
Improving plan quality is SAT-based planning

Enrico Giunchiglia and Marco Maratea

DIST, University of Genova, Viale F. Causa 15, Genova, Italy
{enrico,marco }@dist.unige.it

Abstract. Planning as Satisfiability (SAT) is the best approach for optimally (wrt
makespan) solving classical planning problems. SAT-based planners, like SAT-
PLAN, can thus return plans having minimal makespan guaranteed. However, the
returned plan does not take into account plan quality issues introduced in the
last two International Planning Competitions (IPCs): such issues include minimal-
actions plans and plans with “soft” goals, where a metric has to be optimized over
actions/goals. Recently, an approach to address such issues has beenpresented,
in the framework of planning as satisfiability with preferences: by modifying the
heuristic of the underlying SAT solver, the related system (calledSATPLAN(P))
is guaranteed to return plans with minimal number of actions, or with maximal
number of soft goals satisfied. But, besides such feature, it is well-known that
introducing ordering in SAT heuristics can lead to significant degradation inper-
formances. In this paper, we present a generate-and-test approach to tackle the
problem of dealing with such optimization issues: without imposing any ordering,
a (candidate optimal) plan is first generated, and then a constraint is added impos-
ing that the new plan (if any) has to be “better” than the last computed, i.e.,the
plan quality is increased at each iteration. We implemented this idea inSATPLAN,
and compared the resulting systems wrtSATPLAN(P) and SGPLAN on planning
problems coming from IPCs. The analysis shows performance benefits for the new
approach, in particular on planning problems with many preferences.

1 Introduction

Planning as Satisfiability (SAT) [1] is the best approach foroptimally (wrt makespan)
solving classical planning problems. The SAT-based planner SATPLAN [2] has been the
winner in the deterministic track for optimal planners in the 4th International Planning
Competition (IPC-4) [3] and co-winner in the IPC-5 [4] (together with another SAT-
based planner, MAX PLAN [5]). SAT-based planners inherit from the approach the prop-
erty that the returned plan has minimal makespan guaranteed. However, the returned
plan does not take into account plan quality issues introduced in the last two Inter-
national Planning Competitions (IPCs): such issues include minimal-actions plans and
plans with “soft” goals, where a metric has to be optimized over actions/goals. Recently,
an approach to tackle this problem has been presented, in theframework of planning as
satisfiability with preferences [6, 7]: given a (minimal) makespan, by imposing that the
heuristic of the underlying SAT solver first select literalswhich correspond to “not to
perform” actions, or “to satisfy” soft goals, the related system, calledSATPLAN(P), is
guaranteed to return plans with minimal number of actions, or with the maximal num-
ber of soft goals satisfied. But, besides such feature, and the fact that the first computed

plan is guaranteed to be “optimal”, it is well-known that introducing ordering in SAT
heuristics can lead, at least theoretically, to significantdegradation in performances [8]:
in SATPLAN(P), this phenomenon also happened experimentally on largeplanning prob-
lems with many actions.

In this paper, we present a different, generate-and-test, approach to tackle the prob-
lem of dealing with such optimization issues: without imposing any ordering, a (candi-
date optimal) plan is first generated, and then a constraint is added imposing that the new
plan (if any) has to be “better” than the last computed, extending what has been done in
different contexts in both CSP and SAT, e.g., [9–11], and also in OR, via “cuts”. Thus,
the plan quality is increased at each iteration of the algorithm. We implemented this idea
in SATPLAN, and calledSATPLAN-GNT the resulting system. We comparedSATPLAN-
GNT wrt SATPLAN(P) on both classical planning problems coming from IPCs, and on
planning problems coming from the “SimplePreferences” track of the IPC-5, having all
goals as “soft”. The results of our analysis reveal that:(i) on planning problems with
many preferences,SATPLAN-GNT performs better thanSATPLAN(P); (ii) on planning
problems with (relatively) few preferences,SATPLAN-GNT and SATPLAN(P) perform
similarly; and(iii) SATPLAN(P) andSATPLAN-GNT are both overall competitive to SG-
PLAN on planning problems coming from the “SimplePreferences” track of the IPC-5,
where SGPLAN was the clear winner.

