Look-Back Techniques and Heuristics in DLV:
Implementation and Evaluation*

Wolfgang Fabel, Nicola Leoné, Marco Marate&?, and Francesco Ricta

! Department of Mathematics, University of Calabria, 87036 Rende, (€8)
{f aber, | eone, naratea, ricca}@mat.unical .it
2 DIST, University of Genova, 16145 Genova, ltaly
mar co@li st.unige.it

Abstract. Answer Set Programming (ASP) is a purely-declarative programming
paradigm based on logic rules, allowing for both disjunction in the head of the
rules and nonmonotonic negation in the body. ASP can express arsrfyrofose
complexity is in the second level of the polynomial hierarchy, thus it is stnntye
powerful than propositional logic under standard complexity conjestubgV is

the state-of-the-alisjunctiveASP system, and it is based on an algorithm using
backtracking search, like the vast majority of the currently available AS®®s.
Despite its efficiency, until recently, DLV did not incorporate any “baaking”
techniques (neither did other disjunctive ASP systems). Related, DL\ notiuse
“look-back” information accumulated for backjumping in its heuristicsichthave
been shown in related research areas to be crucial on large bekshstemming
from applications. In this paper, we focus on the experimental evaluafitie
look-back algorithms and heuristics that have been implemented in DLVAaXe
conducted a wide experimental analysis considering both randombrafed and
structured instances of the 2QBF problem (the canonical problem faothelex-

ity classes¥y andI17). The results show that the new look-back techniques sig-
nificantly improve the performance of DLV, being performance-wismpetitive
even with respect to “native” QBF solvers.

1 Introduction

Answer Set Programming (ASP) [1,2] is a purely-declarafivegramming paradigm
based on nonmonotonic reasoning and logic programmingidédseof answer set pro-
gramming is to represent a given computational problem mge lprogram whose an-
swer sets correspond to solutions, and then use an ansveehsatto find such solutions
[3]. The language of ASP is very expressive, allowing fothdisjunction in the head of
the rules and nonmonotonic negation in the body, and abkepiesent every property in
the second level of the polynomial hierarchy. ThereforePAS strictly more powerful
than propositional logic unleg3 = N P.
DLV is the state-of-the-artlisjunctiveASP system, and it is based on an algorithm

relying on backtracking search, like most other competihsP systems. Until recently,

* Supported by M.I.U.R. within projects “Potenziamento e Applicazioni delagrammazione
Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresentazé conoscenza:
estensioni e tecniche di ottimizzazione.”

DLV did not incorporate any “look-back” techniques, likedtkjumping” procedures and
“look-back” heuristics. By “backjumping” [4] we refer to aptimized recovery upon
inconsistency during the search where, instead of regtahia state of the search up to
the previous choice and then “flipping” its value, we try tarfjp over” choices that are
not relevant for the inconsistency we met. This is done bynaed a reason calculus,
which records information about the literals (“reasonshose truth has caused the truth
of other derived literals.

Look-back heuristics [5] further strengthen the potentiabackjumping by using
the information made explicit by the reasons. The idea ohdamily of heuristics is
to preferably choose atoms which frequently caused instergiies, thus focusing on
“critical” atoms. This significantly differ from classicAlSP heuristics that use informa-
tion arising from the simplification part (“look-head”) dig¢ algorithm. Such look-back
optimization techniques and heuristics have been showotlor research areas, to be
very effective on “big” benchmarks coming from applicasolike planning and formal
verification.

In this paper, we report on the analysis, implementationemaduation of the back-
jumping technique and look-back heuristics in DLV, andraétely, about their efficiency
in the disjunctive ASP setting. Such methods have beendresed in other ASP sys-
tems which(i) do not allow for disjunction in the head of the rules [6, 7],(ar) apply
such methods only indirectly after a transformation to gpsitional satisfiability prob-
lem [8]. The resulting system, called DIEX?, is therefore the first implementation of
disjunctive ASP featuring backjumping and look-back h&tigs. Importantly, our sys-
tem provides several options regarding the initializatdérihe heuristics and the truth
value to be assigned to an atom chosen by the heuristics.rlaxperimental analysis,
we provide a comprehensive comparison of the impact of topsens, and demon-
strate how the new components of DEX¥ enhances the efficiency of DLV. Moreover,
we also provide a comparison to the other competitive didjua ASP systems GnT and
Cmodels, which are generally outperformed considerablphy ZZ on the considered
benchmarks. Finally, we also present a comparison withegp QBF solvers, which
also allow for solving problems within the second level af ffolynomial hierarchy.

2 Answer Set Programming Language

A (disjunctive) ruler is a formula
a; V -V oap = by, -, by, not byy1,---, not by,.

whereay, -, ay,b1,- -, b, are function-free atoms and > 0, m > k& > 0. The
disjunctiona; V - - - V a,, is theheadof r, while by, - - -, bg, not bgy1,---,not by, isthe
body, of whichby, - - -, by, is thepositive bodyandnot bxy1,---,not b, isthenegative
bodyof r.

An (ASP) prograniP is a finite set of rules. An object (atom, rule, etc.) is called
groundor propositional if it contains no variables. Given a progrdm let theHerbrand
UniverseUp be the set of all constants appearingdrand theHerbrand BaseBp be
the set of all possible ground atoms which can be constridictedthe predicate symbols
appearing irf? with the constants af/p.

Given a ruler, Ground(r) denotes the set of rules obtained by applying all possible
substitutionsr from the variables in to elements ot/. Similarly, given a progran®,
theground instantiatiorGround(P) of P is the set J, ., Ground(r).

