On the relation between Answer Set and SAT
procedures
(or, betweencMODELS and SMODELS)

Enrico Giunchiglia and Marco Maratea

STAR-Lab, DIST, University of Genova
viale Francesco Causa, 13 — 16145 Genova (lItaly)
{enrico,marcd@dist.unige.it

Abstract. Answer Set Programming (ASP) is a declarative paradigm for solv-
ing search problems. State-of-the-art systems for ASP inchwieDELS, DLV,
CMODELS, andASSAT.

In this paper, our goal is to study the computational properties of such systems
both from a theoretical and an experimental point of view. From the theoretical
point of view, we start our analysis witMODELS andSMODELS We show that
though these two systems are apparently different, they are equivalent on a sig-
nificant class of programs, called tight. By equivalent, we mean that they explore
search trees with the same branching nodes, (assuming, of course, a same branch-
ing heuristic). Given our result and that th®ODELS search engine is based on

the Davis Logemann Loveland procedura i) for propositional satisfiability
(SAT), we are able to establish that many of the properties holdingiforalso

hold forcMmoDELS and thus fosMODELS. On the other hand, we also show that
there exist classes of non-tight programs which are exponentially hacafop-

ELS, but “easy” forsMODELS We also discuss how our results extend to other
systems.

From the experimental point of view, we analyze which combinations of reason-
ing strategies work best on which problems. In particular, we extenteab-

ELS in order to obtain a unique platform with a variety of reasoning strategies,
and conducted an extensive experimental analysis on “small” randomly generated
and on “large” non randomly generated programs. Considering these programs,
our results show that the reasoning strategies that work best on the small prob-
lems are completely different from the ones that are best on the large ones. These
results point out, e.g., that we can hardly expect to develop one solver with the
best performances on all the categories of problems. As a conseq(gnde;
velopers should focus on specific classes of benchmarkg,énidenchmarking
should take into account whether solvers have been designed for specific classes
of programs.

1 Introduction

Answer Set Programming (ASP) is a declarative paradigm for solving search problems.
State-of-the-art systems for ASP inclusi@ODELS, DLV, CMODELS, andASSAT.: Our

1See http:/iwww.tcs.hut.fi/fSoftware/smodels . http://www.dbai.
tuwien.ac.at/proj/div , http://assat.cs.ust.hk , http://mww.cs.
utexas.edu/users/tag/cmodels.html , respectively.

goal is to study the computational properties of such systems both from a theoretical
and an experimental point of view.

From the theoretical point of view, we start our analysis withoDELS andSMOD-
ELS. Given a progranil, while sMoDELS (and alsaDLV) is a native procedure which
directly operate o/, CMODELS (and ASSAT) computes a set of clauses correspond-
ing to the Clark’s completion off, and then invoke a propositional satisfiability (SAT)
solver based on Davis Logemann Loveland procedore). We show that though
CMODELS andSMODELS are apparently different, they are equivalent on a significant
class of programs, called tight. By equivalent, we mean that they explore search trees
with the same branching nodes, (assuming, of course, a same branching heuristic).
Given our equivalence result and thaODELS search engine is based onL, we
are able to establish that many of the properties holdingfar also hold forcmoD-
ELS and thus, when considering tight programs, also§aoDELS. For instance we
show that:

1. There exist classes of tight formulas which are exponentially hard botwvob-
ELS andSMODELS.

2. There exist classes of non tight programs which are exponentially haoadifop-
ELS but very easy (i.e., solved without search)3yODELS

3. In sMODELS, deciding the “best” literal to branch on, is both NP-hard and co-NP
hard and in PSPACE for tight programs.

These are just a few of the many resuftsthat are already known farLL, (i7) that can
be easily shown to hold fatMODELS, and(iii) that —thanks to our equivalence result—
can be easily shown to hold also femMODELS.

From the experimental point of view, we analyze which combinations of reasoning
strategies work best on which problems. In particular,

— we extendedcMODELS in order to obtain a unique platform with various “look-
ahead” strategies (used while descending the search tree); “look-back” strategies
(used for recovering from a failure in the search tree); and “heuristic” (used for
selecting the next literal to branch on), and

— we considered various combinations of strategies, and conducted an extensive ex-
perimental analysis, on a wide variety of tight and non tight programs.

Our experimental results show that:

1. On “small” (i.e., with a few hundreds variables), randomly generated problems,
look-ahead solvers (featuring a rather sophisticated look-ahead based on “failed
literal”, a simple look-back —essentially backtracking— and a heuristic based on the
information gleaned during the look-ahead phase) are best.

2. On “large” (i.e., with tens of thousands variables) problems,“look-back” solvers
(featuring a simple but efficient look-ahead —essentially unit-propagation with 2
literal watching—, a rather sophisticated look-back based on “learning” and a con-
stant time heuristic based on the information gleaned during the look-back phase),
are best.

3. Adding a powerful look-back (resp. look-ahead) to a look-ahead (resp. look-back)
solver does not lead to better performances if the resulting solver is run on the small
(resp. large) problems that we considered.

