SAT-Based Answer Set Programming

Enrico Giunchiglia!, Yuliya Lierler 2, and Marco Maratea!

IDIST - Universiti di Genova, Genova, Italy
2Institut fur Informatik, Erlangen-RMrnberg-Universit, Germany

enrico,marco }@mrg.dist.unige.it,

Abstract

The relation between answer set programming (ASP) and
propositional satisfiability (SAT) is at the center of many re-
search papers, partly because of the tremendous performance
boost of SAT solvers during last years. Various translations
from ASP to SAT are known but the resulting SAT formula ei-
ther includes many new variables or may have an unpractical
size. There are also well known results showing a one-to-one
correspondence between the answer sets of a logic program
and the models of its completion. Unfortunately, these results
only work for specific classes of problems.

In this paper we present a SAT-based decision procedure for
answer set programming th@) deals with any (non disjunc-
tive) logic program{ii) works on a SAT formula without ad-
ditional variables, andii:) is guaranteed to work in polyno-
mial space. Further, our procedure can be extended to com-
pute all the answer sets still working in polynomial space.
The experimental results of a prototypical implementation
show that the approach can pay off sometimes by orders of
magnitude.

Introduction

Propositional satisfiability (SAT) is one of the most studied
fields in Artificial Intelligence and Computer Science. Also
motivated by the availability of efficient SAT solvers various
reductions from logic programs to SAT were introduced in
the past.

Fages (1994) showed that if a prograiris “tight” then
its answer sets (or stable models) are in one-to-one corre-
spondence with the models of its completion (Clark 1978).
If the completion is converted to a set of claudgsstate-

of-the-art SAT solvers can be used as answer set generators

Since the size of is at most twice the size dfl, and has
at mostm new variables (wherge: is the number of rules in
the logic program) this is considered a viable and efficient

approach. Fages’ result was then generalised to include pro-

grams with infinitely many rules (Lifschitz 1996), programs

*We are grateful to Paolo Ferraris and Vladimir Lifschitz for
their comments related to the subject of the paper; to Esra Erdem
and Keijo Heljanko for providing us with the benchmarks; and to
Francesco Calimeri for his support onv. This work is partially
supported by ASI, MIUR and Texas Higher Education Coordinat-
ing Board under Grant 003658-0322-2001.

Copyright © 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

2yuliya.lierler@informatik.uni-erlangen.de

tight “on their completion model” (Babovich, Erdem, & Lif-
schitz 2000), and programs with nested expressions in the
bodies of the rules (Erdem & Lifschitz 2003). Still these re-
sults do not apply to the whole class of logic programs. It is
well known that each answer set corresponds to a model of
its completion, but the viceversa in general is not true.

Ben-Eliyahu and Dechter (1996) gave a translation from
a class of disjunctive logic programs to SAT. However the
translation may nee@(n?) new variables and(n?) new
clauses (where is the number of atoms in the logic pro-
gram). Janhunen (2003) presented an optimized encoding
of this translation, which behaves subquadratic in both size
and number of atoms.

A reduction to SAT which does not need extra variables
was proposed by Lin and Zhao (2002). The drawback of this
reduction is that the resulting formula may blow-up in space.
Still systemAssAT based on such reduction outperforms
state-of-the-art ASP systems liktODELS(Niemek 1999;
Simons 2000) andLv (Eiteret al. 1998) on many interest-
ing problems.

In this paper the question that we positively answer is: Is
it possible to build an efficient SAT-based answer set gener-
ator that(z) deals with any (non disjunctive) logic program,
(it) works on a SAT formula without additional variables
except for those eventually introduced by the clause form
transformation, andiii) is guaranteed to work in polyno-
mial space? We present a procedure, called-SAT, hav-
ing the above three but also other features. We integrated
ASP-SAT in cMODELS! and ran a wide comparative analy-
sis with other state-of-the-art systems. The results show that
our procedure has a clear edge over them.