For every prograr®, its answer sets are defined using its ground instantiétierund(P)
in two steps: First answer sets of positive programs are eldfitnen a reduction of gen-
eral programs to positive ones is given, which is used to defimswer sets of general
programs. A sef. of ground literals is said to beonsistentf, for every atom? € L, its
complementary literabot ¢ is not contained irL. An interpretation/ for P is a consis-
tent set of ground literals over atomsip.3 A ground literal/ is truew.r.t. I if £ € I; ¢
is falsew.r.t. I if its complementary literal is idf; ¢ is undefinedv.r.t. I if it is neither true
nor false w.r.t1. Interpretatior/ is total if, for each atomA in Bp, eitherA ornot A is
in I (i.e., no atom inBp is undefined w.r.t). A total interpretationV/ is amodelfor P
if, for everyr € Ground(P), at least one literal in the head is true w.i.whenever all
literals in the body are true w.rd/. X is ananswer sefor a positive progran® if it is
minimal w.r.t. set inclusion among the models/af

The reductor Gelfond-Lifschitz transfornof a general ground prograf w.r.t. an
interpretationX is the positive ground prograf*, obtained fronfP by (i) deleting all
rulesr € P the negative body of which is false w.r.t. X and (ii) deletthg negative body
from the remaining rules. An answer set of a general progPasa modelX of P such
that X is an answer set d@&round(P)X.

3 Answer Set Computation Algorithms

In this section, we describe the main steps of the computaltiprocess performed by
ASP systems. We will refer particularly to the computatieragine of the DLV system,
which will be used for the experiments, but also other ASResys, employ a similar pro-
cedure. In general, an answer set progfarontains variables. The first step of a com-
putation of an ASP system eliminates these variables, géngra ground instantiation
ground(P) of P.% The subsequent computations, which constitute the ncermetistic
hearth of the system, are then performedoound(P) by the so called Model Generator
procedure.

In the following paragraphs, we illustrate the original rebdeneration algorithm of
DLV (which is based on chronological backtracking); them, briefly describe a back-
jumping technique that has been implemented in the systndhd, we detail how the
model generation algorithm has been changed to introduéeénially, we report a de-
scription of all the heuristics, including the new ones blale®mk-back techniques, that
have been implemented in the DLV system, so far.

The Standard Model Generator Algorithm. The computation of answer sets is per-
formed by exploiting the Model Generator Algorithm sketde Figure 12

3 We represent interpretations as set of literals, since we have to dealawithl nterpretations
in the next sections.

* Note thatground(P) is usually not the fullGround(P); rather, it is a subset (often much
smaller) of it having precisely the same answer sefB {3

5 Note that for reasons of presentation, the description here is quite simiplifig. the “real”
implementation. A more detailed description can be found in [11].

bool ModelGenerator (Interpretation& 1)
| = DetCons (1);
if (1==L)then
return false;
if (“no atom is undefined in I” Jhen return IsAnswerSet(l);
Select an undefined atorh using a heuristic;
if (ModelGenerator { U { A}) then return true;
else returnModelGenerator { U {not A}); };

Fig. 1. Computation of Answer Sets

This function is initially called with parametdrset to the empty interpretatién.

If the programP has an answer set, then the function returns True, seftioghe
computed answer set; otherwise it returns False. The ModeEfator is similar to the
DPLL procedure employed by SAT solvers. It first calls a fimttDetCons, which re-
turns the extension af with the literals that can be deterministically inferred tloe set
of all literals £ upon inconsistency). This function is similar to a unit pgption proce-
dure employed by SAT solvers, but exploits the peculiait€ ASP for making further
inferences (e.qg., it exploits the knowledge that every amset is a minimal model). If
DetCons does not detect any inconsistency, an atdgselected according to a heuristic
criterion and ModelGenerator is called érnu {A} and onI U {not A}. The atomA
plays the role of a branching variable of a SAT solver. Anceiedl, like for SAT solvers,
the selection of a “good” atord is crucial for the performance of an ASP system. In
the following, we will describe some heuristic criteria fbe selection of such branching
atoms.

If no atom is left for branching, the Model Generator has przdi a “candidate” an-
swer set, the stability of which is subsequently verifieddAnswerSet(I)This function
checks whether the given “candidatels a minimal model of the progra@round(P)*
obtained by applying the GL-transformation w.ft.and outputs the model, if stsAn-
swerSet(lyeturns True if the computation should be stopped and Fahsrwise.

Note that the algorithm described above computes one assfar simplicity, how-
ever it can be straightforwardly modified to compute alha@nswer sets.

Backjumping and Reason for Literals. If during the execution of the ModelGenerator
function described in previous paragraph a contradictigses, or the stable model can-
didate is not a minimal model, ModelGenerator backtrackkrandifies the last choice.
This kind of backtracking is called chronological backkiag.

We now describe a technique in which the truth value assigtsreausing a conflict
are identified and backtracking is performed “jumping” dtfg to a point so that at least
one of those assignments is modified. This kind of backtrartechnique is called non-
chronological backtracking or backjumping. To give thaiitibn on how backjumping is
supposed to works, we exploit the following example.

Consider the program of Figure 2(a) and suppose that thetstrae is as depicted in
Figure 2(b).

According to this tree, we first assumeo be true, deriving to be false (from; to
ensure the minimality of answer sets). Then we assutode true, derivingl to be false

5 Observe that the interpretations built during the computation are 3-vahegds, a literal can
be True, False or Undefined w.tt.

ri:oavb ore: evd, ry: eV f.

ra: gi—a,e. rsi i—g,a,e.

reg: g:—a,f. rr: —g,a,f.

(a)

Fig. 2. Backtracking vs Backjumping.

(from 7o for minimality). Third, we assume to be true and derivg to be false (from

r3 for minimality) andg to be true (fromr, by forward inference). This truth assignment
violates constraint; (whereg must be false), yielding an inconsistency. We continue
the search by inverting the last choice, that is, we assutonebe false and we derivg

to be true (again froms to preserve minimality) and to be true (fromrg by forward
inference), but obtain another inconsistency (becausst@nt; is violated, herey
must also be false).

