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Abstract. Planning as Satisfiability (SAT) is the best approach for optimally (wrt
makespan) solving classical planning problems. SAT-based planikerssAT-
PLAN, can thus return plans having minimal makespan guaranteed. Howlewer
returned plan does not take into account plan quality issues introducee in th
last two International Planning Competitions (IPCs): such issues inclienai-
actions plans and plans with “soft” goals, where a metric has to be optimizzd o
actions/goals. Recently, an approach to address such issues hgsrésamed,

in the framework of planning as satisfiability with preferences: by modifyire
heuristic of the underlying SAT solver, the related system (cadletPLAN(P))

is guaranteed to return plans with minimal number of actions, or with maximal
number of soft goals satisfied. But, besides such feature, it is wellskribat
introducing ordering in SAT heuristics can lead to significant degradatigefin
formances. In this paper, we present a generate-and-test appimaackle the
problem of dealing with such optimization issues: without imposing any rgler

a (candidate optimal) plan is first generated, and then a constraint id exples-

ing that the new plan (if any) has to be “better” than the last computedthee.,
plan quality is increased at each iteration. We implemented this idearipLAN,

and compared the resulting systems s#trPLAN(P) and SGPAN on planning
problems coming from IPCs. The analysis shows performance kefeefthe new
approach, in particular on planning problems with many preferences.

1 Introduction

Planning as Satisfiability (SAT) [1] is the best approachdptimally (wrt makespan)
solving classical planning problems. The SAT-based plasagPLAN [2] has been the
winner in the deterministic track for optimal planners ie #th International Planning
Competition (IPC-4) [3] and co-winner in the IPC-5 [4] (tdker with another SAT-
based planner, kX PLAN [5]). SAT-based planners inherit from the approach the prop
erty that the returned plan has minimal makespan guarantéadever, the returned
plan does not take into account plan quality issues intredun the last two Inter-
national Planning Competitions (IPCs): such issues irelmihimal-actions plans and
plans with “soft” goals, where a metric has to be optimizedractions/goals. Recently,
an approach to tackle this problem has been presented, frathework of planning as
satisfiability with preferences [6, 7]: given a (minimal) keapan, by imposing that the
heuristic of the underlying SAT solver first select literatiich correspond to “not to
perform” actions, or “to satisfy” soft goals, the relatedst®m, calledsATPLAN(P), is
guaranteed to return plans with minimal number of actionsyith the maximal num-
ber of soft goals satisfied. But, besides such feature, anthth that the first computed



plan is guaranteed to be “optimal’”, it is well-known thatroducing ordering in SAT
heuristics can lead, at least theoretically, to significlegradation in performances [8]:
in SATPLAN(P), this phenomenon also happened experimentally on jdageing prob-
lems with many actions.

In this paper, we present a different, generate-and-tpptpach to tackle the prob-
lem of dealing with such optimization issues: without imipgsany ordering, a (candi-
date optimal) plan is first generated, and then a constsaadded imposing that the new
plan (if any) has to be “better” than the last computed, editggnwhat has been done in
different contexts in both CSP and SAT, e.g., [9-11], and &OR, via “cuts”. Thus,
the plan quality is increased at each iteration of the allgori We implemented this idea
in SATPLAN, and calledSATPLAN-GNT the resulting system. We comparsgdTPLAN-
GNT wrt SATPLAN(P) on both classical planning problems coming from IPCs, @m
planning problems coming from the “SimplePreferencestkraf the IPC-5, having all
goals as “soft”. The results of our analysis reveal tligt:on planning problems with
many preferenceSATPLAN-GNT performs better thasATPLAN(P); (i7) on planning
problems with (relatively) few preferenceSATPLAN-GNT and SATPLAN(P) perform
similarly; and(iii) SATPLAN(P) andSATPLAN-GNT are both overall competitive to SG-
PLAN on planning problems coming from the “SimplePreferencestk of the IPC-5,
where SGRAN was the clear winner.

2 Preliminaries

Let 7 and.A be the set ofluentsandactions respectively. Astateis an interpretation of
the fluent signature. Bomplex actiorx is an interpretation of the action signature, and,
intuitively, models the concurrent execution of the acigatisfied byx. A planning
problemis a triple(, tr, G) where

— I is a Boolean formula oveF and represents the setioftial states

— tris a Boolean formula oveF U AU F’ whereF' = {f’ : f € F}is a copy of the
fluent signature and represents thensition relationof the automaton describing
how (complex) actions affect states (we assufite 7/ = 0);

— (G is a Boolean formula oveF and represents the setgdal states

The above definition of planning problem differs from thedit@mnal ones in which the
description of actions’ effects on a state is described itnigh-level action language
like STRIPS or PDDL. We used this formulation because thertiegies we are going to
describe are largely independent of the action language aséeast from a theoretical
point of view. The only assumption that we make is that thedeson is deterministic:
there is only one state satisfyidgand for each state and complex actiom there is at
most one interpretation extending) o and satisfyingr. Consider a planning problem
II = (I, tr,G). In the following, for any integei

— if F'is a formula in the fluent signaturé; is obtained fromF' by substituting each
f € Fwith f;,

— try is the formula obtained frony by substituting each symbel € F U A with
pi—1 and eachf € F’' with f;.