" The paper is structured as follows. First we introduce
some necessary definitions and terminology. Second we
present the main ideas behind our procedure and some de-
tails for an effective implementation. We end the paper de-
scribing the integration itMODELS, the experimental re-
sults, and the conclusions.

Formal Background
Let P be a set of atoms. Aule is an expression of the form

Ag— Ay, ..., Ap,not Appy1, ... ,not Ay, Q)

*http:/wvww.cs.utexas.edu/users/tag/cmodels

whereAd, € P U { L} (L is the logical symbol standing for
Falsg, and{A;,...,A,} € P (0 < m < n). Ay isthe
head of the rule, Ay, ..., A, not Ayy1, ..., not A, is the
body. A (non disjunctive) logic program is a finite set of
rules.

In order to give the definition of an answer set we con-
sider first the special case in which the progrAndoes not
contain the negation as failure operatasrt (i.e. for each
rule (1) inIl, n = m). LetII be such a program and l&t
be a set of atoms. We say that is closed underII if for
every rule (1) inll, Ag € X whenevef 4,,..., A} C X.
We say thatX is ananswer set for IT if X is the smallest set
closed undefl.

Now consider an arbitrary prograhh. Let X be a set of
atoms. Thaeduct ITX of II relative toX is the set of rules

A0<—A1,...,Am

for all rules (1) inII such thatX N {A,,.1,..., A} = 0.
ThusII¥X is a program without negation as failure. We say
that X is ananswer set for IT if X is an answer set fdi~.

Our next step is to introduce the relation between the an-
swer sets ofl and the models of its completion. In the fol-
lowing we represent an interpretation in the sense of propo-
sitional logic as the set of atonTguein it. With this con-
vention a set of atom&” can denote both an answer set and
an interpretation.

If Ag is an atom or the symbal, the completion of 11
relative to Ay is the formula

Ao = \J(AL A A A A=A Ao A=Ay

where the disjunction extends over all rules (1)lirwith
headAy. The completion ComfII) of II consists of the
formulasComp1II, Ap), one for each symbol, in PU{_L}.

It is well known that if X is an answer set dil then X
satisfiesCompII) while the converse is not necessarily true.
Lin and Zhao (2002) proved that to have a one-to-one corre-
spondence between the answer setH a@ind the models of
its completion we have to consider the loop formulaglof
To state this formally we need the following definitions.

The dependency graph of a programil is the directed
graphG such that the vertexes 6f are the atoms iil, and
G has an edge fromly to A4, ..., A,, for each rule (1) in
IT with Ag # L. A loop of I is a setL of atoms such that
for each paird, A’ of atoms inL there is a path from! to
A’ in the dependency graph &f whose intermediate nodes
belong toL.

Given a loopL, we defineR(L) to be the set of formulas

AN NAp A=Al AL A-A,

for all rules (1) inII, with Ay € Land{A;,..., A,,}NL =

(). Theloop formula associated with L is

VLoV RWY)

where\/ L denotes the disjunction of the elementdirand
similarly for\/ R(L). For instance, the only loop formula of

the program{p <« p,p < not q} isp D —q.

Proposition 1 (Lin & Zhao 2002) LetIl be a program,
ComgIl) its completion, andL.F(IT) be the set of loop
formulas associated with the loops ih For each set of
atoms X, X is an answer set ofl iff X is a model of
ComgII) U LF(II).

SAT-Based Answer Set Solvers

Consider a prograril. Given Proposition 1 it is clear that
if the dependency graph of has no cycles (in this case we
say thafll is tight) then the models a€omg1I) are also an-
swer sets ofl. Thus for tight programs answer set systems
can use SAT solvers as “black-box” search engiesoD-
ELS used this approach to compute answer sets for tight pro-
grams.

