
Solving Optimization Problems with DLL

Enrico Giunchiglia 1 and Marco Maratea1, 2

Abstract.
Propositional satisfiability (SAT) is a success story in Computer

Science and Artificial Intelligence: SAT solvers are currently used
to solve problems in many different application domains, including
planning and formal verification. The main reason for this success is
that modern SAT solvers can successfully deal with problems hav-
ing millions of variables. All these solvers are based on the Davis-
Logemann-Loveland procedure (DLL). DLL is a decision procedure:
Given a formulaϕ, it returns whetherϕ is satisfiable or not. Fur-
ther, DLL can be easily modified in order to return an assignment
satisfyingϕ, assuming one exists. However, in many cases it is not
enough to compute a satisfying assignment: Indeed, the returned as-
signment has also to be “optimal” in some sense, e.g., it has to mini-
mize/maximize a given objective function.

In this paper we show thatDLL can be very easily adapted in order
to solve optimization problems likeMAX -SAT andMIN -ONE. In par-
ticular these problems are solved by simply imposing an ordering on
a set of literals, to be followed while branching. Other popular prob-
lems, likeDISTANCE-SAT andWEIGHTED-MAX -SAT, can be solved
in a similar way. We implemented these ideas inZCHAFF and the
experimental analysis show that the resulting system is competitive
with respect to other state-of-the-art systems.

1 Introduction

Propositional satisfiability (SAT) is a success story in Computer
Science and Artificial Intelligence: SAT solvers are currently used
to solve problems in many different application domains, includ-
ing planning [11], formal verification [6], and many others such as
RNA folding, hand-writing recognition, graph isomorphism and su-
doku problems. The main reason for this success is that modern
SAT solvers can successfully deal with problems having millions of
variables [5]. All these solvers are based on the Davis-Logemann-
Loveland procedure (DLL) [9]. DLL is a decision procedure: Given a
formulaϕ, it returns whetherϕ is satisfiable or not; Further,DLL can
be easily modified in order to return an assignment satisfyingϕ, as-
suming one exists. However, in many cases it is not enough to com-
pute a satisfying assignment: Indeed, the returned assignment has
also to be “optimal” in some sense, e.g., it has to minimize/maximize
a given objective function.MIN -ONE and MAX -SAT are two opti-
mization versions of SAT. InMIN -ONE (resp. MIN -ONE⊆), given
a satisfiable instance, the goal is to find a satisfying assignment in
which the set of variables assigned to true is of minimal cardinality
(resp. minimal). InMAX -SAT (resp.MAX -SAT⊆), given an unsatis-
fiable instance, the goal is to find an assignment in which the set
of satisfied clauses is of maximal cardinality (resp. maximal).MIN -
ONE andMAX -SAT problems have been studied, e.g., in [8, 16], and
are particular cases ofDISTANCE-SAT [3] and Pseudo-Boolean (see

1 DIST - Universit́a di Genova
2 Dipartimento di Matematica - Universitá della Calabria

e.g., [4]) problems. Our interest forMIN -ONE, MIN -ONE⊆, MAX -
SAT andMAX -SAT⊆ problems are related to their applications in the
area of planning and formal verification, as briefly discussed in the
rest of the paper. Besides these application domains, [8] shows that
many important graph problems involving combinatorial optimiza-
tion (such as Max-Cut, Max-Clique, and Min Vertex Cover) have
linear-time reductions toMIN -ONE andMAX -SAT problems. Consid-
ering the procedures used to solve such problems, the standard ap-
proach is to modifyDLL following a branch&bound schema. In the
MIN -ONE case, whenever an assignment satisfying the input formula
ϕ and with costcµ is found, search continues looking for another
assignment satisfyingϕ but with a lower cost: The drawback of such
approaches is that they may generate, at least in principle, all the
assignments satisfyingϕ. Analogously forMAX -SAT problems.

In this paper we show thatDLL can be very easily adapted in order
to solve optimization problems likeMIN -ONE, MAX -SAT and their
variants. In particular these problems are solved by simply impos-
ing an ordering on a set of literals, to be followed while branch-
ing. With such modification —differently from what happens for
branch&bound approaches— the first discovered assignment satis-
fying the input formula, is guaranteed to be “optimal”: This assumes
we are given aMIN -ONE/MIN -ONE⊆ problem, but analogous con-
siderations hold for theMAX -SAT/MAX -SAT⊆ case. Other optimiza-
tion problems, likeDISTANCE-SAT and WEIGHTED-MAX -SAT, can
be solved in a similar way. We implemented these ideas inZCHAFF
and the experimental analysis we conducted onMIN -ONE andMAX -
SAT problems shows that:

• On MIN -ONE andMAX -SAT problems, our system is competitive
with respect to other dedicated solvers and state-of-the-art systems
used in the last Pseudo-Boolean evaluation [12].