2 Preliminaries

LetF andA be the set offluentsandactions, respectively. Astateis an interpretation of
the fluent signature. Acomplex actionα is an interpretation of the action signature, and,
intuitively, models the concurrent execution of the actions satisfied byα. A planning
problemis a triple〈I, tr,G〉 where

– I is a Boolean formula overF and represents the set ofinitial states;
– tr is a Boolean formula overF ∪A∪F ′ whereF ′ = {f ′ : f ∈ F} is a copy of the

fluent signature and represents thetransition relationof the automaton describing
how (complex) actions affect states (we assumeF ∩ F ′ = ∅);

– G is a Boolean formula overF and represents the set ofgoal states.

The above definition of planning problem differs from the traditional ones in which the
description of actions’ effects on a state is described in anhigh-level action language
like STRIPS or PDDL. We used this formulation because the techniques we are going to
describe are largely independent of the action language used, at least from a theoretical
point of view. The only assumption that we make is that the description is deterministic:
there is only one state satisfyingI and for each states and complex actionα there is at
most one interpretation extendings ∪ α and satisfyingtr. Consider a planning problem
Π = 〈I, tr,G〉. In the following, for any integeri

– if F is a formula in the fluent signature,Fi is obtained fromF by substituting each
f ∈ F with fi,

– tri is the formula obtained fromtr by substituting each symbolp ∈ F ∪ A with
pi−1 and eachf ∈ F ′ with fi.

If n is an integer, theplanning problemΠ with makespann is the Boolean formulaΠn

defined asI0 ∧ ∧n
i=1tri ∧ Gn, n ≥ 0, and aplan is an interpretation satisfying such

formula.1 For example, consider the planning problem of going to work from home for
an husband and a wife. Assume that they can use the car or the bus or the bike, but
one has to stay home with the child, this scenario can be formalized using two fluent
variablesAtWorkH and AtWorkW, and three action variablesCar, Bus and Bike. The
problem with makespan1 can be expressed by the conjunction (here indicated with “,”)
of the formulas:

¬AtWorkH0,¬AtWorkW0,

AtWorkH1 ≡ ¬AtWorkH0 ≡ (Car0 ∨ Bus0 ∨ Bike0),
AtWorkW1 ≡ ¬AtWorkW0 ≡ (Car0 ∨ Bus0 ∨ Bike0),

¬AtWorkH1 ∨ ¬AtWorkW1,

(1)

in which the first two formulas correspond to the initial state, the third and the fourth to
the transition relation, and the last indicates that exactly one goal can be reached, mim-
icking that goals are soft. The planning problem has many solutions, each corresponding
to a non-empty subset of{Car0,Bus0,Bike0} for each fluent. Among those plans, in a
minimal-actions plan a single action is performed. About the “soft” goals, the simple
characterization in (1) can be extended to include “preferences”, by means of weights
associated to the violation of the goals, or an ordering on them.

3 Optimal plans and qualitative preferences

In this section we formalize the definition of optimal plans in the framework of planning
as satisfiability with preferences, first presented in [6]. The focus of our presentation is
on thequalitativeapproach to the problem, and to preferences on literals. This is not a
limitation, given that in [6] it is showed how to deal with quantitative preferences (where
a preference in a pair〈P, c〉 whereP has the same meaning as before, andc is a function
that maps literals to positive integer) and to (qualitativeand quantitative) preferences on
formulas, by means of a reduction to our framework of qualitative preferences on literals.
Qualitative and quantitative approaches both received attention in planning, each having
its pros and cons, as commented in, e.g., Sec. 2.3 of [4].