If IT is non tight, Lin and Zhao (2002) presented the fol-
lowing procedureLZ(II) which still uses SAT solver as
black-boxes:

1. ComputeCompII) and convert it to a set of clausEs

2. Find a modelX of I" by using a SAT solver. Exit with
failure if no such model exists.

Compute the set of atondé~ = X — Cons(I1¥), where
Cons(ITX) is the set of atoms derivable from the reduct
of I relative to.X.

3.

4. If X~ =0, then returnX.

. Otherwise, add the clauses corresponding to the loop for-
mulas of all the maximal (under subset inclusion) loops in
X~ toT', and go to step 2.

LZ(II) either returns an answer set fAr, or failure if II
does not have answer sets. In their article Lin and Zhao
showed thahssAT, a system implementing the above pro-
cedure, can outperform rival systems often by orders of mag-
nitude. Still, LZ(IT) has the following two drawbacks:

1. Itis not guaranteed to work in polynomial space. In fact,
IT can have exponentially many loops: If we assume that
each loop formula is not redundant (i.e., that it is not en-
tailed by the rest of the formula under consideration), then

If IT has an answer set thérZ (II) blows up in space
in the worst case, while

If IT has no answer set théiZ (IT) is bound to blow up

in space: InLZ(II) adding and keeping loop formulas

is essential to guarantee that the SAT solver does not
return previously computed models, and ultimately to
guarante@SSAT termination.

. Considering two successive calls of the SAT solver, the
computation done for finding the first model is completely
discarded. Thus some branches of the search tree may get
computed many times.

These drawbacks can be eliminated if we do not use a
SAT solver as a black-box. Instead we can take advantage
that state-of-the-art complete SAT solvers are based on the
Davis-Logemann-Loveland procedureL() (1962). The
basic observation is that.L can easily work as a SAT enu-
merator. We can thus compuBamgII) and then

e generatemodels ofComgII), and

pLL(T, S)
if I' = () then return True,
if @ € T then return False
if {I} € T"then return pLL (assign(l,T), S U{l});
A := an atom occurring ifi’;
return DLL (assign(A,T),SU{A}) or
DLL (assign(—A,T), S U {=A}).

Figure 1: The DPLL procedure

o testwhether the generated models are answer sdis of

ConsiderpLL as in Figure 1, wheré denotes a literal;
I" a set of clausesS an assignment, i.e. a consistent set
of literals. Given an atormH, assign(A,T") is the set of
clauses obtained fromi by removing the clauses to which
A belongs, and by removingA from the other clauses in
T. assign(—A,T) is defined similarly. In the initial call to
DLL I' is the set of clauses of which we compute a model
andS is the empty setpLL (T,) returnsTrue whenevel
is satisfiable, an&alseotherwise.

GivenDLL, we can obtain a SAT-based answer set gener-
ator forII by

1. Modifying the first line ofbLL in the figure by substitut-
ing “return True’ with “return tes{.S,I1)", a new func-
tion which

e prints the seatomgS) = S N P and returnsTrue, if
atomg.S) is an answer set df, and
e returnsFalse otherwise.

. Defining a functionAasp-sAT(II), that callspLL (T, ?)
whereT is a set of clauses correspondingGomg1II).
I' can be computed in many ways. Here, our only as-
sumptions are thdt) I" signature extend®, and(i7) for
each seX of atoms inl signature X satisfied" iff XN P
satisfiesCompII). Standard conversion methods satisfies
such conditions.

Notice that the sef' in tes(S,II) may be non maximal
wrt P, i.e., for some atomd in P, bothA and—A may not
belong toS. Thus,S U {A} entailsCom@II) and in princi-
ple we also need to checkatomgS U {A}) is an answer
set ofII. However, this additional check is not needed, as
established by the following proposition.

Proposition 2 LetIT be a program,X, X’ be two sets of
atoms satisfying Confpl). If X C X’ thenX' is not an
answer set.

From the above proposition, and the fact that each answer

set is also a model cEomgTII) it follows the correctness
and completeness afsp-sAT(I).