• ConsideringMIN -ONE⊆ problems, our solver is the fastest. In par-
ticular, our solver is much faster in solvingMIN -ONE⊆ instances
than the correspondingMIN -ONE instances, while this is not the
case forMAX -SAT⊆ with respect to theMAX -SAT.

• Related to the previous point, comparing the cardinality#C
(resp. #C⊆) of the set of true variables returned when solv-
ing a MIN -ONE and aMIN -ONE⊆ problem, we see that for most
instances#C = #C⊆. Comparing the analogous values for
MAX -SAT and MAX -SAT⊆, these are equal on all instances but
three. Thus, provided we have an efficient solver forMIN -ONE⊆
(resp. MAX -SAT⊆), it makes sense to use it also forMIN -ONE

(resp.MAX -SAT) problems, at least for computing a “good” up-
per (resp. lower) bound.

The paper is structured as follows. In Section 2, we give the ba-
sic terminology and notation. We then presentOPT-DLL , i.e., DLL

modified in order to solve optimization problems (Section 3). How
to model and solve optimization problems withOPT-DLL is showed
in Section 4. The last two sections are devoted to the experimental
analysis and the conclusions.

2 Formal preliminaries

Given a setS, a relation ”≺⊆ S×S” is a (strict or irreflexive) partial
order on S if it has the following properties:

1. Irreflexivity: a 6≺ a, for eacha ∈ S.
2. Antisymmetry: a ≺ b andb ≺ a impliesa = b.
3. Transitivity: a ≺ b andb ≺ c impliesa ≺ c.

If for each two distincta, b ∈ S, a ≺ b or b ≺ a then≺ is said to
be atotal order. It is common to call the pairS,≺ apartially ordered
set.

Consider a setP of variables. A literal is a variable or the negation
x of a variablex. In the following,x is the same asx.

A clause is a finite set of literals, and aformula is a finite set of
clauses. Anassignment is a consistent set of literals.

Consider an assignmentµ and formulaϕ.
A literal l is assigned by µ if either l or l is in µ. We say thatµ

• is total if each variable inP is assigned byµ;
• satisfies a formulaϕ if for each clauseC ∈ ϕ, C ∩ µ 6= ∅.

A formula issatisfiable if there exists an assignment satisfying it.
Consider a partial order≺ on the set of total assignments. Intu-

itively speaking,µ′ ≺ µ means thatµ′ is preferred toµ. Thus, for
us, atotal assignment µ is optimal (with respect to ≺) if

1. µ satisfiesϕ; and
2. there is no total assignmentµ′ satisfyingϕ and withµ′ ≺ µ.

An assignment µ is optimal (with respect to ≺) if µ satisfiesϕ and
there exists a total and optimal assignment extendingµ.

3 OPT-DLL

As we anticipated in the introduction,OPT-DLL is like the standard
DLL except for the heuristic. Given a formulaϕ, the basic idea of
OPT-DLL is to first explore the search space where there can be a not
yet ruled-out optimal assignment. InDLL , assuming that the current
assignment isµ and that it is not the case that all the assignments
extendingµ are equally good, this amounts to knowing on which
literal we have to branch.

To make these notions precise, consider a partially ordered set
S,≺ in which S is a set of literals and≺ is such that for each lit-
eral l ∈ S, eitherl ≺ l or l ≺ l: If ≺ satisfies this condition, we
say that≺ is DLL -compatible (with respect to S). For example, the
partial order on{x0, x0, x1, x1} such that

x0 ≺ x0, x1 ≺ x1, x1 ≺ x0, (1)

is DLL -compatible with respect to{x0, x0, x1, x1}. Notice that the
condition that for eachl ∈ S, either l ≺ l or l ≺ l ensures that
both l ∈ S andl ∈ S. Given this, the setS can be omitted from the
specification of aDLL -compatible partially ordered setS,≺.

The pseudo-code ofOPT-DLL is represented in Figure 1, where:

• ϕ is a formula;µ is an assignment;≺ is a partial orderDLL -
compatible with respect to a setS of literals;

• assign(l, ϕ) returns the formula obtained fromϕ by (i) deleting
the clausesC ∈ ϕ with l ∈ C, and(ii) deletingl from the other
clauses inϕ;

• ChooseLiteral(ϕ, µ,≺) returns an unassigned literall such that

– if there exists a variable inS which is not assigned byµ, then
each literall′ with l′ ≺ l has to be assigned byµ, and

function OPT-DLL (ϕ,µ,≺)
1 if (∅ ∈ ϕ) return FALSE;
2 if (ϕ = ∅) return µ;
3 if ({l} ∈ ϕ) return OPT-DLL(assign(l, ϕ), µ ∪ {l},≺);
4 l := ChooseLiteral(ϕ, µ,≺);
5 v := OPT-DLL(assign(l, ϕ), µ ∪ {l},≺);
6 if (v 6= FALSE) return v;
7 return OPT-DLL(assign(l, ϕ), µ ∪ {l},≺).