Using the terminology in [1], our comparison is “fair” because all the reasoning strate-
gies are realized on a common platform (thus, our experimental evaluation is not bi-
ased by the differences due to the quality of the implementation) and is “significant”
because our solver implements current state-of-the-art look-ahead/look-back strategies
and heuristics.

As discussed in more details in the conclusions, our experimental results have some
important consequences both for developers and also for people interested in bench-
marking ASP systems. For instance, our results say that we can hardly expect to develop
one solver with the best performances on all the categories of problems. As a conse-
quence,(i) developers should focus on specific classes of benchmarks (e.g., on ran-
domly generated programs), af) benchmarking should take into account whether
solvers have been designed for specific classes of programs: indeed, it hardly makes
sense to run a solver designed for random (resp. large, real-world) programs on large,
real-world (resp. random) programs.

The paper is structured as follows. In Section 2 we give the basic definitions. Sec-
tions 3 and 4 are devoted to the definition of the algorithnsndDELSandSMODELS
respectively, and that are used in our formal analysis of their computational properties
(done in Section 5). Section 6 is dedicated to the experimental analysis of different
look-ahead/look-back strategies and heuristics. We end the paper in Section 7 with the
conclusions.

2 Basic definitions

Let P be a set of atoms. If is a an atomp is the negation of p, andp is p. We will
also use the logical symbolsandT (standing for BRLSE and TRUE respectively), and
assume that. = T andT = L. Atoms, their negations, and the symbdls T form
the set ofliterals. If S is a set of literals, we defing = {I: 1 € S}.

A rule is an expression of the form

po(_pla"'7pmapm+17"'7pn (1)

wherepg € PU{L},and{p1,...,pn} C P (0 <m <n). Ifrisarule (1)headr) =
po is the head of r, andbody(r) = {p1,...,Pm;Ppmi1,--->Ps} IS thebody of r. A
(logic) program is a finite set of rules.

Consider a prograni/, and letX be a set of atoms. In order to give the definition
of an answer set we consider first the special case in which the body of each flle in
contains only atoms (i.e., for each rule (1)lih m = n). Under these assumptions, we
say that

— X is closed underIT if for every rule (1) inll, po € X whenevelps,...,pm} C
X, and that
— X is ananswer set for IT if X is the smallest set closed undér

Now we consider the case in whidl is an arbitrary program. Theduct ITX of
11 relative to X is the set of rules

Po ~—DPiy---3Pm

for all rules (1) inII such thatX N {pm+1,...,pn} = 0. X is ananswer set for I7 if
X is an answer set falf X .

In the following, we say that a progradi is tight if there exists a function from
atoms to ordinals such that, for every rule (1yinwhose head is nat, A(pg) > A(p;)
foreachi =1,...,m.

3 CMODELS

function cMODELS(IT) return pLL-REC(Ip2salT),0,IT);

function DLL-REC(I",S,IT)

1 (I',S) = unit-propagaté!’, S);

2 if (0 € I') return FALSE;

3 if (I" = 0) return tes(S,II);

4 | := ChooseLiteral(S);

5 return pLL-REC(s-assignl, I")), S U {l}, IT) or
6 DLL-REC(s-assighil, I')), S U {1}, IT);

function unit-propagatél”,S)
7 if ({{} € I') return unit-propagatés-assigifi, I"), S U {l});
8 return (I, S);

Fig. 1. The algorithm ofcMODELS.

cMODELSreduces the problem of answer set computation to the satisfiability prob-
lem of propositional formulas via Clark’s completion, and uses a SAT solver as search
engine. Formally, @lause is a finite set of literals different from., T, and a(proposi-
tional) formula is a finite set of clauses. Aassignment is a set of literals. An assignment
S satisfies a formulal™ if S is consistent and for each claugen I', C NS # 0. If S
satisfiesl” then we also say that is amodel of I" and thatl” is satisfiable.

There are various versions OMODELS (see the web page afMODELS). Here we
consider the one proposed in [2] (called ASP-SAT in that paper), and it is represented
in Figure 1, in which

— II is the input programj” is a set of clausesy is an assignmenfp and!/ are an
atom and a literal respectively.

— Ip2sa(Il) is the set of clauses —corresponding to the Clark’s completioff-ef
formally defined below.

— s-assigfil, I") returns the formula obtained froffi by (7) deleting the clauseS <
I' with [€ C, and(i4) deletingl from the other clauses if.

— tes(S, IT) returns TRUEif S N P is an answer set d/, and FALSE otherwise.

— ChooseLiteral(S) returns a literal not assigned Wy. We say that diteral [is
assigned by an assignment S if {I,1} NS # (). For simplicity, we assume that
ChooseLiteral(S) returns the first —according to a fixed total orgeon P U P—
literal in P U P which is unassigned by.