Proposition 3 Given a programIl, ASP-SAT(II) returns
True if and only ifll has an answer set.

Moreover Asp-sAT(II) (i) performs the search on
ComgII) and thus does not introduce any extra variables

except for those eventually needed by the clause form trans-

formation; (i¢) is guaranteed to work in polynomial space;
(7i7) can deal with both tight and non tight programs. Fur-
ther,

e In the case of tight problems each generated model
of Compgll) corresponds to an answer set and thus
ASP-SAT(IT) behaves as a standard SAT solver run on
ComgII).

e ASP-SAT(II) can be easily modified for printing all the
answer sets ofl: It is enough to modifytes{(.S,II) in
order to returnFalse also whenatomgS) is an answer
set.

Compared toASSAT, ASP-SAT is guaranteed to work in
polynomial space and no computation is ever repeated, also
when computing all answer sets. Compared to other answer
set solvers likesMODELSandDLV, ASP-SAT has the advan-
tage of being SAT-based and thus it can leverage on the great
amount of knowledge available in SAT.

Still, most of the state-of-the-art SAT solvers based on
DLL, e.g. MCHAFF (Moskewiczet al. 2001), use learning
when backtracking. With learning, whenevealse is re-
turned, a “reason” for the failure has to be computed. Intu-
itively, a reason is a subsst of the assignment such that
any assignment extendirf§f will fail. In order to use SAT
solvers with learning, it is thus not enough tes{ S, IT) to
returnFalsewhensS is not an answer set. Indeed, it has also
to compute a reason for such failure, i.e., a suls8etf S
such that for any maximal assignme#it (i) extendingS’
and(s¢) entailingComgII), atomg.S”) is not an answer set
of II. One such set i§ itself. However in order to try to
maximize the advantages of learning, it is important t$fat
be as small as possible. Thus, for computing sfththe
tes(S, IT) procedure

1. computes the loop formulas associated with the loops in
atomgS) — Cons(I1etoms(9)),

2. determines a subset Sfwhich falsifies one of the loop
formulas computed in the previous step.

In our experiments, with such a simple procedure, we are
able to compute reasons which are often less than 1% of
the size ofS. Of course, the above method for computing
reasons, cannot be applied when returritatsebecause the
goal is to determine all the answer sets abaimg.S) is an
answer set. In this case, by Proposition 2, theasemng.S)
can work as reason.

In the SAT literature, it is well known that learning can
produce exponential speed-ups. We now showABatSAT
with learning and the method for computing reasons based
on loop formulas, can invokiest S, IT) exponentially many
less times thamsP-SAT without learning.

Assume the prograifi consists of the two rulés

A — Aia Ajp1 — Ay
for eachi € {0,2,...,2k}. ThenComp(II) includesA; =
A1 (€ {0,2,...,2k}) and we can assume that its clausi-

ficationT" consists of the two clausésA4; vV A;1),(4; V
—-A;41), foreachi € {0,2,...,2k}. T has2* models while
the only answer set df is the empty set:

2In this paragraph for simplicity we assume that the clauses
corresponding to the reasons returnedest.S, IT) are stored and
never deleted.

e ASP-SAT without learning or with learning but in which
tes(S,I1) computesatomg.S) as reason whess' is not
an answer set, may genera€ assignments entailing
Comp(1I).

e ASP-SAT with learning and in whichest{.S, IT) computes
as reason the subset Sffalsifying one of the loop for-
mulas inatomgS) — Cons(I1***™*(%)) may generate at
mostk assignments entailingomp(11).

Still, for such a simple program, the generation and testing
of k assignments seems an overkill. Indeed, for progrtAims
without negation as failure, we know that there exists exactly
one answer se'ons(II). For such programgsp-SAT can

be easily tuned to directly compute such answer set by first
assigning the atoms i to Falsewhile branching. It can

be proved that with this modification and for prograiis
without negation as failure, the first invocationtes{(S, II)
hasS = Cons(II).

