Machine for a Stack

Initial
l create add delete
add Hold
Em - ' Holdin
PTY delete ‘9

add || delete

destroy
Final |-

destroy

i Coverage methods

= Writing testcases such that:

= Each state is covered Initial
= Each transition is covered [C"“’e p add, delete
i Empty —— Holding
= Each path is covered . delefe ;
= Often infeasible \ g de/efeadd delete
d c
esfr'oy\ =
destroy |
Final|- Full
= Ex. State coverage Inal |~ Gestroy u

« T1: Create, add, add, add [full]
= T2: Create, destroy [final]

12

i FSM-based Testing

= Each valid transition should be
tested
= Verify the resulting state using a

state inspector that has access to the add .
internals of the class Empty & {Holding

Initial
{ create add, delete

delete
= e.g., getState() \\ \\\ add || delete
d \ add —=<_delete
. . .. esm?\ =
= Each invalid transition should be destroy =~ -

tested to ensure that it is rejected Final |-z stroy FU"\]
and the state does not change

= e.g. Full -> Full is not allowed: we
should call add on a full stack

= Exception “stack is full”

add

13

Junit Testcase: valid transitions

// only three elements ...

public void testStackFull() {
Stack aStack = new Stack();
assertEqual(“empty”, aStack.getState());
aStack.push(10);
assertEqual(“holding”, aStack.getState());

aStack.push(1);
aStack.push(7);
assertEqual(“full”, aStack.getState());

To have transitions coverage adding other testcases to “drive”
the class through all transitions!

14

Junit Testcase: invalid transition

// only three elements ...

public void testStackFull() {
Stack aStack = new Stack();

aStack.push(10);

aStack.push(-4);

aStack.push(7);

assertEqual(“full”, aStack.getState());

try {

aStack.push(10)

fail(*“method should launch the exception!!");
} catch(StackFull e){

assertTrue(true); // OK

)
)

15

*Example 2: Current account

Acocount
status:qnun
balanca:int

igActiva:boolaan
isElockad:boolean
isClocsed:boolaan
gatEglanca:int
block
unblock
closa
daposit (amount:4int)
wi av ({amount : int)

Figure 1: Static view of
Account

g ' Account
r.:p;n N
block
ampty —
blockad
—_ T mblock
MOt -
-salf.tmlmnce} withdraw withdraw
[zacemt . doccalt
dcpcui’.
anlf_ balance]
Sopce it
[=scent »
sall talzce)
aabit creditc
withdraw clome
[amcrznt » n
wit=draw sall talmxce) Aepoes
oTcelt witigiraw
|asemt o [ascust «
- mlf talzxuce) anlf .t:;'.u::ﬂj

Figure 2: State diagram of class Account

16

Testcases for account

4 N\
, Account
(" open)
empty block .
) blocked
:?c_:-:)::xt unblock
[amount =
-self.balance] withdraw withdraw
deposit [amount = deposit
self _balance)
depx t
[amount >
-self bal
debit cred
withdraw
[amount > a
withdraw self.bal =] posit
deposit ithdraw
[amount « [amount «
_ -gelf _balance) :elf.ba‘.ancc]) getstate()

TC1: a=account(new); a.withdraw(5); a.close() -- debit

TC2: a=account(new); a.withdraw(5); a.deposit(5); a.close()- -- empty

TC3: a=account(new); a.withdraw(2); a.deposit(5); a.close()- -- credit
17

i ModelJUnit

= ModelJUnit is a Java library that extends
JUnit to support model-based testing

= Helpful for programmers:
= Write models in Java

= Focus on unit testing since it integrates
well with JUnit

. Already available test generation
algorithms

« EX. randomwalk

18

SUT: simple vending machine

The system under test s
illustrated by the following state
diagram:

Current Event Action Next State
State
0 5 9

coin25b add25 25

coin50 add50 50 vend
5
100
25 0
1 25
coin25 add25 50
coin50 add50 75
- 100
100 Vend d 0

i To define the model

// require junit.jar and modeljunit.jar
import net.sourceforge.czt.modeljunit.*
import net.sourceforge.czt.modeljunit.coverage.*

class VendingMachineModel implements FsmModel {
def state = 0 // 0,25,50,75,100
void reset(boolean testing) {state = 0}

boolean vendGuard() {state == 100}
@Action void vend() {state = 0}

boolean coin25Guard() {state <= 75} . gor:eii‘i?aitsait%:fcﬁnczrgf te
@Action void coin25() {state += 25}

going in state+25
boolean coin50Guard() {state <= 50}
@Action void coin50() {state += 50}

20

Choosing the generation algorithm

Testcases generatio

public static void main(String[] aregs
/I create our model and a test geneydtion algorithm
Tester tester = new RandomTester(new VendingMachineModel());

// build the complete FSM graph for our model, just to ensure that we get
accurate model coverage metrics.

tester.buildGraph();
// set up our favourite coverage metric

CoverageMetric trCoverage = new TransitionCoverage();
tester.addCoverageMetric(trCoverage);

/I A convenience method for adding known listeners and coverage
metrics, with printing of messages on the output

10. tester.addListener("verbose");

11. // Generate some test sequences, with the given total length (sequence of
50 random tests)

12. tester.generate(50);
13.}

el e

©oNOO

This example just prints messages as the model is executed.

COEN 345 - Lab9 14

i Output

Metrics Summary:

Action Coverage was 3/3
State Coverage was 5/5
Transition Coverage was 7/8

reset(true)

done (0, coin50, 50)
done (50, coin25, 75)
done (75, coin25, 100)
done (100, vend, 0)

reset(true)

done (0, coin25, 25)
done (25, coin50, 75)
done (75, coin25, 100)
done (100, vend, 0)

reset(true)

done (0, coin25, 25)
done (25, coin50, 75)
done (75, coin25, 100)
done (100, vend, 0)

reset(true)

done (0, coin50, 50)
done (50, coin50, 100)
done (100, vend, 0)

reset(true)

done (25, coin50, 75)
done (75, coin25, 100)
done (100, vend, 0)

22

i Tests execution in Junit

= The test generation code within the above main
method is usually written within the TestXYZ()
methods of JUnit classes

= S0 that each time you run your Junit test suite, you
will generate a suite of tests from your FSM model

public void TestVendingMachine() {
vendingMachine v = new VendingMachine();

done (0, coin50, 50) v.reset();

done (50, coin25, 75) v.coinS0();

done (75, coin25, 100) assertEqual(50, v.getState());
done (100, vend, 0) v.coin25();

assertEqual(75, v.getState());

v! Inheritance

i Inheritance

= People thought that inheritance
will reduce the need for testing

« Claim 1: “If we have a well-tested
superclass, we can reuse its code in

subclasses without retesting inherited
code”

= Claim 2: “A good-quality test suite
used for a superclass will also be
good for a subclass”

= Both claims are wrong!!!

superclass

|

subclass

25

i Problems with inheritance

Incorrect initialization of superclass attributes by the
subclass

= Missing overriding methods
= Typical example: equals and clone

= Direct access to superclass fields from the subclass
code

= Can create subtle side effects that break unsuspecting
superclass methods

= A subclass violates an invariant from the superclass,
or creates an invalid state

26

*Testing of Inheritance (1)

= Principle: inherited methods changed.
should be retested in the context
of a subclass

« Example 1: if we change some
method m() in a superclass, we need
to retest m() inside all subclasses that
inherit it

/’
’
7

Retest m()!

27

*Testing of Inheritance (2)

= Example 2: if we add or change
a subclass, we need to retest all
methods inherited from a
superclass in the context of the
new/changed subclass

/7
-
-
-
-

Retest m’() and m"”()!