At this point, ModelGenerator goes back to the previous ahioint, in this case
inverting the truth value of (cf. the arc labelled BK in Fig. 2(b)).

Now it is important to note that the inconsistencies obtdiare independent of the
choice of¢, and only the truth value of ande are the “reasons” for the encountered
inconsistencies. In fact, no matter what the truth value isf if a is true then any truth
assignment foe will lead to an inconsistency. Looking at Fig. 2(b), this mgahat in
the whole subtree below the arc labelledo stable model can be found. It is therefore
obvious that the chronological backtracking search exsldranches of the search tree
that cannot contain a stable model, performing a lot of ssehork.

A better policy would be to go back directly to the point at efhive assumed to
be true (see the arc labelled BJ in Fig. 2(b)). In other woifdse know the “reasons”
of an inconsistency, we can backjump directly to the closhsice that caused the in-
consistent subtree. In practice, once a literal has beegnaska truth value during the
computation, we can associate a reason for that fact witliténel. For instance, given a
rulea:—b,c,not d., if b andc are true and! is false in the current partial interpretation,
thena will be derived as true (by Forward Propagation). In thisscage can say thatis
true “becauseb andc are true and is false. A special case aohoserliterals, as their
only reason is the fact that they have been chosen. The clitesats can therefore be
seen as being their own reason, and we may refer to them asmtl@mpreasons. All other
reasons are consequences of elementary reasons, and hgregations of elementary
reasons. Each literdlderived during the propagation (i.e., DetCons) will haveaagso-
ciated set of positive integei®(!) representing the reason ifwhich are essentially the
recursion levels of the chosen literals which entailherefore, for any chosen literal
|R(c)| = 1 holds. For instance, ik(l) = {1, 3,4}, then the literals chosen at recursion
levels 1, 3 and 4 entall If R(I) = 0, thenl is true in all answer sets.

The process of defining reasons for derived (non-chosemalg is calledeason cal-
culus The reason calculus we employ defines the auxiliary cosaddatisfying literals

and orderings among satisfying literals for a given rul@l$b has special definitions for
literals derived by the well-founded operator. Here, faklaf space, we do not report
details of this calculus, and refer to [10] for a detailed ni&tn.

When an inconsistency is determined, we use reason infamatiorder to under-
stand which chosen literals have to be undone in order taldtei found inconsistency.
Implicitly this also means that all choices which are nothe teason do not have any
influence on the inconsistency. We can isolate two main tgpéeonsistenciesi) De-
riving conflicting literals, and:) failing stability checks. Of these two, the second one
is a peculiarity of disjunctive ASP.

Deriving conflicting literals means, in our setting, thattDens determines that an
atoma and its negatiomot « should both hold. In this case, the reason of the incon-
sistency is — rather straightforward — the combination ef tbasons for andnot a:
R(a) U R(not .a).

Inconsistencies from failing stability checks are a peritly of disjunctive ASP, as
non-disjunctive ASP systems usually do not employ a stglilieck. This situation oc-
curs if the function IsAnswerSet(l) of ModelGenerator resifalse, hence if the checked
interpretation (which is guaranteed to be a model) is ndilstarhe reason for such an
inconsistency is always based on an unfounded set, whiclhdms determined inside
IsAnswerSet(l) as a side-effect. Using this unfounded thet,reason for the inconsis-
tency is composed of the reasons of literals which satidgsrwhich contain unfounded
atoms in their head (the cancelling assignments of thess)iurhe information on rea-
sons for inconsistencies can be exploited for backjumpingding back to the closest
choice which is a reason for the inconsistency, rather thanays to the immediately
preceding choice.

In the next paragraph, we will describe a modified versionhef ModelGenerator
algorithm which implements the above-sketched backjumpsohnique.

The Model Generation Algorithm with Backjumping. In this paragraph we describe
ModelGeneratoBJ (shown in Fig. 3) a modification of the M@#slerator function,
which is able to perform non-chronological backtracking.

It extends ModelGenerator by introducing additional pagters and data structures,
in order to keep track of reasons and to control backtrackimd backjumping. In par-
ticular, two new parametersR andbj_level are introduced, which hold the reason of
the inconsistency encountered in the subtrees of whichufremt recursion is the root,
and the recursion level to backtrack or backjump to. Whengyéonward in recursion,
bj_level is also used to hold the current level.

The variablegurr_level, posI R, andnegl R are local to ModelGeneratoBJ and used
for holding the current recursion level, and the reasonsgHerpositive and negative re-
cursive branch, respectively.

Initially, the ModelGeneratorBJ function is invoked wiftset to the empty interpre-
tation, I R set to the empty reason, ahflicvel set to—1 (but it will become 0 immedi-
ately). Like the ModelGenerator function, if the progré&rhas an answer set, then the
function returns true and sefsto the computed answer set; otherwise it returns false.
Again, it is straightforward to modify this procedure in erdo obtain all or up ta an-
swer sets. Since these modification gives no additionajlimsbut rather obfuscates the
main technique, we refrain from presenting it here.

bool ModelGeneratorBJ (Interpretation& I, Reason& IR,
int& bj_level) {

bj_level ++;
int curr_level = bj level;

| = DetConsBJ (1, IR);
if (1== L) return false;
if (“no atom is undefined in I”)
if IsAnswerSetBJ(|, IR)return true ;
else
bj_level = MAX (IR);
return false;

Reason posIR, negIR;
Select an undefined atorh using a heuristic;

R(A)={ currlevel };
if (ModelGeneratorBJ{ U { A}, posIR, bjlevel) return true ;
if (bj_level < curr_level)