Integration in CMODELS

ASP-SAT was implemented on top of th&IMO sys-
tem (Giunchiglia, Maratea, & Tacchella 2003) and inte-
grated incMODELS(Lierler & Maratea 2004) by the last two
authors.siMO is aMCHAFF-like SAT solver (Moskewiczt

al. 2001), and features two-literal watching data structure,
1-UIP learning, and VSIDS heuristics. However, it does not
feature the low level optimizations efcHAFF and thus it is
within a factor of 3 slower thamcHAFF. Our implementa-
tion of ASP-SAT incorporates all the techniques presented in
previous section, including the idea to assign atoms first to
Falsewhile branching.

Still, the integration oRSP-SAT in CMODELSposed some
challenges related taMODELS expressivity. CMODELS
usesLPARSE as frontend and thus its input may contain
cardinality expressions (also called “constraint literals” in
LPARSE manuat) and choice rules, two constructs widely
used in answer set programmifi@perationallycMODELS
performs the following steps:

1. Simplifies the givemPARSE program performing prepro-
cessing similar to those involved 8MODELS.

2. Eliminates cardinality expressions by introducing auxi-
lary atoms and rules. Eliminates choice rules in favor
of nested expressions in the sense of (Lifschitz, Tang, &
Turner 1999). This is done using a procedure defined in
(Ferraris & Lifschitz 2003).

3. Verifies that the resulting program with nested expres-
sions is tight: the definition of tightness is generalized to
such programs in (Erdem & Lifschitz 2003).

Forms the program’s completion (see (Lloyd & Topor
1984) for the definition of completion of a program with
nested expressions) and calls a SAT solver.

For cMODELS the integration implied calling\sP-SAT in-
stead of the SAT solver. As farsp-SAT we had to take into

Shttp://www.tcs.hut.fi/Software/smodels/Iparse.ps.gz

“The input can also contain general weight expressions
(“weight literals”) However, optimize statements (SEPARSE
manual) are not allowed.

account that programs with nested expressions do not satisfy
Proposition 2. For instance, the program

A «— not not A 2
(corresponding to the translation of the choice rule
“{A} <) has two answer setd), {A}. The violation of
Proposition 2 implied two modifications in our procedure.
Consider a program with nested expressibhsWhen we

are interested in computing all solutions, we have to guar-
antee that each se&t of literals intes(S,II) is maximal.
Assuming that the input set of clauses is satisfiabl&lo
always returns maximal assignments but in the signature of
the set of clauses resulting aftemo preprocessing. How-
ever SIMO removes tautological clauses in the preprocess-
ing. Tautological clauses can naturally arise during the com-
pletion process and removing them may cause the gener-
ation of non maximal (wrt the signature of the input pro-
gram) assignments. By Proposition 2, this is not a problem
if IT does not have nested expressions; it may be a problem
otherwise. For instance, the completion of the program (2)
is A = —-—A. (AV —A) is the tautological clause corre-
sponding to this completion. After the preprocessing, the
set of clauses corresponding to the program is empty, and
ASP-SAT would not find the answer s¢td}. Therefore, we
modifiedASP-SAT preprocessing in order to keep tautologi-
cal clauses. The second modification involved the function
tes(S,II). It considers loop formulas as defined in (Lee &
Lifschitz 2003) for nested programs. In the casemgS)

is an answer set and we are interested in finding all answer
sets off1, tes{.S, II) returns the entire sét as a reason since
any superset or subset of the atomsimay be an answer
set ofIl.