We assume that parameters are passed to a procedure by value, as in [3].
CMODELS(IT) simply invokesdLL -REC(Ip2sal I7),0,11). It is easy to see thafL L -
REC(I,S,IT) is a variation of the standaml L procedure. In particular, atline 3, instead
of just returning RUE as in the standardLL (meaning that the input set of clauses
is satisfiable), it invokeses(.S, IT) (see [2] for more details): such a modification is
needed only if the input prograii is non tight. Indeed, if7 is tight we are guaranteed
that any model ofp2sa{ll) corresponds to an answer set@f[4], and thus SAT

solvers can be used as black-box (as it is the case for some versioR®0ELS).
In order to precisely defing2saiIl) we need the following definitions. Hy is an
atom, thetranslation of IT relative to py, denoted witHp2sa{ 11, py), consists of

1. for each rule- € II of the form (1) and whose headjg, the clauses:

{p07ﬁ7’}a
{nral_)h oo 7]_9m7pm+la v 7pn}a
{ﬁrap1}7 DRI} {ﬁ’ﬁpm}v {ﬁ’raﬁ7n+1}7 LR {ﬁ’raﬁn}7

wheren,. is a newly introduced atom, and
2. the clausg{py, nr,,...,n,, } Wheren,,...,n., (¢ > 0) are the new symbols
introduced in the previous step.

The translation of IT relative to 1, denoted witHp2sa{ I, 1), consists of a clause

{]317 te 7]_9mapm+1a s ,pn}7

one for each rule il of the form (1) with head_. Finally, thetranslation of I, denoted
with Ip2sal 1), is U,e pugiyIp2sat iz, p).

Proposition 1. Let cMODELS be the procedure in Figure 1. For each program,
CMODELS(IT) returnsTRUE if IT has an answer set, arfehLSE otherwise.

A few remarks are in order:

1. As we said, there are various version€®foDELS. However, if the input program
11 is tight, all the versions are equivalent at the algorithmic level. In other words,
the presentation afMODELS in Figure 1 can be considered as representative for
all the various versions @fMODELS, in the case of tight programs.

2. Figure 1 is indeed a simple presentationcofODELS. CMODELS incorporates,
e.g., a pre-processing for the simplification of the input program. Analogously,
DLL-REC is based on the standard simple recursive presentatian lof actual
SAT solvers (including the ones used byl ODELS) feature far more sophisticated
look-ahead/look-back strategies and heuristics.

3. Given a progranil, its translationip2sa{ II) to SAT is exactly the one used by
CMODELS (see [5]).

Considering other ASP systemssSAT also computes a sét of clauses corresponding
to the Clark’s completion of the input program, and then invokes a SAT solver on
I'. Assuming thatl” is computed a$p2sa{ /), ASSAT and CMODELS have different
behavior only ifII is non tight?.

2 Unfortunately, forassaT the way a progranil is converted into a set of clauses is not specified
(see[6])

4 SMODELS

function SMODELS(IT) return SMODELSREC(II, {T});

function SMODELS-REC(I1,S)

1 (11, S) :=expandIl, S);

2 if ({I,1} C S) return FALSE;

3if({p:pe P, {p,p} NS # 0} = P)return TRUE;
4 p = ChooseLiteral(S);

5 return SMODELS-REC(p-elim(p, IT)), S U {p}) or
6 SMODELS-REC(p-elim(p, IT)), S U {p});

function expand!1,S)
758 :=8;
8 S :=AtLeast!I, S);
9 I :=p-elim(S, II);
10 S:=SU{p:pe P,p¢AtMos(I1°, 5)};
11 IT := p-elim(S, IT);
12 if (S # S’) return expandil,S);
13 return (II, S);

function AtLeas({I1,S)
14 if (r € Il and body(r) C S andheadr) ¢ S)
return AtLeastp-elim(headr), IT), S U {headr)});
15if {p,p} NS =0and Ar € II : headr) = p)
return AtLeastp-elim(p, IT), S U {p});
16 if (r € Il andheadr) € S andbody(r) € S and Ar’ € I1,7" # r : headr’) = headr))
return AtLeastp-elim(body(r), IT), S U body(r));
17 if (r € Il and headr) € S andbody(r) \ S = {I})
return AtLeastp-elim(l, IT)), S U {1});
18 return S,

function AtMos(11,S)

19 if (r € II and body(r) C S andheadr) ¢ S)
return AtMos(I1, S U {headr)});

20 return S;

Fig. 2. The algorithm ofSMODELS

Given a progranil, sSMODELSsearches for answer sets by extending an assignment
S till either .S becomes inconsistent (in which case backtracking occurs) or each atom is
assigned bys' (in which caseS N P is an answer set). A simple, recursive presentation
of SMODELSis given in Figure 2, where

— IT is a program} is an assignmenti is an atomy is a rule; and is a literal.

— p-elim(S, IT) returns the program obtained frafh by eliminating the rules € IT
such that for some literdle S, [€ body(r). For simplicity, whenS is a singleton
{1}, we writep-elim(, IT) for p-elim({{}, IT).

— ChooseLiteral(S) is the same function used yMODELS at line 4 in Figure 1.
Thus, our presentation @fMODELS and SMODELS incorporates the assumption
that the two systems use the same heuristic.