IR = posIR;return false;

bj_level = curclevel;
R(not A) = { currlevel };
if (ModelGeneratorBJ { U {not A}, negIR, bjlevel)return true ;

if (bj-level < curr_level)
IR = negIR;return false;

IR = trim(curr_level, Union (posIR, negIR));
bj_level = MAX (IR);
return false;

Fig. 3. Computation of Answer Sets with Backjumping

ModelGeneratorBJ first calls DetConsBJ, an enhanced veddithe DetCons pro-

cedure. In addition to DetCons, DetConsBJ computes themeas the inferred literals,

as pointed out in the paragraph for reasons. Moreover, braespoint an inconsistency

is detected (i.e. the complement of a true literal is infériee be true), DetConsBJ (re-
turns the set of all literal€, and) builds the reason of this inconsistency and stores it
in its new, second parametérR. If an inconsistency is encountered, ModelGeneratorBJ
immediately returns false and no backjumping is done. Thanioptimization, because

it is known that the inconsistency reason will contain thevus recursion level. There

is therefore no need to analyze the levels.

If no undefined atom is left, ModelGeneratorBJ invokes IskerSetBJ, an enhanced
version of ISAnswerSet. In addition to IsAnswerSet, IsAasBetBJ computes the incon-
sistency reason in case of a stability checking failure, satd the second paramefe®
accordingly. If this happens, it might be possible to baokpuand we seij_level to the
maximal level of the inconsistency reason (or O if it is thepgyset) before returning from
this instance of ModelGeneratorBJ. Indeed, the maximuml ieM R corresponds to the
nearest (chronologically) choice causing the failureh# stability check succeeded, we
just return true.

Otherwise, an atord is selected according to a heuristic criterion. We set tasae
of A to be the current recursion level and invoke ModelGeneBatoecursively, using
posI R andbj_level to be filled in case of an inconsistency. If the recursive lirned
true, ModelGeneratorBJ just returns true as well. If it re@d false, the corresponding
branch is inconsistenposI R holds the inconsistency reason dndlevel the recursion
level to backtrack or backjump to.

Now, if bj_level is less than the current level, this indicates a backjumg yanreturn
from the procedure, setting the inconsistency reason apptely before. If not, then we
have reached the level to go to. We set the reasonder A, and enter the second re-
cursive invocation, this time usingeg/ R and reusingj_level (which is reinitialized
before). As before, if the recursive call returns true, MGaeratorBJ immediately re-
turns true also, while if it returned false, we check whethebackjump, setting R and
immediately returning false. If no backjump is done, thistimce of ModelGeneratorBJ
is the root of an inconsistent subtree, and we set its insteTsly reasofi R to the union
of posI R andnegl R, deleting all (irrelevant) integers which are greater aredhan the
current recursion level (this is done by the function tritVe finally setbj_level to the
maximum of the obtained inconsistency reason (or 0 if théssatnpty) and return false.

The actual implementation in DLV is slightly more involvéduit only due to technical
details. Since we do not believe that these technical isgiMesany particular insight, but
are instead rather lengthy in description, we have optedticlude them.

The information provided by reasons can be further exploitea backjumping-based
solver. In particular, in the following paragraph we delserhow reasons for inconsisten-
cies can be exploited for defining look-back heuristics.

Heuristics. In this paragraph we will first describe the two main hewsstior DLV
(based on look-ahead), and subsequently define severalaavstics based on reasons
(or based on look-back), which are computed as side-eftéddise backjumping tech-
nigue. We assume that a ground ASP progfamnd an interpretatioh have been fixed.
We first recall the “standard” DLV heuristig; [12], which has recently been refined to
yield the heuristich ps [13], which is more “specialized” for hard disjunctive praghs
(like 2QBF). These are look-ahead heuristics, that is, #ndriktic value of a literat)
depends on the result of takirg true and computing its consequences. Given a literal
Q, ext(Q) will denote the interpretation resulting from the applicatof DetCons on
I'u{Q®}; w.l.o.g., we assume that:t(Q) is consistent, otherwis@ is automatically set
to false and the heuristic is not evaluated(@at all.

Standard Heuristic of DLV (hy7). This heuristic, which is the default in the DLV
distribution, has been proposed in [12], where it was shanetvery effective on many
relevant problems. It exploits a peculiar property of AS#nelysupportedness$-or each
true atomA of an answer sef, there exists a rule of the program such that the body of
r is true w.r.t.I and A is the only true atom in the head of Since an ASP system must
eventually converge to a supported interpretationg is geared towards choosing those
literals which minimize the number @dnsupportedTrue (UTatoms, i.e., atoms which
are true in the current interpretation but still miss a suppg rule. The heuristié¢y 1 is
“balanced”, that is, the heuristic values of an at@repends on both the effect of taking
Q@ andnot @, the decision betweef) andnot () is based on the UT atoms criteria.

Enhanced Heuristic of DLV (hpg). The heuristichpg [14] is based orhy7, and is
different fromh 1 only for pairs of literals which are not ordered by . The idea of the
additional criterion is that interpretations having a ‘tintg degree of supportedness” are
preferred, where the degree of supportedness is the aveuagieer of supporting rules
for the true atoms. Intuitively, if all true atoms have mamypgorting rules in a model
M, then the elimination of a true atom from the interpretatiayuld violate many rules,
and it becomes less likely finding a subsef\éfwhich is a model ofP (which would

disprove thatM is an answer set). Interpretations with a higher degreepg@tedness
are therefore more likely to be answer sets. Justiike, hpgs is “balanced”.