Experimental Results

CMODELS2 was comparatively tested against other state-of-
the-art systems on a variety of benchmarks. Some of the
benchmarks we considered include cardinality constraints
and choice rules, and will be called “extended”. The sys-
tems we considered asMODELSVersion 2.27 ASSAT ver-

sion 1.52 runninguCHAFF as SAT solverpLv release of
2003-05-16. It worths remarking that whid®1ODELS AS-

SAT andCMODELS2 USeLPARSE as preprocessor, and thus
can be run on the same problenmsy does not. This ex-
plains whybLv appears only in few tables. Furtheissat
cannot deal with extended programs. Finally, fav we
have to mention that it is a system specifically designed for
disjunctive logic programs, and that very different results
can be obtained depending on the specific encoding being
used.

All the tests were run on a Pentium IV PC, with 1.8GHz
processor, 512MB RAM DDR 266MHz, running Linux.
For SMODELS ASSAT and CMODELS2, the time taken by
LPARSEis not counted. Further, each system was stopped
after 3600 seconds of CPU time on an instance, or when it
exceeded all the available memory: In the tables, these cases

5Adding the times ofLPARSE will not change the picture for
DLV when compared taMODELS2.

Standard programs Extended programsg Standard programs Extended progranjs
#b| #5[[SMODELSASSAT|CMODELS2[[SMODELYCMODELS2 SMODELSASSAT| DLV [CMOD2[|[SMODELS CMOD2]|
8[i-1|| 12.32 | 0.80 1.19 0.81 0.47 np30c|| 11.70 | 1.14 | 22.08| 0.69 0.36 0.36
11]i-1|| 71.78 | 2.97 4.19 2.97 1.01 np40c|| 62.89 [41.81] 97.96| 1.63 2.48 0.87
8T 20.87 | 0.89 218 1.56 1.40 np50c|| 219.56 | 14.51| 314.46| 3.37 8.39 1.79
11] 7142 | 3.17 452 341 1.16 np60c|| 594.46 | 48.80| 770.07| 5.81 20.47 3.41
8i+1] 2335 | 0.96 097 2.99 031 np70c|| 1323.61(291.601679.12 8.22 39.41 5.87
111 107.48 | 3.54 333 571 0.75 np80c|| 2354.28| 32.51[3407.3% 14.20(|| 75.36 | 9.18
. . . : : np90c|| TIME [779.06 TIME | 22.23| 122.53 | 14.19
_ et - np100¢ TIME | — | TIME | 28.63| 185.52 | 20.76
Table 1: Blocks world: “#b” is the number of blocks. np1200 TIME —TTIME [53331 418.15 | 41.84

are denoted with “TIME” and “MEM” respectively. Other-
wise, the tables report the CPU times in seconds needed by

each solver to solve the problem, or-a™to denote an ab- [| SMODELS| AssAT [DLV [CMODELS? |
normal exit of the program. mutex4 | 33.92 (0)0.62 | 840.60] (0)0.68
We start our analysis considering blocks world planning phi4 0.24 (168)2.98 | 1.44 TIME
problems, encoded as both standard and extended logic pro-mutex2 0.09 (88)1.78 0)0.12
grams, the latter formulation due to Erdem (2002). The re- [mutex3 29057 MEM (0)24.16
sults are represented in Table 1. In the tablethe column phi3 2.87 (704)236.91 (57)3.91

Table 2: Complete graphs. npXc corresponds to a graph

with “X” nodes. cMOD2 iS CMODELS2

“#b” represents the number of block$i) an “” in the “#s”
(standing for “number of steps”) column means that the in- Taple 3: Checking requirements in a deterministic automa-
stance corresponds to the problem of finding a planiin “ tgn. pLv was not run on the last 3 instances.