Figure 1. The algorithm ofOPT-DLL .

– is an arbitrary literal occurring inϕ, otherwise.

OPT-DLL has to be invoked withϕ andµ set to the input formula and
the empty set respectively. It is easy to see that if the setS is empty,
OPT-DLL is the same asDLL .

Assuming≺ is (1), OPT-DLL checks the existence of an as-
signment satisfyingϕ and extending one of{x1, x0}, {x1, x0},
{x1, x0}, {x1, x0}, following the order in which they are listed. As-
sumingx1, x0 are two variables encoding the values from0 to 3,
OPT-DLL will return

• an assignment with minimal corresponding value, ifϕ is satisfi-
able, and

• FALSE otherwise.

Assumingx0, x1 represent the actions of going by car and by plane
respectively, (1) encodes the fact that we prefer to not perform these
actions, and that not going by plane is preferred to not going by car.
Consequently,OPT-DLL will first look for an assignment where both
actions are false, then one in which we use only the car, then one in
which we use only the plane, and only finally for assignments where
we have to use both the car and the plane.

As the example makes clear, the partial order on the setS of liter-
als induces a partial order on the set of total assignments. In the case
of the example (1), ifµ0 = {x0, x1} ∪ S0, µ1 = {x1, x0} ∪ S1,
µ2 = {x1, x0}∪S2, µ3 = {x1, x0}∪S3 are four total assignments,
we have

µ0 ≺ µ1 ≺ µ2 ≺ µ3, (2)

while, if µ andµ′ are two total assignments assigning in the same
way bothx0 andx1, µ 6≺ µ′, i.e.,µ andµ′ are equally good.

Assuming≺ is a given partial order onS, ≺ is extended to the
set of total assignments as follows: Ifµ andµ′ are total assignments,
µ ≺ µ′ if and only if

1. there exists a literall ∈ S with l ∈ µ andl ∈ µ′; and
2. for each literall′ ∈ S∩(µ′\µ), there exists a literall ∈ S∩(µ\µ′)

such thatl ≺ l′.

The first condition says that two total assignments are not in partial
order if they assign in the same way the literals inS. The second
condition says thatµ is preferred toµ′ if for each literall′ ∈ S with
l′ ∈ µ′ andl′ ∈ µ, µ contains a literall ∈ S with l ∈ µ andl ∈ µ′,
andl is preferred tol′ (i.e., l ≺ l′).

In the case of (1), the above definition leads to the partial order on
the set of total assignment satisfying (2).

We can now state the formal result thatOPT-DLL returns an opti-
mal assignment, assuming the input formula is satisfiable.

Theorem 1 Let ϕ be a formula and≺ a DLL -compatible partial
order on a set of literals.OPT-DLL(ϕ, ∅,≺) returns an optimal (with
respect to≺ extended to the set of total assignments) assignment if
ϕ is satisfiable, and returnsFALSE otherwise.

4 Solving optimization problems with OPT-DLL

ConsideringOPT-DLL and our definition of optimality given in Sec-
tion 2, it is clear thatOPT-DLL can solve only those optimization
problems in which the partial order on the set of total assignments
can be obtained as the extension of aDLL -compatible partial order
on a set of literals. Indeed, this is not always possible: Assuming
we have only two variablesx0, x1, the total order on the set of total
assignments{x1, x0} ≺ {x1, x0} ≺ {x1, x0} ≺ {x1, x0} is not
obtainable as the result of the extension of aDLL -compatible partial
order on a set of literals. Still, many important optimization problems
can be easily modeled via aDLL -compatible partial order on a set of
literals, and thus solved withOPT-DLL . Given a formulaϕ, we first
considerMIN -ONE/MIN -ONE⊆ and thenMAX -SAT/MAX -SAT⊆ prob-
lems: These problems are very interesting from an application per-
spective, as briefly described below. We also show howDISTANCE-
SAT/DISTANCE-SAT⊆ problems can be solved viaOPT-DLL .