The computation 06MODELS-REC(/I, S) proceeds as follows (in the following,
we say that a set of atond$ extends an assignment S'if SN P C X andS N X = 0):

— Line 1: The programiI is simplified and the assignmesstis extended by the
routineexpand!l, S), explained below.

— Line 2:if S'isinconsistent, no answer set extendfhexists, and ELSE is returned,

— Line 3:if each atonp € P is assigned, thef¥) SN P is an answer set of the initial
program, andii) TRUE s returned.

— Lines 4-6:if none of the above applies, an atens selected (line 4), an answer set
extendingS U {p} (line 5) orS U {p} (line 6) is searched.

expandlI, S) extends the assignmeftgenerated so far by recursively invoking
AtLeast(line 8) and thenAtMost (line 10) till it is no longer possible to extensl
(lines 12- 13) AtLeastencodes the following facts:

— Line 14:if there exists a rule whose body is a subset §f then every answer set
extendingS includes the head of.

— Line 15:if an unassigned atomis not the head of any rule, then every answer set
extendingS does not include.

— Line 16:if there is only one rule with heag, andp € S, then each answer set
extendingS, also extends$' U body(r).

— Line 17:if there is a rule with heag and whose body contains only one litetal
which is not inS, then ifp is in .S, then every answer set extendifigalso extends
SuU{i}.

When no further simplification is possiblé, the setS is returned byAtLeas{II, S)
(line 18); (i7) the programiT is simplified accordingly (line 9); an@iii) AtMostis in-
voked withI7? —the reduct of relative to the empty set— arftias arguments (line 10).
AtMostincrementally adds to (the local copy @)the heads of the rules iff? whose
body is a subset of (line 19). If S is the set returned b&tMos(17?, 9) (i.e., if S" is
the set returned at line 20), if an atgndoes not belong t6” thenp can be safely added
to the current assignmesst (line 10) (see [7] for more details). To get an intuition of
why this is the case, assume for simplicity that the head of each rufeigmnot L :

1. I1° has a unique answer set, and
2. any answer set dff which extendsS has to be a subset 6f union the answer set
of I7°.

Proposition 2. Let SMODELS be the procedure in Figure 2. For each program,
SMODELS(IT) returnsTRUE if IT has an answer set, arfehLSE otherwise.

The above presentation siMODELS is a recursive reformulation of the descrip-
tion of SMODELS provided in [7], pag. 17. As focMODELS, the actual implementa-
tion of sMoDELSfeatures more complex look-ahead/look-back strategies and heuristic.
SMODELShas been extended with clause learning in [8], aMDELS-CCis the name
given to the resulting system.

5 RelatingcMODELS and SMODELS

Consider a prograni/. Our goal is to prove that the computations@fiobELS and
SMODELSare tightly related if/7 is tight, and that this is not necessarily the case oth-
erwise. To this end, we will compare the search treesmdDELS and SMODELS 0N
II, i.e., the search trees sMODELS-REC(II,{T}) and bLL-REC(Ip2salil), D, IT)
respectively. In doing this, the first problem is that the translalji@sat introduces
additional atoms not irP. In the following we assume that bodMODELS REC and
DLL-REC operate in the signature of the input program and formula respectively. How-
ever, we still assume th&thooseLiteral(S) returns the first literal in® U P which is
unassigned by notice that once all the atoms inare assigned, also the atoms intro-
duced bylp2satwill be assigned byinit-propagatein DLL-REC.

Given this, one possibility for achieving our goal would be to consider the search
trees corresponding to the assignments generated by the two procedures, and try to
prove that they are the same. However, this is not the case:

— Ip2satintroduces additional atoms not id and also these atoms get assigned, and
— The order followed byexpandandunit-propagateo assign literals may differ.

However, if we do not take into account the above differences, we have that the two
procedures generate the “same” search tree. In order to formally state this result we
introduce the following definitions.

We say that a set of literal§' is a branching node of SMODELS(II) (resp.of
CMODELS(T)) if there is a call tasMODELS-REC(IT’, S) (resp.DLL-REC(I", S, IT)),
following the invocation oEMODELS(IT) (resp.CMODELS(IT)). If procis SMODELS(IT)
or CMODELS(IT), we define

Branchesproc) = {S N (P U P) : S is a branching node gfroc}.
Finally, we say thasMODELS(IT) andCMODELS(IT) areequivalent if
Branche$smMoODELS(IT)) = Branche$cMODELS(IT)).

Theorem 3. LetcMODELSandSMODELSbe the procedures in Figures 1 and 2 respec-
tively. For each tight prograniZ, cMODELS(I]) and SMODELS(I]) are equivalent.

The idea underlying the proof is that the atom#iassigned bgxpandn SMODELS
REC correspond exactly to those assignedunyt-propagatein DLL-REC, and vice-
versa. Indeed, for such result to hold, it is essential fip2da() is defined as in Sec-
tion 3.