The Look-back Heuristics (h;, 5). We next describe a family of new look-back heuris-
tics b, . Different tohyr andhpg, which provide a partial order on potential choices,
h; g assigns a numbel((L)) to each literalL (thereby inducing an implicit order). This
number is periodically updated using the inconsistentiasdccurred after the most re-
cent update. Whenever a literal is to be selected, the litgthlthe largest/ (L) will be
chosen. If several literals have the saiél), then negative literals are preferred over
positive ones, but among negative and positive literal$ngathe samé/ (L), the order-
ing will be random. In more detail, for each literd| two values are stored? (L), the
current heuristic value, anf{ L), the number of inconsistenciéshas been a reason for
since the most recent heuristic value update. After haviragenk literals, V(L) is up-
dated for eaclL as follows:V (L) := V(L)/2 + I(L). The motivation for the division
(which is assumed to be defined on integers by rounding thétyesto give more impact
to more recent values. Note thtl) # 0 can hold only for literals that have been chosen
earlier during the computation.

A crucial point left unspecified by the definition so far are thitial values oft’(L).
Given that initially no information about inconsistencigsavailable, it is not obvious
how to define this initialization. On the other hand, inidalg these values seems to
be crucial, as making poor choices in the beginning of thepdation can be fatal for
efficiency. Here, we present two alternative initializagoThe first, denoted by}l is
done by initializingV’ (L) by the number of occurrences bfin the program rules. The
other, denoted by 2L, involves ordering the atoms with respectitgs, and initializing
V(L) by the rank in this ordering. The motivation faf’!" is that it is fast to compute
and stays with the “no look-ahead” paradigmrgf,. The motivation forh 2L is to try
to use a lot of information initially, as the first choices aféen critical for the size of
the subsequent computation tree. We introduce yet anogitiendor & ; 5, motivated by
the fact that answer sets for disjunctive programs must Ioénmai with respect to atoms
interpreted as true, and the fact that the checks for miniyreade costly: If we preferably
choose false literals, then the computed answer set cdadidey have a better chance to
be already minimal. Thus even if the literal, which is optimecording to the heuristic, is
positive, we will choose the corresponding negative litérst. If we employ this option
in the heuristic, we denote it by addingF' to the superscript, arriving aztj’:V[BF’AF and

hiEA respectively.

4 Experiments

We have implemented the above-mentioned look-back teabsignd heuristics in DLV;
in this section, we report on their experimental evaluation

Compared Methods. For our experiments, we have compared several versions ¥f DL
[15], which differ on the employed heuristics and the useadijumping. For having a
broader picture, we have also compared our implementatmtiee competing systems
GnT and CModels3, and with the QBF solver Ssolve. The consibigystems are:

e dlv.ut: the standard DLV system employirig; (based on look-ahead).

e div.ds: DLV with hpg, the look-ahead based heuristic specializedgi/ 171 hard

disjunctive programs.
e dlv.ds.bj: DLV with hpg and backjumping.
e dlv.mf: DLV with R}E7
o div.mf.af: DLV with b}/ %A%,
e div.If: DLV with hEE.
o divif.af: DLV with hf 547,
e gnt[16]: The solver GnT, based on the Smodels system, can déatligjunctive ASP.
One instance of Smodels generates candidate models, witithea instance tests if a
candidate model is stable.
e cm3[8]: CModels3, a solver based on the definition of complef@mrdisjunctive pro-
grams and the extension of loop formulas to the disjunctasec CModels3 uses two
SAT solvers in an interleaved way, the first for finding anssetr candidates using the
completion of the input program and loop formulas obtainednd) the computation, the
second for verifying if the candidate model is indeed an &nset.
e ssolve[17]: is a search based native QBF solver that won the QBFuatiain in 2004
on random (or probabilistic) benchmarks (performing vepfhalso on non-random, or
fixed, benchmarks), and performed globally (i.e., both oediand probabilistic bench-
marks) well in the last two editions.

Note that we have not taken into account other solvers liked#is.. [6] or Clasp [7]
because our focus is on disjunctive ASP.

Benchmark Programs and Data. The proposed heuristic aims at improving the per-
formance of DLV on disjunctive ASP programs. Therefore weuton hard programs
in this class, which is known to be able to express each pmobkthe complexity class
XP /L. Al of the instances that we have considered in our benckraaalysis have
been derived from instances for 2QBF, the canonical proliterthe second level of the
polynomial hierarchy. This choice is motivated by the féettmany real-world, struc-
tured (i.e., fixed) instances in this complexity class amlable for 2QBF on QBFLIB
[18], and moreover, studies on the location of hard instarfoe randomly generated
2QBFs have been reported in [19-21].

The problem 2QBF is to decide whether a quantified Booleamtita (QBF)® =
vX3Y ¢, whereX andY are disjoint sets of propositional variables ane D; A ... A
D, is a CNF formula oveX U Y/, is valid.

The transformation from 2QBF to disjunctive logic prograimgnis a slightly altered
form of a reduction used in [22]. The propositional disjuvetiogic programP, pro-
duced by the transformation requirgs (|X| + |Y'|) + 1 propositional predicates (with
one dedicated predicat®, and consists of the following rules. Rules of the farmw. for
each variable € X UY. Rules of the formy <« w. § < w. for eachy € Y. Rules of the
formw «— v1,...,0m, Um+1, - - ., Upn. fOr each disjunctiom, V...V, Vv, 11 V...V,
in ¢. The rule— not w. The 2QBF formula? is valid iff Pg has no answer set [22].