steps, where:” is the minimum integer for which a plan ex-
ists. Thus, the instances withi’and “; + 1" in the “#s” col-)))]
umn admit at least one answer set, while those with 1” CMODELSZ times out on one instance that is easily solved by
do not have answer sets. These blocks world problems are @ll the other solvers. This is due to the dimension of the re-
tight on their completion models (Babovich, Erdem, & Lif- lated propositional formula. On the other hand, for any other
schitz 2000), and thus every model of the completion cor- Solver, there are one/two instances on WHGGIDDELS is at
responds to an answer set. As it could be expected, SAT- |éast 1 order of magnitude faster. InterestinglysAT blows
based systems likessaT and cMODELS2 perform (some- UP in memory on one instance (and also on other instances,
times significantly) better thasMoDELS, both on standard N which the other systems time out). .
and extended programs. On standard progragsaT per- Non tight, extended real-world problems corresponding
forms slightly better thatMODELS2, and this corresponds ~ t0 the bounded model checking (BMC) of asynchronous

to the fact that, on averageCHAFF is better tharsimo. concurrent systems (see (Heljanko & Nie&n@003) are
We also considered Hamiltonian circuit problems on shown in Table 4. As for the blocks world, these problems

complete graphs, using both the standard encoding of &€ about proving a certain property in a given number of
Niemela (1999), and the extended encoding in the “bench- Steps, represented as the last number in the instance name.
mark problems for answer set programming systéms” The problems in the first five rows do not have answer sets,
These problems are particularly interesting because they areWhile the remaining (obtained by incrementing the number
non tight and have exponentially many loops. Thus, one of steps) do. Here the results are mixed, and sometimes
would expect these problems to be difficult fessAT, but CMODELS2 performs much worse tha&MODELS On these
also forcMODELS2 in the case it will generate and then re- Problems, our standard heuristic is not suited. Given a pro-
ject (exponentially) many candidate answer sets. The results 9r@mII, by changing the heuristic in order to

are in Table 2. As can be observed, on this testsebD- o firstassign the atoms occurring within the negation as fail-
ELS2 performs best, being faster (sometimes by orders of ure operator, the order and sign of such atoms determined
magnitude) than all the other solvers both on standard and as insimo, and

extended programs. . - '
! . ¢ then assign the remaining atoms firstRalse the order
The problems in Table 3 are real-world non tight problem determined as i8IMO,

related to checking requirements in a deterministic automa-

ton, and are described in (Shmfescu, Esparza, & Muscholl ~ we get the better figures represented in the last column, un-
2003)7 Two types of problems are considered and encoded der the labelcMODELS. The idea behind this heuristic is

in logic programs. The first type is called IDFD and the re- thatwe should first get to a set of clauses corresponding to a
sults on such problems are reported in the first two rows of programil without negation as failure, and then we should
the table. The second type of problem is called “Morin”, and try to satisfy the remaining set of clauses by assigning the

the results are shown on the last three rows. As can be seen,fewest possible atoms to true.

- Summing up, the 4 tables show the performances on 45
®http:/www.cs.engr.uky.edu/ai/benchmark-suite/ham-cyc.sm problems. If for the Table 4 we consider the results in the

"These benchmarks are available at http://www.fmi.uni-

stuttgart.de/szs/research/projects/synthesis/benchmarks030923.html 8http://www.tcs.hut.fil kepa/experiments/boundsmodels/

[BMC | SMODELS [CMODELS2 | CMODELS2' |

dp-10.i-02-b11 382.72 1476.72 442.14
dp-10.s-02-b8 15.24 8.20 14.22
dp-12.s-02-b9 336.03 65.41 137.34
dp-8.i-02-b9 8.08 12.62 10.69
dp-8.s5-02-b7 1.19 1.02 2.28
dp-10.i-02-b12|| 445.47 3295.72 163.15
dp-10.s-02-b9 28.87 16.07 15.08
dp-12.5-02-b10]] 971.50 209.29 46.51
dp-8.i-02-b10 5.05 40.01 6.44
dp-8.5-02-b8 1.76 1.99 2.03

Table 4: Bounded Model Checking Problems.

last columnCMODELS2

e times out on 1 problem, while the other systems do not
conclude on at least 3 problems;

e performs better than all the three solvers on 30 problems,
and on 26 it has at least a factor of 2; and,

e except for the problem on which it times oaiyODELS2
is either the top performer or within a factor of 2 from it.