4.1 MIN -ONE and MIN -ONE⊆

Let S be a subset of the setP of variables. Consider a satisfiable for-
mulaϕ. DefineMIN -ONES(ϕ) (resp.MIN -ONES

⊆(ϕ)) to be the set of
assignmentsµ satisfyingϕ and havingµ ∩ S of minimal cardinality
(resp. minimal). It is clear thatMIN -ONES(ϕ) ⊆ MIN -ONES

⊆(ϕ).
In MIN -ONE (resp.MIN -ONE⊆), the goal is to find an assignment

µ in MIN -ONEP (ϕ) (resp.MIN -ONEP
⊆(ϕ)). As pointed out in [8],

MIN -ONE problems are interesting because various graph problems
involving combinatorial optimization can be converted in linear time
into them. In planning, ifϕ is a formula encoding a planning as sat-
isfiability problem, any assignment satisfyingϕ corresponds to a se-
quence of (possibly parallel) actions achieving the goal: IfS is the
set of action variables inϕ,

1. if we want that as few as possible actions are executed, then we
have to find an assignment inMIN -ONES(ϕ);

2. if we want that no redundant sequence of (possibly parallel)
actions is executed, then we have to find an assignment in
MIN -ONES

⊆(ϕ).

An assignment inMIN -ONES
⊆(ϕ) can be easily computed viaOPT-

DLL , as stated by the following theorem, consequence of Theorem 1.

Theorem 2 Let S be a subset ofP , and letϕ be a formula. Let
≺ be theDLL -compatible partial order such thatl ≺ l′ iff l = x,
l′ = x, x ∈ S. If OPT-DLL(ϕ, ∅,≺) returns an assignmentµ then
µ ∈ MIN -ONES

⊆(ϕ). If OPT-DLL(ϕ, ∅,≺) returnsFALSE thenϕ is
unsatisfiable.

Intuitively speaking,DLL is forced to split first on the variables inS,
assigning them to false.

An assignment inMIN -ONES(ϕ) can be computed viaOPT-DLL ,
assuming we have a formula encoding the objective function. This
amounts to define a formulaadder(S) such that3

1. the only variables in common toadder(S) andϕ are those inS;
2. if n = dlog2(|S| + 1)e, adder(S) containsn new variables

bn−1, . . . , b0; and
3. for any total assignmentµ to the variables inϕ, there exists a

unique total assignmentν to the variables inadder(S) such that

(a) ν satisfiesadder(S);

3 The specification ofadder(S) will be used also in Section 4.3, whereS is
assumed to be an assignment.

(b) µ andν assign in the same way the variables inS, i.e.,µ∩S =
ν ∩ S;

(c) |ν ∩S| =
∑n−1

i=0
ν(bi)× 2i, whereν(bi) is 1 if ν assignsbi to

true, and is0 otherwise.

adder(S) can be realized in polynomial time in many ways, see,
e.g., [17]. If the above conditions are satisfied, we say thatadder(S)
is anadder of S with output bn−1, . . . , b0.

Theorem 3 Let S be a subset ofP . Let adder(S) be an adder
of S with output bn−1, . . . , b0. Let ϕ be a formula. Let≺ be
the DLL -compatible partial order on{bn−1, . . . , b0} such that for
each i ∈ [0, n − 1], bi ≺ bi, and, if i 6= 0, bi ≺ bi−1. If
OPT-DLL(ϕ∪adder(S), ∅,≺) returns an assignmentµ thenµ∩P ∈
MIN -ONES(ϕ). If OPT-DLL(ϕ, ∅,≺) returnsFALSE thenϕ is unsat-
isfiable.

Intuitively speaking, assuming no literal in{bn−1, . . . , b0} is as-
signed as unit,OPT-DLL first explores the branches with the vari-
ablesbn−1, . . . , b0 assigned to false; If all such branches fail, then
OPT-DLL explores the branches in whichbn−1, . . . , b1 are assigned
to false whileb0 is assigned to true; If also these branches fail, then
OPT-DLL explores the branches in whichbn−1, . . . , b2, b0 are as-
signed to false whileb1 is assigned to true; and so on and so forth.

4.2 MAX -SAT and MAX -SAT⊆

Consider a formulaϕ. Let S be a subset of the clauses inϕ. Intu-
itively speaking, we consider the problem of satisfyingS and “as
many as possible” clauses inϕ \ S. Formally, defineMAX -SATS(ϕ)
(resp. MAX -SATS

⊆(ϕ)) to be the set of assignmentsµ satisfying
each clause inS and such that the set{C : C ∈ ϕ \ S, C ∩
µ 6= ∅} is of maximal cardinality (resp. maximal). It is clear that
MAX -SATS(ϕ) ⊆ MAX -SATS

⊆(ϕ).
In MAX -SAT (resp.MAX -SAT⊆), the goal is to find an assignment

µ in MAX -SAT∅(ϕ) (resp.MAX -SAT∅⊆(ϕ)). The problem of deter-
mining an assignment inMAX -SATS(ϕ)/MAX -SATS

⊆(ϕ) can be eas-
ily reduced to aMIN -ONE/MIN -ONE⊆ problem by considering the
formula x(ϕ, S), obtained fromϕ by adding a newly created vari-
ablevi to thei-th clause inϕ \ S.