Theorem 3 states a strong relation betwsefoDELS and CMODELS, and, ulti-
mately, betweesMODELSandDLL: to a certain extensMODELS) andbLL (Ip2sal))
are the same procedure on tight programs. Further, the results hold independently from
the specific heuristic used IBMODELS-RECandDLL-REC, as long as they are guaran-
teed to return the same literal at every point of the two search trees. Because of this, sim-
ilar results would hold if we enhan@ODELS-RECandDLL -RECWith more powerful
look-ahead techniques basedexpandandunit-propagaterespectively. For instance,
SMODELShas been enhanced with the following check, performed before each branch:
for every unassigned literdlin the program, check whether assigningould “fail”,
i.e., ifexpandp-elim(l, IT), SU{l}) returns (as second argument) an inconsistent set of
literals. If this is the case, we can safely assidgrefore branching. However, iffails,
then also branching anwould fail, and the tree generated by ODELS-REC extended
with such “failed literal” strategy corresponds to the tree generatesMmyDELS-REC
with a specific heuristic. Using the same heuristioirL -REC (i.e., using a similar
“failed literal” strategy based onnit-propagat¢ would lead to an equivalent search
tree.

The established correspondence betw&@nDELSandSMODELSgives us the pos-
sibility to derive lower/upper bounds and average case resultsfoDELSandSMOD-
ELS. Here there are a few.

First, observe that the search tree exploredkapbELSandsMODELSwhen run on
a program/I, critically depends on the specific heuristic used, i.e., in our terminology
and with reference to Figures 1 and 2, by the fixed total ordesing the setP U
P used byChooseLiteral(S). In order to highlight the dependency fropp we now
write Branche§(sMODELS(IT)) (resp.Branche$§(cMODELS(IT))) to indicate the set
of branching nodes &fMODELS(resp.CMODELS) when run on a progrady, assuming
that p is the total order on the sét U P used byChooseLiteral(S). We are now ready
to define thecomplexity of SMODELS on a program II as the smallest number in

{|Branche&(sMODELS(IT))| : p is a total order onP U P}.
Analogously, thecomplexity of CMODELS on a program I1 is the smallest number in
{|Branche&(cMoODELS(IT))| : p is a total order orP U P}.

Intuitively, the complexity oEMODELS(resp.CMODELS) on IT is the minimum number
of branching nodes th&MODELS (resp.CMODELS) has to explore for solving! .
Consider the formul®H P (n > 0,m > 0) consisting of the clauses

{pi,lapi,27"-;pi,n} (7/ S m)a

The formulasPH P are from [9] and encode the pigeonhole principlenli m,
PHP" are unsatisfiable and it is well known that any procedure based on resolution
(like bLL) has an exponential behavior. Here we state a similar resuttManELS and
SMODELS First, if C'is a claus€ly, ..., [;} (I > 0) we definesat2tlp(C) to be the rule

L« 1Iy,...,1;. Then, if I" is a formula, theranslation of I", denoted withsat2tlg(I),

is Ucersat2tifC) U Upep{p < p/,p’ < P}, Where, for each atom€ P, p’ is a new

atom associated ta For eachn, sat2tigf PH P! _,) is tight and has no answer sets.

Corollary 4. The complexity oBMODELSand CMODELSon sat2tigPH P) is ex-
ponential inn.

The above result can be easily proved émrODELS starting from [9]. ForsmMoOD-
ELS, it relies on the fact thasat2tlgf PH P)}_,) is tight, and thus on such programs
SMODELS and CMODELS are equivalent. The pigeonhole formulas give us the op-
portunity to define a class of formulas which are exponentially hardcfeoDELS
but easy forsMoDELS For each formulal”, definesat2nlfI”) to be the program
Ucersat2tigfC) U Upep{p — p}.

Corollary 5. The complexity oEMODELS and CMODELS on sat2nlgPH P! ;) is 0
and exponential im respectively.

In this casesat2nlf PH P_,) is non tight, andsMODELScan determine the non exis-
tence of answer sets without branching mainly thanks to the procédMest® To see
why this is the case, notice that,lif = sat2nlf PHP!_,), then

— AtlLeastlI,{T}) returns{T},
— I1° consists of the rules

L= Le—pir,pjr (5,7 <nk<n=1,i#j); pir —pir (i <nk<n-1)

and thusAtMost(I7?, {T}) returns{ L, T}.

— At line 10 in Figure 2, the se$ is set toS’ = P U {T}, thus causing one more
recursive call teexpand

— If IT' = p-assigts’, IT), AtLeastII’, S") returns the se’ U { L} = PU{L, T},
and this is also the set returned éxpand

— Atline 2 in Figure 2,SMODELSreturns RALSE, without performing any branch.

Indeed, the above results can be easily generalized to any foffmitach is known
to be exponentially hard farLL: sat2tlp(I") will be exponentially hard for botemoD-
ELsandCcMODELS, while sat2nlg ") will be exponentially hard focMODELSbut easy
for sMoDELS We mention one more of such results, because it involves a class of pro-
grams that have been frequently used in the literature as a benchmark for ASP systems.
Define a formulal” to be ak-cnf if each clause in" consists ofk literals. The
random family of k-cnf formulas is ak-cnf whose clauses have been randomly selected
with uniform distribution among all the clausésof k literals and such that, for each
two distinct literals and!’ in C, 1 # 1.