Let Πn be a planning problemΠ with makespann. A qualitative preference (for
Πn) is a pair〈P,≺〉 whereP is a set of literals (the preferences, in our case they will be
built on action variables or soft goals) and≺ is a partial order onP . The partial order
can be extended to plans forΠn. Consider a qualitative preference〈P,≺〉. Let π1 and
π2 be two plans forΠn. π1 is preferred toπ2 (wrt 〈P,≺〉) iff (i) they satisfy different
sets of preferences, i.e.,{p : p ∈ P, π1 |= p} 6= {p : p ∈ P, π2 |= p}, and(ii) for each
preferencep2 satisfied byπ2 and not byπ1 there is another preferencep1 satisfied by
π1 and not byπ2 with p1 ≺ p2. The second condition says that ifπ1 does not satisfy a
preferencep2 which is satisfied byπ2, thenπ1 is preferred toπ2 only if there is a good
reason forπ1 6|= p2, i.e.,π1 satisfies a “more preferred” preference (not satisfied byπ2).
We writeπ1 ≺ π2 to mean thatπ1 is preferred toπ2. It is easy to see that≺ defines a
partial order on plans forΠn wrt 〈P,≺〉. A planπ is optimal for Πn (wrt 〈P,≺〉) if it
is a minimal element of the partial order on plans forΠn, i.e., if there is no planπ′ for

1 In the following, we continuously switch between plans and satisfying interpretations.

Πn with π′ ≺ π (wrt 〈P,≺〉). As an example, consider the planning problem in (1); if
we have the qualitative preference (in the following, we show only the action variables
assigned to true in the optimal plan):

a. 〈{¬Bike0,¬Bus0,¬Car0}, ∅〉, i.e., the situation in which we prefer not to perform
actions, and the preferences are equally important (≺= ∅), there are three optimal,
i.e., minimal-actions, plans, corresponding to{Bike0}, {Bus0}, {Car0}.

b. 〈{¬Bike0,¬Bus0,¬Car0}, {¬Bike0 ≺ ¬Car0}〉, i.e., the situation in which again
we prefer not to perform actions, and not to take the bike is preferred over not to
take the car, then there are two optimal plans, i.e.,{Bus0}, {Car0}.

c. 〈{AtWorkH,AtWorkW}, ∅〉, i.e., the situation in which we prefer to satisfy the (soft)
goals, and the goals are equally important (≺= ∅), there are14 optimal plans, each
corresponding to a non-empty subset of{Car0,Bus0,Bike0} for each soft goal.

d. 〈{AtWorkH,AtWorkW}, {AtWorkH≺ AtWorkW}〉, i.e., the situation in which again
we prefer to satisfy the soft goals, and satisfying the first is preferred to the second,
there are7 optimal plans, each corresponding to a non-empty subset of{Car0,Bus0,Bike0}
and with the fluentAtWorkHtrue.

4 Computing optimal plans via generate-and-test

We have already discussed in the introduction that the algorithm in [6, 7] has drawbacks
related to imposing an ordering on preferences to be followed while branching: from [8],
it is well-known that such ordering can significantly degrade the performances. Here we
present a different, generate-and-test, approach for solving the problem of generating
plans with minimal number of actions, or with maximal numberof soft goal satisfied:
given a (minimal) makespan, it first generates a (candidate optimal) plan, and then a
constraint is added imposing that the new plan (if any) has tobe “better” than the last
computed, extending what has been done in both CSP and SAT, e.g., in [9–11], and also
in OR, via “cuts”. Thus, crucial for the above procedure is a condition which enables us
to say which are the plans that are preferred (wrt〈P,≺〉) to a planπ: such a formula,
wherel is a literal, is

(∨l:l∈P,l 6∈πl) ∧ (∧l′:l′∈P,l′∈π(∨l:l∈P,l 6∈π,l≺l′ l ∨ l
′)). (2)

which codifies conditions(i) and(ii) in the previous section. A planπ′ is preferred toπ
wrt 〈P,≺〉 iff π′ satisfies (2), as stated by the following theorem.

Theorem 1. Let π and π′ be two plans. Let〈P,≺〉 be a qualitative preference.π′ is
preferred toπ wrt 〈P,≺〉 if and only ifπ′ satisfies the preference formula in (2).

Theorem 1 follows from (2) by construction. In Figure 1 we present the new solving
procedures, in which:

– in QL-PLAN-GNT-2: for eachp ∈ P , v(p) is a newly introduced variable;v(P) is
the set of new variables, i.e.,{v(p) : p ∈ P}; v(≺) =≺′ is the partial order onv(P)
defined byv(p) ≺′ v(p′) iff p ≺ p′; in QL-PLAN-GNT-1:P ′ = P and≺′=≺.