For example, ifϕ = {{x0, x1}, {x0, x1}, {x0}} and S =
{{x0}}, x(ϕ, S) is {{v1, x0, x1}, {v2, x0, x1}, {x0}}

Theorem 4 Let ϕ be a formula. LetS be a subset ofϕ. Let V be
the set of variables in x(ϕ, S) and not inϕ. The following equalities
hold:

MAX -SAT
S(ϕ) = {µ ∩ P : µ ∈ MIN -ONE

V (x(ϕ, S))},

and

MAX -SAT
S
⊆(ϕ) = {µ ∩ P : µ ∈ MIN -ONE

V
⊆(x(ϕ, S))}.

MAX -SAT is arguably the most studied problem in the SAT litera-
ture after the SAT problem itself.MAX -SAT⊆ problems arise in many
settings. For instance, in formal verification, ifϕ is a formula encod-
ing an initial specification of a system, and ifϕ′ encodes a refinement
of the initial specification, a standard verification task is to prove that
the refinementϕ′ is compatible withϕ, i.e., thatϕ∪ϕ′ is satisfiable.
If ϕ ∪ ϕ′ is unsatisfiable, one goal is to find “as large as possible”
parts of the refinement which are consistent with the initial design:
Such parts correspond to the assignments inMAX -SAT

ϕ
⊆(ϕ ∪ ϕ′).

4.3 DISTANCE -SAT and DISTANCE -SAT⊆

DISTANCE-SAT [3] is another optimization problem in which, given
a formulaϕ and an assignmentµ, the goal is to find an assignmentµ′

satisfyingϕ and differing “as little as possible” fromµ. Here we con-
sider also its variantDISTANCE-SAT⊆. Formally: Letµ be an assign-
ment. DefineDISTANCE-SAT(ϕ, µ) (resp.DISTANCE-SAT⊆(ϕ, µ))
to be the set of assignmentsµ′ satisfying ϕ and having the set
{l : l ∈ µ, l ∈ µ′} of minimal cardinality (resp. minimal). It is
clear thatDISTANCE-SATS(ϕ) ⊆ DISTANCE-SATS

⊆(ϕ).

Theorem 5 Letϕ be a formula. Letµ be an assignment. The follow-
ing two facts hold:

1. Let ≺ be the DLL -compatible partial order such thatl ≺ l
if l ∈ µ. If OPT-DLL(ϕ, ∅,≺) returns an assignmentµ′ then
µ′ ∈ DISTANCE-SAT⊆(ϕ, µ). If OPT-DLL(ϕ, ∅,≺) returnsFALSE

thenϕ is unsatisfiable.
2. Let adder(µ) be an adder ofµ with outputbn−1, . . . , b0. Let≺

be theDLL -compatible partial order on{bn−1, . . . , b0} such that
for each i ∈ [0, n − 1], bi ≺ bi, and, if i 6= 0, bi ≺ bi−1.
If OPT-DLL(ϕ ∪ adder(µ), ∅,≺) returns an assignmentµ′ then
µ′ ∩P ∈ DISTANCE-SAT(ϕ, µ). If OPT-DLL(ϕ∪adder(µ), ∅,≺)
returnsFALSE thenϕ is unsatisfiable.

5 Implementation and experimental results

instance #C OPBDP PBS4 MSAT+ optsat #C⊆ optsat
1 bcomp5 39 0.95 8.87 0.4 7.08 85 0
2 bmax6 61 120.05 TIME 8.42 274.13 131 0
3 ibm2 940 TIME TIME 19.73 TIME 1054 0.03
4 ibm3 6356 TIME – TIME 79.17 6422 0.65
5 gal8 MEM – SF TIME 14207 2.87
6 3blocks 56 282.03 0.19 0.29 2.2 58 0.06
7 4blocksb 66 TIME 0.61 0.24 5.81 66 0.09
8 4blocks 108 TIME 115.96 50.94 TIME 116 0.39
9 large.c 265 TIME 0.94 0.96 1.5 272 0.3