Corollary 6. Consider a randonk-cnf formulal” with n atoms andn clauses. With
probability tending to one as tends to infinity, the complexity sMoDELSandCcMOD-
ELS on sat2tlgl") is exponential im if the density d = m/nisd > 0.7 x 2F.

% In the real implementation afMODELS, rules likep «— p will be removed during the pre-
processing, and thus the implementatiorcefoDELS concludes thasat2nlg PH P;;_,) does
not have answer sets without a single branch. However, instead<ef p, we could have
considered, e.g., the two rules— p’, p’ < p, (Wherep’ is a newly introduced atom associated
to p) and the result in the corollary would still hold.

As in the case of Corollary 4, this result is easy to showcfapDELS starting from [10],

and then it follows fosmoDELSfrom Theorem 3. Programs corresponding to random
k-cnf formulas have been used, e.g., in [11,12, 8]. Also notice that since the results
in [9] and [10] hold for any proof system based on resolution, enharevm@peELSand
CMODELS with “learning” look-back strategies does not lower the exponential com-
plexity of the procedures. Thus, the above corollaries also holdd@DELS-cc, and

all the different versions acfMODELS. (assuming thatMODELSuse a procedure based
onDLL as search engine, as it is indeed the case in practice).

Other results that have been proven et can now easily be shown to hold also
for sMoDELS Define a literall asoptimal for a program I1 if there exists a minimal
search tree 0§MODELS(IT) whose root is labeled with The following result echoes
the one in [13] foDLL.

Corollary 7. In sMODELS, deciding the optimal literal to branch on, is both NP-hard
and co-NP hard, and in PSPACE for tight programs.

There are many other results in the SAT literature studying the proof-complexity
of bLL and/or resolution that are applicable alsosi@oDELS and CMODELS. See,
e.g., [14] for a study on the average complexity of coloring randomly generated graphs
with pLL, and [15], which derives exponential lower bounds on the running time of
DLL on randonmB3-SAT formulas also for densities significantly below the satisfiability
thresholdd =~ 4.23. The first result applies also &#MODELSandCMODELS when run
on a program/ being the standard tight formulation of a graph coloring probtem:
Ip2sal IT) corresponds to the SAT formulation considered in [14]. Analogously for the
second result.

6 On the relation between AS and SAT solvers

Given the results established in the previous Section, we can expect that the combi-
nations of reasoning strategies that work best in SAT, should also work best in ASP,
at least when considering tight programs. We show that this is indeed the case, also on
non tight programs. We now report about an extensive experimental comparison that we
have conducted on a wide variety of programs, and using the combinations of reason-
ing strategies that, along the years, proved to be more effective in SAT. Indeed, current
state-of-the-art SAT solvers can be divided in two main categories:

— “look-ahead” solvers, featuring a rather sophisticated look-ahead based on “failed
literal”, a simple look-back (essentially backtracking) and a heuristic based on the
information gleaned during the look-ahead phase. These solvers are best for dealing
with “small but relatively difficult” instances, typically randokicnf formulas. A
solver in this category iSATZ [16].

— “look-back” solvers, featuring a simple but efficient look-ahead (essentially unit-
propagation with 2 literal watching), a rather sophisticated look-back based on “1-
UIP learning” and a constant time heuristic based on the information gleaned during

‘See, e.g., the formulation in http://www.tcs.hut.fil"ini/papers/
niemela-iclp04-tutorial.ps.gz

the look-back phase. These solvers are best for dealing with “large but relatively
easy” instances, typically encoding real-world problems. A solver in this category
iS ZCHAFF[17].

The terminology “small but relatively difficult” and “large but relatively easy” refer to

the number of variables and are used to convey the basic intuitions about the instances.
To get a more precise idea, consider that in the SAT2003 competition, instances in
the random and industrial categories had, on average, 442 and 42703 atoms respec-
tively [18]. Given this, the reasoning strategies that we considered are:

— Look-aheadfast unit-propagation based on 2 literal watching (denoted wuith
and unit-propagationfailed literal (denoted withf).

— Look-backbasic backtracking (denoted with™); and backtracking-1-UIP learn-
ing from [17] (denoted with I).

— Heuristic: VSIDS from [17] (denoted with v"); unit (given an unassigned atom
p, while doing failed literal orp we count the numbet(p) of unit-propagation
caused, and then we select the atom with maxim02du(p) x u(p) +u(p) +u(p).
This heuristic is denoted withu™).

The above search strategies and heuristics are not novel: they have been already
presented and implemented in the literature. For example, failed literal is already incor-
porated inSMODELS and the heuristic cfMODELS-CC s similar to VSIDS. However,
here, for the first time, all these techniques are implemented, combined and analyzed in
a common platform.