– π is anassignment(or, equivalently, a (candidate) plan forΠn), i.e., a consistent set
of literals. An assignmentπ corresponds to the partial interpretation mapping to true
the literalsl ∈ π.

– cnf(ϕ), whereϕ is a formula, is a set of clauses (i.e., set of sets of literals, with
⊤ denoting the empty set of clauses) such that:(i) for any interpretationπ in the
signature ofcnf(ϕ) such thatπ |= cnf(ϕ) it is true also thatπ′ |= ϕ, whereπ′ is
the interpretationπ restricted to the signature ofϕ; and(ii) for any interpretation
π′ |= ϕ there exists an interpretationπ, π ⊇ π′, such thatπ |= cnf(ϕ).
There are well known methods for computingcnf(ϕ) in linear time by introducing
additional variables, e.g., [12].

– l is a literal andl is the complement ofl;
– ϕl returns the set of clauses obtained fromϕ by (i) deleting the clausesC ∈ ϕ with
l ∈ C, and(ii) deletingl from the other clauses inϕ;

– Reasonreturns the set of clauses corresponding to (2);
– ChooseLiteralreturns anunassignedliteral l (i.e., such that{l, l} ∩ π = ∅) in ϕ.

〈P,≺〉 := a qualitative preference;ψ := ⊤; πopt := ∅

function QL-PLAN-GNT-1(Π,n)
1 return PREF-DLL (cnf(Πn),∅,P ,≺)

function QL-PLAN-GNT-2(Π,n)
2 return PREF-DLL (cnf(I0 ∧ ∧n

i=1tri ∧p∈P (v(p) ∨ p)),∅,v(P),v(≺))

function PREF-DLL (ϕ ∪ ψ,π,P ′,≺′)
3 if (∅ ∈ (ϕ ∪ ψ)π) return FALSE;
4 if (π is total)πopt := π; ψ := Reason(π, P ′,≺′); return FALSE;
5 if ({l} ∈ (ϕ ∪ ψ)π) return PREF-DLL(ϕ ∪ ψ, π ∪ {l});
6 l := ChooseLiteral(ϕ ∪ ψ, π);
7 return PREF-DLL(ϕ ∪ ψ, π ∪ {l}) or

PREF-DLL(ϕ ∪ ψ, π ∪ {l}).

Fig. 1. The algorithms ofSATPLAN-GNT.

Note that in the algorithm we have not specified〈P,≺〉 to be a preference on literals:
in fact, goals are usually formulas. Thus, when dealing withsoft goals (QL-PLAN-GNT-
2 algorithm), we add what are called “goal selectors”, i.e.,variables which are place-
holders for the goals: preferences are then expressed over such set of variables, and in
this way we are back to our setting of preferences on literals. Goal selectors have the
same meaning of clause selectors in Max-SAT. When preferences are expressed over
action variables (QL-PLAN-GNT-1 algorithm), adding such variables and modifying the
ordering is not needed.

Thus, given a planning problemΠ, a makespann, and a qualitative preference
〈P,≺〉, an optimal plan is computed by invokingPREF-DLL [11], a modified version
of standardDLL for computing “optimal” solutions, oncnf(), i.e., the set of clauses cor-
responding to the planning problemΠ with makespann, possibly with the modified
preferences. More in details,PREF-DLL is standardDLL except that when a new plan
π is found (at line 4), it is set to be the (actual) optimal planπopt (initially set to∅), a
set of clauses corresponding to (2) are assigned toψ, andFALSE is returned to continue
the search looking for “better” plans. WhenPREF-DLL terminates, the last plan found is
optimal (if one exists), i.e., no plan exists which is preferred to the actualπopt, as stated
by the following theorem.

Theorem 2. LetΠ be a planning problem,n the makespan, and〈P,≺〉 a qualitative
preference.QL-PLAN-GNT-1 and QL-PLAN-GNT-2 terminate, and thenπopt is empty
if Π does not have a plan of makespann, and an optimal plan wrt〈P,≺〉, otherwise.

