
Object Oriented Testing

Filippo Ricca
DISI, Università di Genova, Italy

ricca@disi.unige.it

OO Testing

  Research confirms that testing methods
proposed for procedural approach are not
adequate for OO approach

  Ex. Statement coverage

  OO software testing poses additional
problems due to the distinguishing
characteristics of OO

  Ex. Inheritance

  Testing time for OO software found to be
increased compared to testing procedural
software

2

Characteristics of OO Software

  Typical OO software
characteristics that impact
testing …
  State dependent behavior
  Encapsulation
  Inheritance
  Polymorphism and dynamic

binding
  Abstract and generic classes
  Exception handling

15.2

3

They simplify developing but complicate Testing!

OO definitions of unit and
integration testing

  Procedural software
  unit = single program, function, or procedure

  Object oriented software
  unit = class
  unit testing = intra-class testing
  integration testing = inter-class testing

  cluster of classes

  dealing with single methods separately is usually
too expensive (complex scaffolding), so methods
are usually tested in the context of the class they
belong to

4

State-based Testing

State-based Testing (1)

  Natural representation with finite state
machines
  States correspond to certain values of the

attributes
  Transitions correspond to methods

  FSM can be used as basis for testing
  e.g. “drive” the class through all transitions, and

verify the response and the resulting state

  Test cases are sequences of method calls that
traverse the state machine

6

State-based Testing (2)

  State machine model can be derived
from:

  specification
  code

  also using reverse engineering techniques

  or both …

  Accessing the state
  add inspector method, e.g. getState()

7

FSM derived by code

8

Example Stack

  States:
  Initial: before creation
  Empty: number of elements = 0
  Holding: number of elements >0, but less than

the max Capacity
  Full: number elements = max
  Final: after destruction

  Transitions:
  create, destroy
  actions that triggers the transition

  ex. Add, delete 9

Examples of transitions

  Initial -> Empty: action = “create”
  e.g. “s = new Stack()” in Java

  Empty -> Holding: action = “add”
  Empty -> Full: action = “add”

  if MAXcapacity=1
  Empty -> Final: action = “destroy”

  e.g. destructor call in C++, garbage
collection in Java

  Holding -> Empty: action = “delete”
  if s.size() = 1

10

Finite State Machine for a Stack

11

Coverage methods

  Writing testcases such that:
  Each state is covered
  Each transition is covered
  Each path is covered

  Often infeasible

  Ex. State coverage
  T1: Create, add, add, add [full]
  T2: Create, destroy [final]

12

FSM-based Testing

  Each valid transition should be
tested
  Verify the resulting state using a

state inspector that has access to the
internals of the class

  e.g., getState()

  Each invalid transition should be
tested to ensure that it is rejected
and the state does not change
  e.g. Full -> Full is not allowed: we

should call add on a full stack
  Exception “stack is full”

13

add

Junit Testcase: valid transitions

 // only three elements ...
public void testStackFull() {

Stack aStack = new Stack();
assertEqual(“empty”, aStack.getState());
aStack.push(10);
 assertEqual(“holding”, aStack.getState());
 aStack.push(1);
 aStack.push(7);
 assertEqual(“full”, aStack.getState());

 }

14

To have transitions coverage adding other testcases to “drive”
the class through all transitions!

Junit Testcase: invalid transition

15

// only three elements ...
public void testStackFull() {

Stack aStack = new Stack();
 aStack.push(10);

 aStack.push(-4);
 aStack.push(7);
 assertEqual(“full”, aStack.getState());
 try {
 aStack.push(10)
 fail(“method should launch the exception!!");
 } catch(StackFull e){
 assertTrue(true); // OK
 }
 }

Example 2: Current account

16

Testcases for account

17

TC1: a=account(new); a.withdraw(5); a.close() -- debit
TC2: a=account(new); a.withdraw(5); a.deposit(5); a.close() -- empty
TC3: a=account(new); a.withdraw(2); a.deposit(5); a.close() -- credit

getState()

ModelJUnit

  ModelJUnit is a Java library that extends
JUnit to support model-based testing

  Helpful for programmers:
  Write models in Java
  Focus on unit testing since it integrates

well with JUnit
  Already available test generation

algorithms
  Ex. randomwalk

18

SUT: simple vending machine

19

The system under test is
illustrated by the following state
diagram:

To define the model

20

// require junit.jar and modeljunit.jar
import net.sourceforge.czt.modeljunit.*
import net.sourceforge.czt.modeljunit.coverage.*

class VendingMachineModel implements FsmModel {
 def state = 0 // 0,25,50,75,100
 void reset(boolean testing) {state = 0}

 boolean vendGuard() {state == 100}
 @Action void vend() {state = 0}

 boolean coin25Guard() {state <= 75}
 @Action void coin25() {state += 25}

 boolean coin50Guard() {state <= 50}
 @Action void coin50() {state += 50}
}

For each state <=75 create
a new transition “coin25”
going in state+25

Testcases generation

21

Choosing the generation algorithm

Output

22

reset(true)  
done (0, coin50, 50)  
done (50, coin25, 75)  
done (75, coin25, 100)  
done (100, vend, 0)  

reset(true)  
done (0, coin25, 25)  
done (25, coin50, 75)  
done (75, coin25, 100)  
done (100, vend, 0)  

reset(true)  
done (0, coin25, 25)  
done (25, coin50, 75)  
done (75, coin25, 100)  
done (100, vend, 0)  

reset(true)  
done (0, coin50, 50)  
done (50, coin50, 100) 
done (100, vend, 0)

reset(true)  
done (25, coin50, 75)  
done (75, coin25, 100)  
done (100, vend, 0)   
.... 

Metrics Summary:
Action Coverage was 3/3
State Coverage was 5/5
Transition Coverage was 7/8

Tests execution in Junit
  The test generation code within the above main

method is usually written within the TestXYZ()
methods of JUnit classes

  So that each time you run your Junit test suite, you
will generate a suite of tests from your FSM model

23

done (0, coin50, 50)  
done (50, coin25, 75)  
done (75, coin25, 100)  
done (100, vend, 0)  

 public void TestVendingMachine() {
vendingMachine v = new VendingMachine();
 v.reset();

 v.coin50();
 assertEqual(50, v.getState());
 v.coin25();
 assertEqual(75, v.getState());
 ...
 }

Inheritance

Inheritance

  People thought that inheritance
will reduce the need for testing
  Claim 1: “If we have a well-tested

superclass, we can reuse its code in
subclasses without retesting inherited
code”

  Claim 2: “A good-quality test suite
used for a superclass will also be
good for a subclass”

  Both claims are wrong!!!
25

superclass

subclass

Problems with inheritance

  Incorrect initialization of superclass attributes by the
subclass

  Missing overriding methods
  Typical example: equals and clone

  Direct access to superclass fields from the subclass
code
  Can create subtle side effects that break unsuspecting

superclass methods

  A subclass violates an invariant from the superclass,
or creates an invalid state

  …

26

Testing of Inheritance (1)

  Principle: inherited methods
should be retested in the context
of a subclass
  Example 1: if we change some

method m() in a superclass, we need
to retest m() inside all subclasses that
inherit it

27

Superclass

m()

Subclass’

Subclass’’

Subclass’’’

changed

Retest m()!

Testing of Inheritance (2)

  Example 2: if we add or change
a subclass, we need to retest all
methods inherited from a
superclass in the context of the
new/changed subclass

28

Superclass

m’()
m’’()

subclass

Subclass’

Retest m’() and m’’()!

Example

29

Another example

30

override

Testing of Inheritance

  Test cases for a method m
defined in class X are not
necessarily good for retesting m
in subclasses of X
  e.g., if m calls m2 in A, and then

some subclass overrides m2, we
have a completely new interaction

  Still, it is essential to run all
superclass tests on a subclass
  Goal: check behavioural

conformance of the subclass w.r.t.
the superclass (LSP)

31

Testcases for m() in A
test m() that call A.m2()

Instead testcases for m() in B
should test the call B.m2()

The interaction is different

Polymorphism and dynamic binding

Combinatorial explosion problem
 abstract class Credit {
...
 abstract boolean validateCredit(Account a, int amt, CreditCard c);
...
}

USAccount
UKAccount
EUAccount
JPAccount
OtherAccount

EduCredit
BizCredit
IndividualCredit

VISACard
AmExpCard
StoreCard

The combinatorial problem: 3 x 5 x 3 = 45 possible combinations
of dynamic bindings (just for this one method!)