We considered 4 combinations of reasoning strategiesflv, flu andfbu, where
the first, second and third letter denote the look-ahead, look-back and heuristic respec-
tively, used in the combinatiorulv is a standard look-backztHAFF-like, solver,
similar to SMODELS-cCc andCMODELS2. fbu is a look-ahead, SATZ"-like, solver. flv
andflu have both a powerful look-ahead and look-back but different heuristic. As we
already anticipated, we can expect thiat (resp.fou) has good performances on “large
but relatively easy” (resp. “small but relatively difficult”) programs. By compalfiug
with ulv (resp.flu with fbu) we will see under which conditions a more powerful look-
ahead (resp. look-back) leads to better performances. Also notice that the 4 combina-
tions of reasoning strategies that we consider, are the only meaningful. Indeed, the “
heuristic requires learning, while tha™heuristic requires that failed literal is enabled.

All the tests were run on a Pentium IV PC, with 2.8GHz processor, 1024MB RAM,
running Linux. The timeout has been set to 600 seconds of CPU time for random prob-
lems, and to 3600 seconds for real-world problems. In order to have our results not
biased by the differences due to the quality of the implementation, we implemented
all the reasoning strategies@ODELS ver. 2 [2]. CMODELS ver. 2, besides being the
solver that we knew best, had the following features:

— Its front-end isLPARSE[7], a widely used grounder for logic programs.

— Its back-end solver already incorporates lazy data structures for fast unit-propagation
as well as some state-of-the-art strategies and heuristics evaluated in the paper; and

— Can be also run on non-tight programs.

| [PB [#VAR[uv | fiv | fiu | fbu |
4 1300] 041] 0.52 [0.85] 0.66
4.5 | 300 || TIME [TIME | 81.92[22.53
5 | 300 ||448.21485.36| 8.27 | 4.72
bw*d9[9956 1.02] 5.84 [2.69[2.75
bw*e9|12260| 0.98 | 1.91 | 1.92 [1.93
bw*e10[13483] 1.29 | 7.51 | 5.03 [4.95
p1000[14955] 0.48 | 37.86 [15.41] 15.23
p3000[44961] 8.86 | 369.27|144.13142.83
p6000[89951] 99.50] TIME [583.55578.99

4 300 (|265.43 218.48| 41.97| 31.05
5 300 || TIME | TIME [136.67 99.75
6 300 (| TIME | TIME |107.34 65.83
np60c|10742| 2.83 |1611.3244.12| 44.12
np70c|14632| 4.69 | TIME | 97.44| 97.89
15| np80c|19127| 6.91 | TIME |192.29196.37

O O[N] A DWW N

[E=Y
o

=Y
=

[==
N

[
w

[==Y
D

Table 1.Performances on tight (1-9) and non-tight (10-15) problems. For each row, the best result
is in bold, and the results within a factor of 2 from the best, are underlined.

There is no other publicly available AS system having the above features, and that we
know of. In particularsMmoDELSdoes not contain lazy data structures, and adding them
to sMoDELSwould basically boil down to re-implement the entire solver. Though our
analysis has been conducted us@goDELS ver. 2, thanks to the equivalence result
established in Theorem 3, analogous results are to be expected for any system based on
SMODELSand implementing the techniques that we consider.

Table 1 shows the results on “small” randomly generated programs (lines 1-3, 10-
12), and “large” non random programs (lines 4-6, 7-9, 13-15). More in details,

1. Benchmarks (1-3) are tight programs being the translation of randomly generated
3-SAT instances with a ratio of clauses to atoms as in the column “PB”. They have
been usedin[11,12,8].

2. Benchmarks (4-6) and (7-9) are tight programs encoding blocks world planning
problems and 4-colorability graph problems, respectively. These benchmarks are
publicly available ahttp://www.tcs.hut.fi/Software/smodels/tests/

3. Benchmarks (10-12) are non tight programs, randomly generated according to the
methodology proposed in [19]. As before, the number in the column “PB” is the
ratio of clauses to atoms.

4. Benchmarks (13-15) are non tight programs encoding Hamiltonian Circuit prob-
lems on complete graphs. The encoding is from [20].

For the randomly generated programs, for each ratio, we generated 10 instances and
show the median results. In each ra#¥/AR represents the number of atoms in the
instance.

The first observation is that we get the results that we expected, (except for the
results on the first row, where the positive resultsilefare due to the relative simplic-

ity of the problems): on “small but relatively difficult” progranfisu is best, while on
“large but relatively easy” programgyv is best. The second observation is that adding
failed literal (resp. learning) tolv (resp.fbu) does not improve performances when
considering the “large” (resp. “small”) programs.

We also considered other classes of programs, both non large and non randomly
generated. For these programs, the situation of which reasoning strategy is best is less
clear, and (as it can be expected) it varies from class to class.