Theorem 2 follows from the correctness ofPREF-DLL (Theorem 2 in [11]) and the
assumptions oncnf. Notice that each time a newπ′ is found at line 4 of Figure 1, which
is better than the actualπopt, ψ may be overwritten because we can discard the clauses
added because ofπ since they are entailed by the new clauses added because ofπ′, as
stated by the following theorem.

Theorem 3. Let 〈P,≺〉 be a qualitative preference. Letπ1, π2, . . . , πk be the sequence
of plans computed inQL-PLAN-GNT-1 or QL-PLAN-GNT-2 for a fixed makespan, and
ψ1, ψ2, . . . , ψk be the corresponding formulas computed as in (2). For eachi, 0 < i < k,
ψi+1 entailsψi.

As a consequence, inPREF-DLL , the formulaψ is overwritten as soon as a new model
π is found (line 4).QL-PLAN-GNT-1 andQL-PLAN-GNT-2 are thus guaranteed to work
in polynomial space in the size of the input planning problem, makespan and preference.
Coming back to our original problems, if we want to compute plans with minimal num-
ber of actions, assumingact(Πn) is the set of variables inΠn corresponding to action
variables, it is enough to setP := {a|a ∈ act(Πn)} and≺ := ∅, and calling theQL-
PLAN-GNT-1 algorithm to obtain the expected result (in the qualitative case). If we are
interested in computing plans with the maximal number of soft goals satisfied, givenSG
to be the set of soft goals of the problem, it is enough to setP := {v(p)|p ∈ SG} and≺
:= ∅, and calling theQL-PLAN-GNT-2 algorithm to obtain the expected result.

As an example of the behavior of theQL-PLAN-GNT-1 algorithm in Figure 1, con-
sider the planning problem (1) (which thus corresponds toΠn) and the preferencea.
at the end of the previous section, the search for a minimal-actions plan may proceed
(depending onChooseLiteral) as follows:

1. π1={Car0,Bike0,Bus0}, thenψ1 : Car0 ∨ Bike0 ∨ Bus0, i.e., at least one action has
to be assigned as inP . Assume the next plan is

2. π2={Bike0,Bus0}, thenψ2 : (Bike0 ∨ Bus0) ∧ Car0, which asks that at least one
amongBike0 andBus0 has to be assigned as inP , whileCar0 has to remain assigned
as inP ; assume now the next computed plan is

3. π3={Bike0}, thenψ3 : Bike0 ∧Car0 ∧Bus0, which would be satisfied only by a plan
where all actions are not performed: given this plan does notsatisfy (the constraints
related to the transition relation of) (1),π3 is optimal. InPREF-DLL , this is achieved
by means of no other plan is computed at line 4 of Figure 1, and the procedure
eventually exits at line 3 withπ3 asπopt.

5 Implementation and experimental evaluation
As we already said in the introduction, we usedSATPLAN (ver. of Feb. 2006) as under-
lying planning system.SATPLAN is the reference SAT-based system.SATPLAN can only
handle STRIPS domains. We extendedSATPLAN in order to incorporate such ideas (i.e.,
to implementQL-PLAN-GNT-1/QL-PLAN-GNT-2 at each makespan of theSATPLAN’s
approach), and we calledSATPLAN-GNT the overall system: it implementsPREF-DLL in

SATPLAN(P)(W) SATPLAN-GNT(W) SATPLAN(P)() SATPLAN-GNT()

pipesworld-notankage 85.57(9) 110.37(9) 40.92(11) 100.21(13)
pipesworld-tankage 193.86(6) 217.72(7) 32.59(7) 97.96(8)

satellite 12.6(2) 7.34(2) 3.34(4) 226.04(4)
promela-optical 58.96(11) 108.2(13) 123.38(9) 18.59(13)

psr-small 34.82(47) 32.08(48) 11.85(44) 15(48)
depots 76.02(5) 43.84(5) 194.24(5) 123.08(9)

zenoTravel 10.44(8) 10.79(8) 64.41(9) 40.76(11)
freeCell 10.8(2) 8.91(2) 89.81(4) 15.19(3)
logistics 97.92(10) 5.77(13) 2.4(22) 78.37(25)
mprime 60.17(19) 60.24(19) 27.59(14) 12.58(19)
mystery 24.47(13) 28.29(15) 32.36(13) 11.69(15)

openstacks − − 717.31(4) −
pathways 22.89(5) 13.96(5) 63.78(7) 5.79(7)
storage 16.67(9) 7.83(9) 42.1(12) 24.24(11)