We also considered the problem of generating all the an-
swer sets. Here the results are less in favoCMDDELS2
when compared teMODELS, especially on extended pro-
grams. We believe this is because of the very naive way in
which reasons are computed tgs(.S, IT), especially when
atomgS) is an answer set.

Conclusions

We have presented a SAT-based procedure(ifaan deal
with any logic progranii) works on a SAT formula with-
out additional variablegjii) is guaranteed to work in poly-
nomial space. Further, we have evidenced thew®-SAT

can be easily modified in order to generate all the answer
sets. We have shown how to implemestr-SAT on top of a
MCHAFF-like solver, and discussed the modifications needed
in the case of extended programs. The experimental evalua-
tion shows that MODELS2, can have a significant edge over
other state-of-the-art systems. Still, we believe that there is
a lot of space for improvements, especially in the heuristics,
and in the way reasons are computed.

Finally, we believe thansp-SAT helps in closing the al-
gorithmic gap between answer set and SAT solvers, with
beneficial results especially for the former, given the very
advanced state of development of the latter.

References

Babovich, Y.; Erdem, E.; and Lifschitz, V. 2000. Fages’
theorem and answer set programmingPhoc. NMR

Ben-Eliyahu, R., and Dechter, R. 1996. Propositional se-
mantics for disjunctive logic program#nnals of Mathe-
matics and Atrtificial Intelligencé2:53-87.

Clark, K. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds.L.ogic and Data Based\Y: Plenum Press.
293-322.

Stefanescu, A.; Esparza, J.; and Muscholl, A. 2003. Syn-
thesis of distributed algorithms using asynchronous au-
tomata. InProc. of CONCURLNCS 2761.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem provingACM5(7).

Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and Scarcello,
F. 1998. The KR system dlv: Progress report, comparisons
and benchmarks. IRroc. KR

Erdem, E., and Lifschitz, V. 2003. Tight logic programs.
Theory and Practice of Logic Programming 499-518.

Erdem, E. 2002.Theory and applications of answer set
programming Ph.D. Dissertation, UT at Austin.

Fages, F. 1994. Consistency of Clark’s completion and
existence of stable modeldournal of Methods of Logic in
Computer Sciencg:51-60.

Ferraris, P., and Lifschitz, V. 2003. Weight constraints
as nested expressiongheory and Practice of Logic Pro-
gramming To appear.

Giunchiglia, E.; Maratea, M.; and Tacchella, A. 2003.
(In)Effectiveness of look-ahead techniques in a modern
SAT solver. InProc. CP, LNCS 2833.

Heljanko, K., and Niemél, 1. 2003. Bounded LTL model
checking with stable model3heory and Practice of Logic
Programming3(4&5):519-550.

Lee, J., and Lifschitz, V.. 2003. Loop formulas for disjunc-
tive logic programs. IfProc. ICLP.

Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT-Based
Answer Set Solver Enhanced to Non-tight Programs. In
Proc. LPNMR 346-350.

Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested
expressions in logic program&nnals of Mathematics and
Artificial Intelligence25:369—-389.

Lifschitz, V. 1996. Foundations of logic programming. In
Brewka, G., ed.Principles of Knowledge Representation
CSLI Publications. 69-128.

Lin, F., and Zhao, Y. 2002. ASSAT: Computing answer
sets of a logic program by SAT solvers. Pnoc. AAAI

Lloyd, J., and Topor, R. 1984. Making Prolog more ex-
pressive Journal of Logic Programmin@:225-240.

Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an Efficient SAT
Solver. InProc. DAC

Niemeh, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradiginnals of
Mathematics and Artificial Intelligenc25:241-273.

Janhunen, T. 2003 A counter-based approach to translating
normal logic programs into sets of clausédoc. ASP'03
Workshoppp. 166—-180.

Simons, P. 2000. Extending and implementing the stable
model semantics. IDoctoral dissertation305—-316.