28

Example

class A {
protected int x; // invariant: x > 100
void m() { // correctness depends on
// the invariant .. } .. }

class B extends A {
voidmi(){x=1; .} .}

+ If ml has a bug and breaks the
invariant, m is incorrect in the context
of B, even though it is correct in A

- Therefore m should be retested on B
objects

29

& Another example

class A {
void m() {}
voidm2 {..}. }

class B extends A {
void m2(){ -} .} override

+ If inside B we override a method from A,
this indirectly affects other methods
inherited from A

- ¢.g. m now calls B.m2, net Am2: =0, we cannot
be sure that m iz correct anymeore and we need
to retest it with a B receiver

30

i Testing of Inheritance

= Test cases for a method m
defined in class X are not
necessarily good for retesting m
in subclasses of X

= e.g., if mcalls m2 in A, and then
some subclass overrides m2, we
have a completely new interaction

= Still, it is essential to run all
superclass tests on a subclass

= Goal: check behavioural
conformance of the subclass w.r.t.
the superclass (LSP)

class A {
void m() {}
voidm2{ . }.}

class B extends A {
void m2(){ .. } .. }

Testcases for m() in A
test m() that call A.m2()

Instead testcases for m() in B
should test the call B.m2()

The interaction is different

31

'!'_ Polymorphism and dynamic binding

i Combinatorial explosion problem

abstract class Credit {

abstract boolean validateCredit(Account a, int amt, CreditCard c);

3
EduCredit USAccount VISACard
concrete | BizCredit UKAccount AmExpCard
IndividualCredit EUAccount StoreCard
JPAccount
OtherAccount

The combinatorial problem: 3 x 5 x 3 = 45 possible combinations
of dynamic bindings (just for this one method!)

The combinatorial approach

We have to test validateCredit
in all the context!!!

There are some techniques to
Reduce it ...

Account
USAccount
USAccount
USAccount
UKAccount
UKAccount
UKAccount
EUAccount
EUAccount
EUAccount
JPAccount
JPAccount
JPAccount
OtherAccount
OtherAccount
OtherAccount

Credit
EduCredit
BizCredit
individualCredit
EduCredit
BizCredit
individualCredit
EduCredit
BizCredit
individualCredit
EduCredit
BizCredit
individualCredit
EduCredit
BizCredit
individualCredit

creditCard
VISACard
AmExpCard
ChipmunkCard
AmExpCard
VISACard
ChipmunkCard
ChipmunkCard
AmExpCard
VISACard
VISACard
ChipmunkCard
AmExpCard
ChipmunkCard
VISACard
AmExpCard

.! Exception handling

i Test of “Exceptions”

» There are two cases:
1. We expect an anomalous behavior and then an exception
2. We expect a normal behavior and then no exceptions

How to manage exceptions?

try {

throw new AnException(“message”);

)
catch (AnException e) { ... }

36

Good practice: test each exception!

* We expect an exception ...

try {
/Il we call the method with wrong parameters

object.method(null);

fail(*method should launch the exception!!");

} catch(PossibleException e){
assertTrue(true); // OK

“null launch the exception ..."

*We expect a normal behavior ...

try {
I/l We call the method with correct parameters

object.method(“Parameter");
assertTrue(true); // OK
} catch(PossibleException e){
fail (““method should not launch the exception !!!");

w! Integration/interaction Testing

‘L Integration/interaction Testing

= Until now we only talked about testing of
individual classes
m Class testing is not sufficient!