We have selected both random and structured QBF instanbesranhdom 2QBF
instances have been generated following recent phasetivangsults for QBFs [19—
21]. In particular, the generation method described in 4§ been employed and the
generation parameters have been chosen according to tharegptal results reported
in the same paper. First, we have generated 10 differenbsetstances, each of which

" Note that all systems with;, 5 heuristics exploit backjumping.

is labelled with an indication of the employed generatiorapzeters. In particular, the
label “A-E-C-p” indicates the set of instances in which each clauseasiversally-
quantified variables anfl existentially-quantified variables randomly chosen froset
containingC' variables, such that the ratio between universal and etiatevariables is
p. For example, the instances in the set “3-3-70-0.8" are 6@Mmulas (each clause
having exactly 3 universally-quantified variables and 3txitially-quantified variables)
whose variables are randomly chosen from a set of 70 contai®il universal and 39
existential variables, respectively. In order to compheegerformance of the systems in
the vicinity of the phase transition, each set of generatendilas has an increasing ratio
of clauses over existential variables (from 1 to ma¥ollowing the results presented
in [21], max- has been set to 21 for each of the sets 3-3-70-*, and 12 forafabk 2-3-
80-*. We have generated 10 instances for each ratio, thasnfg, in total, 210 and 120
instances per set, respectively. Then, because suchdestdo not provide information
about the scalability of the systems w.r.t. the total nunabgariables, we generated other
sets. We took the “2-3-80-0.8" and “3-3-70-1.0" sets, wedixiee ratio of clauses over
existential variables to the “harder” value for the DLV vierss and vary the number of
variablesC' (from 5 to maxC, step 5), where maX is 80 and 70, respectively. We have
generated 10 instances for each point, thus obtainingtah 160 and 140 instances per
set, respectively.

About the structured instances, we have analyzed:

— Narizzano-Robot - These are real-word instances encoding the robot nagigati
problems presented in [23], as used in the QBF Evaluatiod 20@ 2005.

— Ayari-MutexP - These QBFs encode instances to problems related to thefform
equivalence checking of partial implementations of ciLas presented in [24].

— Letz-Tree - These instances consist of simple variable-independdregrams
generated according to the pattevmy xs...x,,—1 3xoxy... 25 (c1 A ... A cp—o) Where
¢, =x; V Ti42 \Y Ti4+3y Ci+1 = Xy V Xi4-2 \Y LG43, 1=].,37 ceey— 3.

The benchmark instances belonging to Letz-tree, NarizRotwot, Ayari-MutexP have

been obtained from QBFLIB [18], including the 32 (resp. 4@Yixzano-Robot instances
used in the QBF Evaluation 2004 (resp. 2005), and alMhénstances from Letz-tree
and Ayari-MutexP.

Results. All the experiments were performed on a 3GHz Pentium|V eggipwith 1GB
of RAM, 2MB of level 2 cache running Debian GNU/Linux. Time agirements have
been done using thei me command shipped with the system, counting total CPU time
for the respective process.

We start with the results of the experiments with random 2@Bmulas. For every
instance, we have allowed a maximum running time of 20 mgteTable 1 we report,
for each system, the number of instances solved in each gghhe time limit. Looking
at the table, it is clear that the new look-back heuristic oimmad with the "mf” initializa-
tion (corresponding to the system dlv.mf) performed veryl we these domains, being
the version which was able to solve most instances in moshgst particularly on the
3-3-70-* sets. Also dlv.If, in particular when combined wihe “af” option, performed
quite well, while the other variants do no seem to be veryctffe. Considering the
look-ahead versions of DLV, dlv.ds performed reasonablil. v@onsidering GnT and

| [[div.ut]div.dgdiv.ds.bj[dlv.mf[dlv.mf.afdIv.If[dIv.If.af [gnfcm3][ssolve
2-3-80-0.4{ 119 | 120 | 120 120 120 |120| 120 || 3|57 120
2-3-80-0.6 91 | 102 99 103 83 101| 96 4162(120
2-3-80-0.8| 88 | 99 99 99 79 97 92 5|73| 120
2-3-80-1.00 81 | 95 96 106 80 95 95 10| 81 || 120
2-3-80-1.2] 84 | 99 101 109 85 101| 102 || 6|93 120
3-3-70-0.6| 159 | 174 | 168 172 157 |164| 166 || 4 | 76| 210
3-3-70-0.8 128 | 138 | 135 150 123 | 132] 140 || 2 | 82| 210

7

9

9

3-3-70-1.0) 114 | 128 | 127 149 | 112 |128| 125 96 || 205
3-3-70-1.2) 123 | 131 | 133 156 | 115 |129| 140 117| 209
3-3-70-1.4 124 | 139 | 142 161 | 117 |142| 141 131} 210

| #Total [[1111[1225] 1220 [[1325] 1071 [1209 1217 [[59[868]] 1644

a

Table 1. Number of solved instances within timeout for Random 2QBF.

CModels3, we can note that they could solve few instanceseviths clear that Ssolve
is very efficient, being able to solving almost all instances

Figures 4 (resp. 5) show the results for the “2-3-80-0.8%5pre'3-3-70-1.0") set,
regarding scalability. For sake of readability, only thetamces with an high number
of variables are presented: GnT, Cmodels3, Ssolve andalDttV versions solve all
instances not reported. The left (resp. right) plot of eaiguie contains the cumulative
number of solved instances about all the DLV versions (r&pl, CModels3, Ssolve
and the best version of DLV). Overall, on these particulds,see can see that all the
“look-back” versions of DLV scaled much better than GnT ardddels3, with very
similar results among them (dIv.If.af just solve one morgtanmce (Fig. 5 left)). Ssolve
managed to solve all instances, and in less time (not regjorte

In Tables 2, 3 and 4, we report the results, in terms of exeeuime for finding
one answer set, and/or number of instances solved withinigdtes, about the groups:
Narizzano-Robot, Ayari-MutexP and Letz-Tree, respebtivehe last columns (AS?) in-
dicate if the instance has an answer set (), or not (N), utdble 2 where it indicates
how many instances have answer sets. A “-” in these tablésaites a timeout. Fo;
heuristics, we experimented a few different values for ‘did we obtained the best re-
sults fork=100. However, it would be interesting to analyze more thgtdy the effect
of the factork.