TPP 0.08(5) 151.17(7) 0.14(8) 123.59(19)
elevator 18.99(15) 1.75(15) 54.08(30) 0.63(15)
rovers 83.41(6) 22.9(6) 79.31(8) 110.38(16)

Table 1.Results on domains coming from IPCs.x(y) stands fory instances solved withx secs of
mean CPU time.

MINISAT which is also one of the solversSATPLAN can use, and that we set as default
for SATPLAN.2

Experiments for minimal-actions plans.We considered several STRIPS domains from
the first five IPCs (the recent IPC-6 does not have basic STRIPSproblems). GivenP :=
{a|a ∈ act(Πn)} defined above, we considered both the qualitative preference 〈P, ∅〉
and the quantitative preference〈P, c〉 in which c is the constant function 1, i.e, the set-
ting where an uniform cost is associated to “not to perform” each action: the related
objective function is thus the minimization of the number ofactions involved in the
plan. We used Warners encoding [13] (denoted with “W”) to reduce to qualitative pref-
erences (with a non-empty partial order): it showed the bestperformances on planning
problems in [6, 7], and it is thus the same used inSATPLAN(P). In Table 1 there are the
results of our analysis. The first column is the domain of problem, thenSATPLAN(P)(W)
andSATPLAN-GNT(W) (resp.SATPLAN(P)() andSATPLAN-GNT()) denote the systems
working on the quantitative (resp. qualitative) case. Results are presented as in the Max-
SAT Evaluations3 by x(y), wherey is the number of solved instances within the time
limit (900s on a Linux box equipped with a Pentium IV 3.2GHz processor and 1GB of
RAM), andx is the mean solving time of solved instances (used to break ties). “−” means
that no instance is solved within the time limit. The4 systems solve the same (sub)set
of instances in all domains, but for satellite and storage inthe qualitative case. We can
note that in the quantitative caseSATPLAN-GNT(W) has an edge overSATPLAN(P)(W):
it often solves more instances, and never less, while in the qualitative case results are
mixed. In general,SATPLAN-GNT convergence to the optimal solution is effective, and

2 SATPLAN’s default solver isSIEGE: we run SATPLAN with SIEGE and MINISAT and we have
seen no significant differences in performances in terms of both CPU time and plans quality.

3 Seehttp://www.maxsat07.udl.es/ for the last.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14

P
la

n
m

et
ric

#problem

Pathways-SimplePreferences

SATPLAN(P)
SGPLAN

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14

C
P

U
 ti

m
e

#problem

Pathways-SimplePreferences

SATPLAN(P)
SATPLAN-GNT

SGPLAN

Fig. 2. Pathways domain, “SimplePreferences” track of IPC-5. Left: Plan metric, i.e., number of
unsatisfied soft goals, forSATPLAN(P)(W) (and thusSATPLAN-GNT(W)) and SGPLAN . Right:
CPU time forSATPLAN(P)(W), SATPLAN-GNT(W) and SGPLAN (in log scale).