= OO design: several classes collaborate to
implement the desired functionality

= A variety of methods for interaction testing

= Consider testing based on UML interaction
diagrams
= Sequence diagrams

40

Sequence diagram

sd Iscrizione Torney

G2:Giocatore

frame

messaggi

I

I

|

i

I

I

|

i

: <

- l - g - ’

r execution spetificationl'dg

| perche esegue un’azione o
i passatoil controllo ad un altro

G1:Giocatore C:Coppia T-Tormeo
i nuovoTomeo(T,descr) i
i |
| |
| I
i i
attivatiPer(T) E i
I iscrivi(C)]
— I
i
5 ok(T)
! ok(T) <
| ok(T) :
| L

%etto é aftivo
a I

object lifeline

41

UML Interaction Diagrams for Testing

= UML interaction diagrams:

sequences of messages among a
set of objects

’ : Selezione informatica
- Mario Rossi Coran Corso
= There may be several diagrams Soegii informatica
showing different variations of the inolva selezione | corss disponivie?
I nte ra Ctl on Registazions OK Aggiungi Mario Rossi

= Basic idea:

= run tests that cover all diagrams, and

= all messages and conditions inside
each diagram

42

mal scenarios and alternatives

i Nor

= Run enough tests to cover all messages
and conditions

= Normal scenarios

= Alte

rnatives

= [0 cover each one: pick a particular

path

in the diagram and “drive” the

objec

s through that path

43

University course registration system

Esempio
Alternative:
Mario Rossi Seleziong informatica * Marno Ross1
i Lara — nome scorretto
Scegli informatica Y - ;
_ — nome gi1a inserito
Inoltra selezione 1 Corso disponibile? ‘ — nome con piano di
Aggiungi Mario Rossi | studi gié definitivo
Registrazione OK i) -
» scegli informatica

— corso diverso da
informatica

— corso mesistente
— corso non
disponibile

Ceaone de Sistessi Software
Prof G A Di Lexxs - Univ. del Seassio 12

* Integration Testing example

Acoount
gtatus:Qnunm ne 1
Dalanca:-int | :n.':r. «| | 2:Account] |b:Acoount]

| |
fgActiva:boolaan tramutar ix | I
isBlocked:booclaan witharzex) |

isClosed:boolaan ”
]
|
|
|

getBEalanca:int
block

unblock o

closa]

Saposit (amount - 1int) v

withdraw(amount : int)

deccait (x

-

!

Testing method transfer that call two objects Account

recoverAccount(...)

Junit Testcase ransfer...

public class BankTester extends TestCase {

public void testTransfer() {
Bank bank = new Bank();
Account a = bank.recoverAccount(“a”);

Account b = bank.recoverAccount(“b”);

Euro balanceA = a.getBalance();

Euro balanceB = b.getBalance();

bank.transfer(50, a, b);
assertTrue((balanceA-50).equalTo (a.getBalance()));

assertTrue((balanceB+50).equalTo (b.getBalance()));
}

h

Class Euro 46

i Possible exercises at the exam

= Class testing

= Given the implementation of a class:

= Recover the FSM and writing testcases for having state,
transition or/and path coverage

= Given a FSM and the interface of a class (fields+methods)

= writing Junit testcases to cover valid and invalid transitions
Ex. Stack

= Integration testing

= Given some classes (interfaces) and one or more sequence
diagrams deriving testcases
= Valid and alternative sequences

= Given two/three classes deriving a sequence diagram and
writing the testcases

47

References
(used to prepare these slides)

ﬂic}lcﬁs of the book “Foundations of software testing” by Aditya P.
athur

= http://www.cs.purdue.edu/homes/apm/foundationsBook/
InstructorSlides.html

Slides of Barbara G. Ryder, Rutgers, The State University of New
Jersey
» http://www.cs.rutgers.edu/~ryder/431/f06/lectures/Testing3New-11.pdf

Generating Test Sequences from UML Sequence Diagrams and State

Diagrams

» http://citeseerx.ist.psu.edu/vViewdoc/download?
doi=10.1.1.91.5283&rep=rep1&type=pdf

Slides of Mauro Pezze & Michal Young. Ch 15

= http://ix.cs.uoregon.edu/~michal/book/slides/ppt/PezzeYoung-Ch15-O0Testing.ppt
Model based testing

s http://users.encs.concordia.ca/~y_jarray/COEN345F2008/

48