2-3-80-0.8 - hard region 2-3-80-0.8 - hard region
150 T T T 160

T T T
div.ut —+— div.mf -
div.ds - gnt yd

dldsbj - cm3 - %
s - dvmi 8 B 150 - ssolve —— / Bl
div.mf.af e P
div.If
o dwifaf - - 1 ol /

135

130

#solved instances
#solved instances

125

120 e 4 100 -

115 | B 9|

110 %” L L L L 80 L L L L L L L
55 60 65 70 75 80 40 a5 50 55 60 65 70 75 80

Fig. 4. Left: Number of solved instances by all DLV versions. Right: Numbesal’ed instances
by div.mf, GnT, CModels3 and Ssolve.

3-3-70-1.0 - hard region 3-3-70-1.0 - hard region

dvat —— j j divital’ e
114 | div.ds gnt

12 div.If
divf.af - - /
T 120 |
110 - 4)

£ 1ol g
108 - 7] 2
g
| s r .

106

#solved instances

#solved insa
"
5
8
\

02] 80 -

100 & L L L 70

Fig. 5. Left: Number of solved instances by all DLV versions. Right: Numbesalfed instances
by div.If.af, GnT, CModels3 and Ssolve.

In Table 2 we report only the instances from the QBF Evaluma?i004 and 2005, re-
spectively, which were solved within the time limit by até&ane of the compared meth-
ods. In Table 2, div.mf was the only ASP and QBF solver abl®teesall the reported 63
(23 for QBF Evaluation 2004 and 40 for QBF Evaluation 2005}tances, followed by
Ssolve (60), CModels3 (58) and dlv.If (47). Moreover, diimmas always the fastest ASP
system on each instance (sometimes dramatically, even lidé of space we consider
the instances on which it took more than 1 sec, and oftenrftsd@ Ssolve, especially
on the QBF Evaluation 2004 instances. On the QBF Evaluati@b 2nstances, dlv.mf,
Cmodels3 and Ssolve solved all of them, with a mean exectitienof 228.07s, 189.74s
and 76.91s, respectively. The “traditional” DLV versiomaitd solve 10 instances, while
dlv.ds.bj solved 21 instances, and took less execution flinis indicates the advantages
of using a backjumping technique on these robot instances.

In Table 3, we then report the results for Ayari-MutexP. latttiomain all the versions
of DLV and Ssolve were able to solve all 7 instances, outpariiog both CModels3 and
GnT which solved only one instance. Comparing the exectiies required by all the
variants of dlv we note that, also in this case, dlv.mf is tastiperforming version, while
Ssolve scaled up much better. About the Letz-Tree domagnDihV versions equipped
with look-back heuristics solved a higher number of insésend required less CPU time
(up to two orders of magnitude less) than all ASP competitors

In particular, the look-ahead based versions of DLV, GnT @hktbdels3 could solve
only 3 instances, while dlv.mf and dlv.If solved 4 and 5 imst@s, respectively. Inter-
estingly, here the "If” variant is very effective in partiam when combined with the “af”
option, like in the random instances for testing scalgbilitcould solve the same number
of instances as Ssolve, with Ssolve having better scalipglihties.

| [div.ut[dlv.dgdIv.ds.bj|dIv.mf[dlv.mf.afl dIv.If[dIv.If.af[gnfcm3[ssolve[AS?

QBF Eval. 2004 10 | 10 11 23 12 15 12 518 20 || 5
QBF Eval. 2004 0 0 10 40 34 32 22 0(40| 40 || O

[#Total [10] 10] 21 | 63 | 46 |[47] 34 [[5]58] 60 [| 5|

Table 2. Number of solved instances on Narizzano-Robot instances as sdlethedQdBF Evalu-
ation 2004 and 2005. The last column indicates how many instances iawerssets.

| [[div.ut]div.dgdiv.ds.bj[dlv.mf[dlv.mf.af dIv.If [dIv.If.af[| gnt[cm3[ssolve[AS?

mutex-2-s [0.01]0.01] 0.01 || 0.01] 0.01 [0.01] 0.01 [1.890.65] 0.03] N
mutex-4-s || 0.05/ 0.05| 0.05 || 0.06] 0.05 [0.06] 0.05 | — | — || 0.04] N
mutex-8-s | 0.21] 0.2 | 023 || 021| 0.21 |023] 0.21 | = | = |[0.07 N
mutex-16-s]| 0.89| 0.89] 0.98 || 0.89| 0.89 [1.01] 09 | - | — [[013| N
mutex-32-s] 3.67| 3.72| 4.06 || 3.63| 3.64 [4.16] 3.9 | = | — | 03 | N
mutex-64-s]|15.3816.08 17.64 || 14.97 15.04 [18.08 16.97 | — | — | 0.81] N
mutex-128-§69.0779.39 90.92 ||62.97 62.97 [92.92 93.05] — | — | 2.83| N
soved [7 [7] 7 [7] 7 [7] 7 Ji]Ja[7] |

Table 3. Execution time (seconds) and number of solved instances on AyarixMinstances.