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7

P
la

n
m

et
ric

#problem

Storage-SimplePreferences

SATPLAN(P)
SGPLAN

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7

C
P

U
 ti

m
e

#problem

Storage-SimplePreferences

SATPLAN(P)
SATPLAN-GNT

SGPLAN

Fig. 3. Storage domain, “SimplePreferences” track of IPC-5. Left: Plan metric, i.e., number of
unsatisfied soft goals, forSATPLAN(P)(W) (and thusSATPLAN-GNT(W)) and SGPLAN . Right:
CPU time forSATPLAN(P)(W), SATPLAN-GNT(W) and SGPLAN (in log scale).

only few interactions are needed: we performed a detailed analysis on selected bench-
marks, and we noted that, in mean, only 2.5 iterations were needed, and the quality of the
first solution was already very good. In the qualitative case, on same domains, splitting
preferentially on action variables, without the burden introduced by the W-encoding, can
efficiently lead to the optimal solution. Finally, note thatoften the differences in perfor-
mances are in the order of one/few instances, or just in term of mean CPU time: this is in
line with state-of-the-art results, given that often in optimization problems solving even
one more, or just in a faster way, the available benchmarks can be a significant result
(e.g., in the Max-SAT Evaluations, where often the domain winner is granted by only the
mean CPU time).

Experiments with soft goals.We considered two type of problems. First, we evaluated
SATPLAN-GNT on some of the instances from [6, 7]. Such instances were created from
the original STRIPS instances of the domain we mentioned above, but considering all
goals as being “soft” (but with the constraint that at least one has to be satisfied, other-

wise the empty plan is always a solution). We do not show results for this analysis, but
we just summarize it. The vast majority of these benchmarks were already solved very
efficiently by SATPLAN(P). We considered10 problems (each from a different domain)
whereSATPLAN(P) took considerable time to solve, in the quantitative case: on such
problems,SATPLAN-GNT took in mean around half a time wrtSATPLAN(P) to solve
them. But, besides the fact that in the instances so far mentioned goals are precisely
soft, i.e., they can be satisfied, or not, without affecting plan validity, such instances are
not fully satisfactory because they are non-conflicting, i.e., all soft goals can be satisfied
at the same time. For this reason, given that the case in whichnot all the goals can be
satisfied (often called over-subscription planning) is practically very important, we also
evaluated some domains from the “SimplePreferences” trackof the IPC-5, which in-
clude the possibility to express and reason on conflicting soft goals. Given that such do-
mains are non-STRIPS, and some ADL constructs are used, we have used the following
compilation technique: the preferences (goals) in the IPC-5 problems are translated into
preconditions of dummy actions, which achieve new dummy literals defining the new
problem goals. Then, these new actions can be compiled into STRIPS actions by using
an existing tool (we have used both Hoffmann’s tool for compiling ADL actions into
STRIPS actions, namelyADL 2STRIPS, and a modification of the same tool used in IPC-
5, based on LPG). In our analysis we have included the domainswhere all goals are soft
(but conflicting in general, changing all weights associated to goals violation to be1), and
preferences are only expressed on goals, i.e., the Storage and Pathways domains. Results
are presented as in the reports of the IPC-5, considering, for each domain, both plan met-
ric and CPU time to find the plan. In the analysis, we considered SATPLAN(P)(W) and
SATPLAN-GNT(W) (given the metric is defined quantitatively in IPC-5 on soft goals) and,
as a reference, SGPLAN , the clear winner of the “SimplePreferences” track at IPC-5. For
the Pathways domain in Figure 2 we can note (Figure2 Right) that SATPLAN(P)(W) and
SATPLAN-GNT(W) perform similarly (withSATPLAN(P)(W) being slightly better) and
better than SGPLAN for non-easy (i.e., from problem #6, as numbered in the IPC-5)
problems, but for two problems (#13 and #15) only solved by SGPLAN within the time
limit. About the plan metric (Figure 2 Left), we can see that SGPLAN , overall, returns
plans of slightly better quality, i.e., it can satisfy more soft goals. For the Storage domain,
instead, in Figure 3 (Right) we can note that all systems solve all instances considered4,
with SGPLAN being around one order of magnitude faster than the other systems, which
nonetheless solve each problem in less than 20s, withSATPLAN-GNT(W) being faster of
around a factor of2. This fact is in line with all our results, given that this domain in-
cludes a high number of preferences on the biggest instanceswe considered. The reason
for the performance gap wrt SGPLAN can be explained by looking at Figure 3 (Left):
SATPLAN(P)(W) andSATPLAN-GNT(W) return plans of much better quality than SG-
PLAN . The tradeoff between CPU performances and plan quality ofSATPLAN-GNT (and
SATPLAN(P)) is effective, at least on this domain.