10 large.d 431 TIME – 7.71 99.75 443 1.1
11 log.a 135 TIME TIME 1.39 7.53 135 0.04
12 log.b 138 TIME TIME 8.99 TIME 138 0.04
13 rock.a 65 TIME 1.21 0.2 9.39 65 0.01
14 rock.b 69 TIME 0.14 0.27 5.9 69 0.01
15 r2b3.1 141 32.76 0.04 0.2 0.17 141 0.04
16 r2b3.2 138 67.14 0.03 0.08 0.14 138 0.03
17 r3b1.1 119 TIME 8.57 1.3 6.73 119 1.29
18 r3b1.2 126 TIME 7.09 0.82 8.49 126 0.21
19 r3b2.1 217 TIME 0.33 0.46 0.71 217 0.09
20 r3b2.2 206 TIME 0.25 0.53 0.73 206 0.08
21 qg1-8 64 TIME 81.46 31.06 85.67 64 6.87
22 qg2-7 49 75.03 0.23 0.27 0.72 49 0.16
23 qg2-8 64 MEM 54.26 21.83 29.56 64 20.83
24 qg3-8 64 19.62 0.24 0.1 0.61 64 0.02
25 qg4-9 81 TIME 53.12 19.36 250.69 81 0.2
26 qg5-11 121 MEM 0.25 0.43 0.86 121 0.15

Table 1. MIN -ONE (columns 3-7) andMIN -ONE⊆ (columns 8-9) problems.

The implementation of a solver based on our ideas requires the
modification of the heuristic of a DLL based SAT solver. In our case,
we selectedZCHAFF [13], the 2004 version. Such choice is moti-
vated by our interest in solving large problems coming from applica-
tions, and by the fact that we already had some experience in hacking
ZCHAFF code.

instance #C BF OPBDP PBS4 MSAT+ optsat #C⊆ optsat

1 barrel3 941 0.23 2.04 0.88 0.12 0.9 941 0.09
2 barrel4 2034 0.65 47.59 11.67 0.34 21.19 2034 1.03
3 barrel5 5382 21.42 MEM MEM 24.01 177.11 5382 122.76
4 barrel6 8930 213.60 MEM – 95.56 896.45 8930 1438.08
5 barrel7 13764 SF MEM – 285.55 435.46 TIME
6 lmult0 1205 0.39 13.05 1.45 0.16 7.35 1205 0
7 lmult2 3524 57.11 TIME TIME 6.7 16.46 3524 0.1
8 lmult4 6068 261.74 MEM – 35.34 98.05 6068 27.56
9 lmult6 8852 774.08 MEM – 157.02 609.07 TIME

10 lmult8 11876 SF MEM – 297.32 704.08 TIME
11 qvar8 2272 0.62 MEM 17.67 2.95 36 2272 3.58
12 qvar10 5621 2.21 MEM 234.97 55.54 156.44 5621 48.25
13 qvar12 7334 6.2 MEM – 36.8 74.49 7334 238.36
14 qvar14 9312 SF MEM – 117.25 815.66 9312 942.48
15 qvar16 6495 SF MEM – 51.33 117.31 6495 261.83
16 c432 1114 131.06 TIME 7.22 0.24 7.6 1114 0.74
17 c499 1869 TIME TIME 100.41 0.8 4.59 1869 4.3
18 c880 2589 TIME TIME 320.96 5.54 38.91 2589 16.72
19 c1355 3661 TIME TIME TIME 80.09 21.2 3661 30.86
20 c1908 5095 TIME MEM TIME 58.01 165.99 5095 129.95
21 c2670 6755 TIME MEM – 63.64 100.31 6755 359.52
22 c3540 9325 TIME MEM – 242.02 786.33 TIME
23 u-bw.a 3290 7.81 TIME 249 209.03 178.18 3288 0.04
24 u-bw.b TIME MEM – TIME TIME 11487 87.61
25 u-log.a 5783 TIME MEM TIME 59.65 179.3 5782 1.35
26 u-log.b 6428 TIME MEM – 35.37 144.83 6428 19.68
27 u-log.c 9506 TIME MEM – 383.65 731.87 9506 76.89
28 u-rock.a 1691 13.29 TIME 41.29 206.56 6.26 1690 4.79

Table 2. MAX -SAT andMAX -SAT⊆ problems, columns 3-8 and 9-10 resp.

For MIN -ONE⊆ problems, the heuristicsVSIDS of ZCHAFF has
been modified by simply selecting the unassigned literall with high-
estVSIDS score, and then assigning the variablex in l to false. For
MAX -SAT⊆, if there exists an unassigned literall in x(ϕ, S) and not
in ϕ, the one with the highestVSIDS score is selected and the variable
in it is assigned to false. Otherwise, the unassigned literall with high-
estVSIDS score is selected and assigned to true. Analogous modifica-
tions have been done onVSIDS in order to solveMIN -ONE/MAX -SAT

problems.
The solution ofMIN -ONE/MAX -SAT problems also required the

implementation of a functionadder(S) as specified in Section 4.1.
As we already said, there are various ways to implement such func-
tion. We used the method described in [17] which takes linear time
in the size ofS. We call optsat the resulting system.4 Beside the
modification in the heuristic, we had also to modifyZCHAFF pre-
processor in order to disable the assignment of pure literals.