concrete

The combinatorial approach
Account Credit creditCard

USAccount EduCredit VISACard

USAccount BizCredit AmExpCard

USAccount individualCredit ChipmunkCard

UKAccount EduCredit AmExpCard

UKAccount BizCredit VISACard

UKAccount individualCredit ChipmunkCard

EUAccount EduCredit ChipmunkCard

EUAccount BizCredit AmExpCard

EUAccount individualCredit VISACard

JPAccount EduCredit VISACard

JPAccount BizCredit ChipmunkCard

JPAccount individualCredit AmExpCard

OtherAccount EduCredit ChipmunkCard

OtherAccount BizCredit VISACard

OtherAccount individualCredit AmExpCard

We have to test validateCredit
in all the context!!!

There are some techniques to
Reduce it …

Exception handling

36

Test of “Exceptions”

37

We expect an exception …
try {
 // we call the method with wrong parameters
 object.method(null);
 fail(“method should launch the exception!!");
} catch(PossibleException e){
 assertTrue(true); // OK
} class TheClass {

 public void method(String p)
 throws PossibleException

 { /*... */ }
}

Good practice: test each exception!

“null launch the exception …”

38

We expect a normal behavior …

try {
 // We call the method with correct parameters
 object.method(“Parameter");
 assertTrue(true); // OK
} catch(PossibleException e){
 fail (“method should not launch the exception !!!");
} class TheClass {

 public void method(String p)
 throws PossibleException

 { /*... */ }
}

Integration/interaction Testing

Integration/interaction Testing

  Until now we only talked about testing of
individual classes

  Class testing is not sufficient!
  OO design: several classes collaborate to

implement the desired functionality

  A variety of methods for interaction testing
  Consider testing based on UML interaction

diagrams
  Sequence diagrams

40

Sequence diagram

41

UML Interaction Diagrams for Testing

  UML interaction diagrams:
sequences of messages among a
set of objects
  There may be several diagrams

showing different variations of the
interaction

  Basic idea:
  run tests that cover all diagrams, and
  all messages and conditions inside

each diagram

42

Normal scenarios and alternatives

  Run enough tests to cover all messages
and conditions
  Normal scenarios
  Alternatives

  To cover each one: pick a particular
path in the diagram and “drive” the
objects through that path

43

University course registration system

44

Integration Testing example

45

Testing method transfer that call two objects Account

Junit Testcase

46

public class BankTester extends TestCase {

 public void testTransfer() {
Bank bank = new Bank();
Account a = bank.recoverAccount(“a”);

 Account b = bank.recoverAccount(“b”);
 Euro balanceA = a.getBalance();
 Euro balanceB = b.getBalance();
 bank.transfer(50, a, b);

assertTrue((balanceA-50).equalTo (a.getBalance()));
 assertTrue((balanceB+50).equalTo (b.getBalance()));
 }
}

 Bank

recoverAccount(...)
transfer(...)
....

Class Euro

Possible exercises at the exam
  Class testing

  Given the implementation of a class:
  Recover the FSM and writing testcases for having state,

transition or/and path coverage

  Given a FSM and the interface of a class (fields+methods)
  writing Junit testcases to cover valid and invalid transitions

  Ex. Stack

  Integration testing
  Given some classes (interfaces) and one or more sequence

diagrams deriving testcases
  Valid and alternative sequences

  Given two/three classes deriving a sequence diagram and
writing the testcases

47

48

References
(used to prepare these slides)

  Slides of the book “Foundations of software testing” by Aditya P.
Mathur
  http://www.cs.purdue.edu/homes/apm/foundationsBook/

InstructorSlides.html
  Slides of Barbara G. Ryder, Rutgers, The State University of New

Jersey
  http://www.cs.rutgers.edu/~ryder/431/f06/lectures/Testing3New-11.pdf

  Generating Test Sequences from UML Sequence Diagrams and State
Diagrams

  http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.91.5283&rep=rep1&type=pdf

  Slides of Mauro Pezzè & Michal Young. Ch 15
  http://ix.cs.uoregon.edu/~michal/book/slides/ppt/PezzeYoung-Ch15-OOTesting.ppt

  Model based testing
  http://users.encs.concordia.ca/~y_jarray/COEN345F2008/