6 Conclusions and future works
In this paper we have presented a generate-and-test approach for finding optimal plans
which, differently to a previous SAT-based approach(i) does not constrain the heuristic,

4 We have considered all instances that the tools could compile. We are contacting the authors to
be able to possibly compile bigger instances.

(ii) works in polynomial space, and(iii) shows performance benefits. The most related
approach is the one in [14] where the authors show how to extend GP-CSP in order to
planning with preferences expressed as a TCP-net [15]. In the Boolean case, TCP-net
can be expressed as Boolean formulas, and the problem they consider is the same we
deal with. In the future we plan to both relax the computationof a makespan-optimal
plan in order to find even better solutions, like, e.g., [16, 17], and to address non-uniform
action costs (e.g., [18]), by also dealing with the “:action-costs” requirement introduced
in IPC-6. The planning problems used in this paper and the related system can be found
athttp://www.star.dist.unige.it/ ˜ marco/SATPLAN-GNT/.

References

1. Kautz, H., Selman, B.: Planning as satisfiability. In Neumann, B., ed.: Proc. of ECAI-92.
(1992) 359–363

2. Kautz, H., Selman, B.: Unifying SAT-based and graph-based planning. In Dean, T., ed.: Proc.
of IJCAI-99, Morgan-Kaufmann (1999) 318–325

3. Hoffmann, J., Edelkamp, S.: The deterministic part of IPC-4: An overview. Journal of Artifi-
cial Intelligence Research24 (2005) 519–579

4. Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in the
5th IPC: PDDL3 and experimental evaluation of the planners. Artificial Intelligence173(5-6)
(2009) 619–668

5. Xing, Z., Chen, Y., Zhang, W.: Maxplan: Optimal planning by decomposed satisfiability and
backward reduction. In: Proc. of 5th IPC, ICAPS-06. (2006) 53–55

6. Giunchiglia, E., Maratea, M.: Planning as satisfiability with preferences. In: Proc. of AAAI-
07, AAAI Press (2007) 987–992

7. Giunchiglia, E., Maratea, M.: SAT-based planning with minimal-#actionsplans and ”soft”
goals. In: Proc. of AI*IA-07. (2007) 422–433

8. J̈arvisalo, M., Junttila, T.A., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for
boolean circuits. Annals of Mathematics and Artificial Intelligence44(4) (2005) 373–399

9. Castell, T., Cayrol, C., Cayrol, M., Berre, D.L.: Using the Davis and Putnam procedure for an
efficient computation of preferred models. In: Proc. of ECAI-96. (1996) 350–354

10. Gavanelli, M.: An algorithm for multi-criteria optimization in CSPs. In: Proc. of ECAI-02,
IOS Press (2002) 136–140

11. DiRosa, E., Giunchiglia, E., Maratea, M.: A new approach for solving satisfiability problems
with qualitative preferences. In: Proc. of ECAI-08, IOS Press (2008) 510–514

12. Tseitin, G.: On the complexity of proofs in propositional logics. Seminars in Mathematics8
(1970)

13. Warners, J.P.: A linear-time transformation of linear inequalities into CNF. Information
Processing Letters68(2) (1998) 63–69

14. Brafman, R.I., Chernyavsky, Y.: Planning with goal preferences and constraints. In: Proc. of
ICAPS-05, AAAI Press (2005) 182–191

15. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole,D.: CP-nets: A tool for rep-
resenting and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research21 (2004) 135–191

16. Büttner, M., Rintanen, J.: Satisfiability planning with constraints on the numberof actions.
In: Proc. of ICAPS-05, AAAI Press (2005) 292–299

17. Chen, Y., Lv, Q., Huang, R.: Plan-A: A cost-optimal planner based on SAT-constrained opti-
mization. In: Proc. of 6th IPC, ICAPS-08. (2008)

18. Keyder, E., Geffner, H.: Heuristics for planning with action costs revisited. In: Proc. of
ECAI-08, IOS Press (2008) 588–592