Summarizing, dlv.ds.bj showed (especially on same seteafindom programs, and
on the Narizzano-Robot instances) improvements w.r.t'tthditional” DLV versions.
Moreover, if equipped with look-back heuristics, DLV shalveery positive perfor-
mance, further strengthening the potential of look-backméyues. In all of the test cases
presented, both random and structured, DLV equipped witk-tzack heuristics obtained
good results both in terms of number of solved instances gedution time compared
to traditionals DLV, GnT and CModels3. div.mf, the “classiook-back heuristic, per-
formed best in most cases, but good performance was obtaisety dlv.If. The results
of div.If.af on the some random and Letz-Tree instances ghatthis option can be fruit-
fully exploited in some particular domains. We also inclddethe picture the QBF solver
Ssolve: while often it showed very good results, on same dwnae., the Narizzano-
Robot, dlv.mf performed better than Ssolve, both in termsushber of instances solved
and CPU execution time. It should be also noted that the vagirity of the structured
instances presented do not have answer sets, while therlsiggantages of div.mf over
Ssolve on the Narizzano-Robot instances are obtained dndtances with answer sets.

5 Conclusions

We have described a general framework for employing loatklt@chniques in disjunc-
tive ASP. In particular, we have designed a number of loatkldzased heuristics, ad-
dressing some key issues arising in this framework. We hapdemented all proposed
techniques in the DLV system, and carried out a broad exgatiah analysis on hard in-
stances encoding 2QBFs, comprising both randomly gertknagéances and structured
instances. It turned out that the proposed heuristics digtpe the traditional (disjunc-
tive) ASP systems DLV, GnT and CModels3 in most cases, antharraimple approach

| [[div.ut][div.ds[dlv.ds.bj[dIlv.mf[dlv.mf.afl div.If [dIv.If.af] gnt | cm3][[ssolvg/AS?
exalO-1¢ 0.18 | 0.17| 0.17 || 0.04 0.1 0.06 | 0.06 || 0.12 |0.03|| 0.01|| N
exalO-14 7.49| 7.09| 7.31 || 0.34| 0.71 | 0.48| 0.38 || 6.46 | 0.73|| 0.01
exal0-2(1278.01264.53 275.1 || 12.31| 17.24 | 5.43 | 2.86 ||325.2667.56| 0.02
D
)

exalo-2% — - - 303.671 432.32| 44.13| 19.15|| - - || 0.02
exalO-3Q - - — - —]166.93129.54| - — || 0.05

[#Soved] 3 [3 | 8 [[4] 4 [5[5 [3 [3[5] |

zZ|\ZzZ2

Table 4. Execution time (seconds) and number of solved instances on LetériEtaaces.

(“dlv.mf”) works particularly well, being performance-sg¢ competitive with respect to
“native” QBF solvers. A possible topic for future researshad further expand the range
of look-back techniques in DLV by employingarning(the ability to record reasons in
order to further avoid inconsistencies already encoudjere

References

1.

2.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24,

Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logicd?aanming. In: Logic
Programming: Proc. Fifth Intl Conference and Symposium, MIT £(&988) 1070-1080
Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs &isjunctive Databases.
NGC9(1991) 365-385

. Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.: IGA% Las Cruces, New Mexico,

USA, The MIT Press (1999) 23-37

. Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Pnobl@omputational Intel-

ligence9 (1993) 268-299

. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik; SChaff: Engineering an

Efficient SAT Solver. In: DAC 2001, ACM (2001) 530-535

. Ward, J., Schlipf, J.S.: Answer Set Programming with Clauseniegr LPNMR-7. LNCS

2923

. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Corllivien answer set solving. In:

Twentieth International Joint Conference on Artificial Intelligence (1JO&),(2007) 386—392

. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. L\PRO05. LNCS 3662
. Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Databadar@ation Techniques for

Nonmonotonic Reasoning. In DDLP’99, Prolog Association of Jap8ag1135-139

Ricca, F., Faber, W., Leone, N.: A Backjumping Technique figjuDctive Logic Program-
ming. Al Communicationd9(2) (2006) 155-172

Faber, W.: Enhancing Efficiency and Expressiveness in AnSeeProgramming Systems.
PhD thesis, TU Wien (2002)

Faber, W., Leone, N., Pfeifer, G.: Experimenting with Heuristicdhswer Set Programming.
In: IJCAI 2001, Seattle, WA, USA,(2001) 635-640

Faber, W., Ricca, F.: Solving Hard ASP Programs EfficientlyLRNMR’05. LNCS 3662
Faber, W., Leone, N., Ricca, F.: Solving Hard Problems for ée®8d Level of the Polynomial
Hierarchy: Heuristics and Benchmarks. Intelligenza Artifici2(@) (2005) 21-28

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., P&rj,Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TQB)(2006) 499-562
Janhunen, T., Nienigll.: Gnt - a solver for disjunctive logic programs. LPNMR-7. LNCS
2923

Feldmann, R., Monien, B., Schamberger, S.: A Distributed Algoriit Evaluate Quantified
Boolean Formulae. In: AAAI(2000), AAAI Press (2000) 285-290

Narizzano, M., Tacchella, A.: QBF Solvers Evaluation page (R002p: / / www. gbf | i b.
or g/ gbfeval /i ndex. htm /.

Cadoli, M., Giovanardi, A., Schaerf, M.: Experimental Analygithe Computational Cost of
Evaluating Quantified Boolean Formulae. In: AI*IA 97. Italy, (199772218

Gent, |., Walsh, T.: The QSAT Phase Transition. In: AAAI. (1999

Chen, H., Interian, Y.: A model for generating random quantiiealean formulas. In: Pro-
ceedings of IJCAI-05, Professional Book Center (2005) 66-71

Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive LogagPamming: Propo-
sitional Case. AMAIL5(3/4) (1995) 289-323

Castellini, C., Giunchiglia, E., Tacchella, A.: SAT-based planningmpmex domains: Con-
currency, constraints and nondeterminism. Artificial Intelligeb4@1/2) (2003) 85-117
Ayari, A., Basin, D.A.: Bounded Model Construction for Mona8iecond-Order Logics. In:
Proc. of Computer Aided Verification, CAV 2000, Chicago, IL, USA;1% 2000