About the other solvers, we initially considered both dedicated
solvers forMAX -SAT problems —likeBF [7], MAX SOLVER [18],
WCSP[14]— and generic Pseudo-Boolean solvers —likeOPBDPver.
1.1.1 [4], PBS ver. 2.1 and ver. 4 [1],MSAT+ (abbreviation of MIN-
ISAT+) based onMINISAT ver. 1.13 [10].MSAT+ was the solver
able to prove unsatisfiability and optimality to a larger number of
instances than all the other solvers that entered into the last Pseudo-
Boolean evaluation [12]. Considering the dedicated solvers forMAX -
SAT, we discardedMAX SOLVER andWCSP after an initial analysis
because they seem to be tailored for relatively small typically ran-
domly generated problems, and are thus not suited to deal with prob-
lems coming from applications. About the Pseudo-Boolean solvers,
we do not show the results for PBS ver 2.1 because it is almost al-
ways slower than ver 4.0.

Each solver has been run using its default settings. All the ex-

4 Available at http://www.star.dist.unige.it/˜marco/
OPTSAT/.

periments have been run on a Linux box equipped with a Pen-
tium IV 2.4GHz processor and 1GB of RAM. The results forMIN -
ONE/MIN -ONE⊆ andMAX -SAT/MAX -SAT⊆ problems are reported in
Tables 1 and 2 respectively.5 CPU time is measured in seconds; time-
out has been set to 1800 seconds. In the tables, “TIME” indicates that
the solver does not solve the instance within the time limit; “MEM”
indicates that the solver exceeds all the available memory; “SF” in-
dicates that the solver exits abnormally; “–” indicates that the solver
returns an incorrect result.

Considering the results forMIN -ONE problems in columns 4-7 of
Table 1, we see that our solveroptsat performs much better than all
the other solvers except forMSAT+. OPBDPsolves a few instances,
PBS times out or outputs an incorrect result on large instances, our
solver times out on four instances, whileMSAT+ times out on 1 in-
stance and on another instance it exits abnormally.

ConsideringMIN -ONE⊆ problems, the results of our solver are
shown in the last column of the table. Given that for any formula
ϕ in the table∅ 6= MIN -ONE(ϕ) ⊆ MIN -ONE⊆(ϕ) and that it is not
possible to codifyMIN -ONE⊆ problems in the other solvers we con-
sidered, it makes sense to compare the performances of our solver
with the performances of the other solvers in columns 4-6. The first
observation is thatoptsat is much faster than all the other systems:
Almost all the problems are solved in less than 1s. Two other obser-
vations are in order:

1. Comparingoptsat results in columns 7 and 9 we see that our
solver is much faster in solvingMIN -ONE⊆ thanMIN -ONE prob-
lems. This could have been expected given that handlingMIN -ONE

problems requires the encoding of adders counting the number of
variables set to true, and many of the examples have more than a
thousand variables (the “gal8” instance has≥ 58000 variables).

2. comparing the cardinality#C⊆ in column 8 (resp.#C in column
3) of the optimal assignment returned byoptsat when solving a
MIN -ONE⊆ (resp.MIN -ONE) problem, we see that for most in-
stances#C = #C⊆.

Considering the results forMAX -SAT problems in Table 2, we see
that our solveroptsat performs much better than all the other solvers,
including the dedicated ones, except forMSAT+. In comparison to
MSAT+, our solver is slower of a factor on most instances, but is also
faster on some instances. As in the previous case, the performances
of optsat on the same instances treated asMAX -SAT⊆ problems are
shown in the last column. Differently from the previous case,optsat
is slower in solvingMAX -SAT⊆ thanMAX -SAT problems except for
the planning instances (rows (23-28)). We do not yet have a clear un-
derstanding of why this happens. We believe that this is related to the
fact that for all the instances that we considered,#C/#C⊆ (repre-
senting the cardinality of the set returned byoptsat when solving a
MAX -SAT/MAX -SAT⊆ problem) are very close to number of clauses
in the original SAT instance, but this is still subject of investigation.