7 Conclusions

We studied the relation existing betwesMODELS and CMODELS, and, ultimately,
between AS and SAT solvers. From a theoretical point of view, we proved that the two
systems have the same behavior on tight programs. GiverctihabeLs is based on

DLL, our equivalence results allow to easily derive many other interesting properties
about the two procedures, and in particular abeupDELS. We also conducted an
extensive experimental analysis showing that the combination of reasoning strategies
that are best in SAT, are also best in ASP on randomly generated or on large real world
problems.

We believe that our paper is particularly important for ASP researchers who are
interested in formally establishing the computational behavior of systems, but also for
developers and, more in general, for people involved in benchmarking ASP systems. In
particular, for developers, our theoretical results should foster the design of systems in-
corporating reasoning strategies that provably allow to easily solve problems otherwise
exponential: in SAT, this led to the development, e.gz&# [21]. Further our experi-
mental results suggest that developers (in order to advance the state-of-the-art) should
focus either on randomly generated problems (and thus develop a look-ahead solver) or
on real-world problems (and thus develop a look-back solver): this already happened in
SAT. Finally, the results in this paper are particularly important also to people interested
in benchmarking systems (see the recesitARAGUSI nitiative [22]). Our theoretical
results tell us, e.g., that there exist classes of programs on vehicdDELS and/or
CMODELS (but alsoASSAT) arebound tobe exponential. Our conclusive experimen-
tal analysis points out that it hardly makes sense to run a solvesM@DELS-CC [8]
on randomly generated programs, and, vice-versa, that it hardly makes sense to use
CMODELS with SATZ [16] as SAT solver on large problems coming from real-world
applications.

Finally, we believe that this paper is a major step in the direction of closing the gap
between SAT and ASP, as advocated by Miroslaw Trudzsizyin his invited talk at the
last NMR workshop in Whistler, Canada.

Acknowledgments

We would like to thank Nicola Leone, Vladimir Lifschitz and Mirek Truszczynski for
discussions related to the subject of this paper. This work has been partially supported
by MIUR.

® Slides available atttp://cs.engr.uky.edu/ mirek/stuff/nmr-inv.pdf

References

1. E. Giunchiglia, M. Maratea, A. Tacchella, and D. Zambonin. Evaluating search heuristics and
optimization techniques in propositional satisfiability.Rroc. IJCAR 2001.

2. E. Giunchiglia, M. Maratea, and Y. Lierler. SAT-based answer set programminBromn
AAA|, 2004.

3. T. H. Cormen, C. E. Leiserson,R. L. Rivest and C. Stein Introduction to Algorithms. MIT
Press, 2001.

4. Francois Fages. Consistency of Clark’s completion and existence of stable mimietsal
of Methods of Logic in Computer Sciende51-60, 1994.

5. Yu. Babovich and V. Lifschitz. Computing Answer Sets Using Program Completion.
Available at http://www.cs.utexas.edu/users/tag/cmodels/cmodels-1.
ps, 2003.

6. F. Lin and Y. Zhao ASSAT: Computing answer sets of a logic program by SAT solvers. In
Proc. AAA| 2002.

7. P. Simons. Extending and implementing the stable model semaRliEsThesis2000.

8. Jeffrey Ward and John S. Schlipf. Answer set programming with clause learnirRyodn
LPNMR 2004.

9. Haken. The intractability of resolutiom.CS 39:297-308, 1985.

10. V. Chwatal and E. Szemédi. Many hard examples for resolutioh. ACM 35(4):759-768,
1988.

11. W. Faber, N. Leone, and G. Pfeifer. Experimenting with heuristics for ASPrde. IJCA|
2001.

12. P.Simons, I. Niemal and S. Timo. Extending and implementing the stable model semantics.
Artificial Intelligence 138(1-2):181-234, 2002.

13. Paolo Liberatore. On the complexity of choosing the branching literal in DAtificial
Intelligence 116(1-2):315-326, 2000.

14. Remi Monasson. On the analysis of backtrack procedures for the coloring of random graphs.
In Complex Networkd ecture Notes in Physics, pages 232—-251. Springer, 2004.

15. D. Achlioptas, P. Beame, and M. Molloy. A sharp threshold in proof complexityrde.
STOGC pages 337-346, 2001.

16. Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems.
In Proc. IJCAI 1997.

17. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Effi-
cient SAT Solver. IrProc. DAG 2001.

18. D. Le Berre and L. Simon. The essentials of the SAT'03 competitioRrdn. SAT 2003.

19. Fangzhen Lin and Yuting Zhao. ASP phase transition: A study on randomly generated pro-
grams. InProc. ICLP, 2003.

20. I. Niemeh Logic programs with stable model semantics as a constraint programming
paradigm. InAnnals of Mathematics and Atrtificial Intelligencs:241-273, 1999.

21. H. Dixon, M. Ginsberg, E. Luks, and A. Parkes. Generalizing Boolean satisfiability I1I: The-
ory. JAIR, 22:481-534, 2004.

22. P. Borchert, C. Anger, T. Schaub, and M. Truszczynski. Towards systematic benchmarking
in answer set programming: The dagstuhl initiativePhoc. LPNMR 2004.