6 Conclusions and future work

In this paper we showed thatDLL can be used to solve op-
timization problems by simply imposing an ordering on the

5 In Table 1 (1-5) are Formal Verification instances ((1-2) from the Bejing’96
competition, (3-5) by Ofer Shtrichman); (6-14) are planning problems from
SATPLAN; (15-20) are Data Encryption Standard problems; (21-26) are
quasi group. In Table 2, (1-13) are Bounded Model Checking (BMC) prob-
lems used in the original BMC paper; (16-22) are miter-based circuit equiv-
alence benchmarks by Joao Marques-Silva; (23-28) are planning problems
from SATPLAN.

literals to be used while branching. We specifically consid-
ered MIN -ONE/MIN -ONE⊆/MAX -SAT/MAX -SAT⊆/DISTANCE-
SAT/DISTANCE-SAT⊆ problems, but it is clear that any optimization
problem where the ordering on the set of total assignments can
be obtained by extending a partial order on a set of literals can
be handled byOPT-DLL . In particular, all the problems where the
optimality condition is expressed via an objective functionf , can
be handled byOPT-DLL , provided we have a formula encoding the
value off . This is indeed the case, e.g., forWEIGHTED-MAX -SAT

where the encoding is illustrated, e.g., in [17].
We implemented our ideas usingZCHAFF as engine, and the en-

coding of [17] to solveMIN -ONE/MAX -SAT problems. The results
are positive and encouraging. We believe that even better perfor-
mances will be obtained by usingMINISAT and, forMIN -ONE/MAX -
SAT problems, using the encoding presented in [2, 15] of the objec-
tive function. Some of these encoding produce formulas of a big-
ger size, but they should lead to better performances of the back-end
solver: See [2, 15] for more details.

ACKNOWLEDGEMENTS

This work is partially supported by MIUR.

REFERENCES
[1] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, ‘PBS: A

backtrack search pseudo-Boolean solver’, inProc. SAT, (2002).
[2] Olivier Bailleux and Yacine Boufkhad, ‘Efficient CNF encoding of

Boolean cardinality constraints.’, inProc. CP, pp. 108–122, (2003).
[3] Olivier Bailleux and Pierre Marquis, ‘Some Computational Aspects of

DISTANCE-SAT’, Journal of Automated Reasoning, to appear, (2006).
[4] P. Barth, ‘A Davis-Putnam enumeration algorithm for linear pseudo-

boolean optimization’, Technical report, Max Plank Instutute for Com-
puter Scince, (1995). technical Report MPI-I-95-2-2003.

[5] D. Le Berre and L. Simon, ‘Fifty-five solvers in Vancouver: The
SAT 2004 competition’, inProc. SAT (Selected Papers), pp. 321–344,
(2004).

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, ‘Symbolic model checking
without BDDs’, inProc. TACAS, (1999).

[7] Brian Borchers and Judith Furman, ‘A two-phase exact algorithm for
max-SAT and weighted max-SAT problems.’,J. Comb. Optim., 2(4),
299–306, (1998).

[8] N. Creignou, S. Khanna, and M. Sudan, ‘Complexity classifications of
Boolean constraint satisfaction problems’,SIAM, (2001).

[9] M. Davis, G. Logemann, and D. Loveland, ‘A machine program for
theorem proving’,Journal of the ACM, 5(7), (1962).

[10] Niklas Éen and Niklas S̈orensson, ‘Translating pseudo-Boolean con-
straints into SAT’,Journal on Satisfiability, Boolean Modeling and
Computation, (2006).

[11] Henry Kautz and Bart Selman, ‘Planning as satisfiability’, in
Proc. ECAI, pp. 359–363, (1992).

[12] Vasco Miguel Manquinho and Olivier Roussel, ‘The first evaluation
of pseudo-Boolean solvers (PB05)’,Journal on Satisfiability, Boolean
Modeling and Computation, (2006).

[13] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
‘Chaff: Engineering an Efficient SAT Solver’, inProc. DAC, (2001).

[14] P. Meseguer S. D. Givry, J. Larrosa and T. Schieux, ‘Solving Max-SAT
as weighted CSP’, pp. 363–376, (2003).

[15] Carsten Sinz, ‘Towards an optimal cnf encoding of Boolean cardinality
constraints.’, inProc. CP, pp. 827–831, (2005).

[16] John K. Slaney and Toby Walsh, ‘Phase transition behavior: from deci-
sion to optimization’, inProc. SAT, (2002).

[17] Joost P. Warners, ‘A linear-time transformation of linear inequalities
into conjunctive normal form.’,Inf. Process. Lett., 68(2), 63–69, (1998).

[18] Z. Xing and W. Zhang, ‘MaxSolver: An efficient exact algorithm for
(weighted) maximum satisfiability’,Artificial Intelligence, 164(1-2),
47–80, (2005).