If n is an integer, th@lanning problenil with makespam is the Boolean formuldl,,
defined asly A Al tr; A Gy,n > 0, and aplanis an interpretation satisfying such
formulal For example, consider the planning problem of going to weooknfhome for
an husband and a wife. Assume that they can use the car or sherlihe bike, but
one has to stay home with the child, this scenario can be i@etausing two fluent
variablesAtWorkH and AtWorkW and three action variableSar, Bus and Bike The
problem with makespah can be expressed by the conjunction (here indicated wih “,"
of the formulas:

—-AtWorkH,, -AtWork W,
AtWorkH, = -AtWorkH, = (Car, V Bus V Bikey), (1)
AtWorkW = —-AtWorkW = (Car, VvV Bug V Bike),

—-AtWorkH, v —AtWorkW,

in which the first two formulas correspond to the initial stahe third and the fourth to
the transition relation, and the last indicates that eyamtle goal can be reached, mim-
icking that goals are soft. The planning problem has manytiewis, each corresponding
to a non-empty subset d¢iCary, Bug), Bikey} for each fluent. Among those plans, in a
minimal-actions plan a single action is performed. Abowt thoft” goals, the simple
characterization in (1) can be extended to include “prefegs”, by means of weights
associated to the violation of the goals, or an ordering emth

3 Optimal plans and qualitative preferences

In this section we formalize the definition of optimal planghe framework of planning
as satisfiability with preferences, first presented in [6]e Tocus of our presentation is
on thequalitativeapproach to the problem, and to preferences on literals. iShiot a
limitation, given that in [6] it is showed how to deal with qutdative preferences (where
a preference in a pa{, c) whereP has the same meaning as before, arga function
that maps literals to positive integer) and to (qualitativel quantitative) preferences on
formulas, by means of a reduction to our framework of quiiggpreferences on literals.
Qualitative and quantitative approaches both receiveshtin in planning, each having
its pros and cons, as commented in, e.g., Sec. 2.3 of [4].

Let I1,, be a planning probleni/ with makespam. A qualitative preference (for
I1,,)is a pair( P, <) whereP is a set of literals (the preferences, in our case they will be
built on action variables or soft goals) ardis a partial order orP. The partial order
can be extended to plans féF,,. Consider a qualitative preferen¢®, <). Let 7, and
7o be two plans forll,,. 71 is preferred tary (wrt (P, <)) iff (i) they satisfy different
sets of preferences, i.dp:p € P,m = p} # {p:p € P,m E p}, and(iz) for each
preferencen, satisfied byrs and not byr; there is another preferenge satisfied by
m, and not byrs with p; < po. The second condition says thatif does not satisfy a
preferencep, which is satisfied byrs, thens is preferred tary only if there is a good
reason forr; j~= po, i.e.,m; satisfies a “more preferred” preference (not satisfied4)y
We write r; < w5 to mean thatr, is preferred tar,. It is easy to see that defines a
partial order on plans fofl,, wrt (P, <). A plan is optimalfor I7T,, (wrt (P, <)) if it
is a minimal element of the partial order on plans féy, i.e., if there is no plam’ for

1 In the following, we continuously switch between plans and satisfying ireéafions.



I, with # < 7 (wrt (P, <)). As an example, consider the planning problem in (1); if
we have the qualitative preference (in the following, wevelomly the action variables
assigned to true in the optimal plan):

a. ({—Bikey, -Bus), ~Cary}, ), i.e., the situation in which we prefer not to perform
actions, and the preferences are equally importast ()), there are three optimal,
i.e., minimal-actions, plans, corresponding{®8ike, }, {Bus }, {Cary}.

b. ({-Bikey, -Bus), —Cary}, {—Bikey < —Cary}), i.e., the situation in which again
we prefer not to perform actions, and not to take the bike éfgpred over not to
take the car, then there are two optimal plans, {Bug}, {Caro}.

c. ({AtWorkH AtWorkW,, (), i.e., the situation in which we prefer to satisfy the (soft)
goals, and the goals are equally importart( ), there arel4 optimal plans, each
corresponding to a non-empty subsef 6fary, Bus), Bike, } for each soft goal.

d. ({AtWorkH AtWorkW, { AtWorkH < AtWorkW ), i.e., the situation in which again
we prefer to satisfy the soft goals, and satisfying the fagtreferred to the second,
there arer optimal plans, each corresponding to a non-empty sub§&anf,, Bus), Bikey }
and with the fluenAtWorkHtrue.

4 Computing optimal plans via generate-and-test

We have already discussed in the introduction that the igorin [6, 7] has drawbacks
related to imposing an ordering on preferences to be foliowleile branching: from [8],
it is well-known that such ordering can significantly degralde performances. Here we
present a different, generate-and-test, approach foingpthe problem of generating
plans with minimal number of actions, or with maximal humbéisoft goal satisfied:
given a (minimal) makespan, it first generates a (candidatiEnal) plan, and then a
constraint is added imposing that the new plan (if any) hasettbetter” than the last
computed, extending what has been done in both CSP and SATing9-11], and also
in OR, via “cuts”. Thus, crucial for the above procedure i®adition which enables us
to say which are the plans that are preferred ((##t<)) to a planw: such a formula,
wherel is a literal, is

(Vizerignl) A (Avveprer(Viiepigr i<l VI')). (2

which codifies conditiong:) and(i¢) in the previous section. A plaxt is preferred tar
wrt (P, <) iff ©’ satisfies (2), as stated by the following theorem.

Theorem 1. Let 7 and «’ be two plans. LetP, <) be a qualitative preferencer’ is
preferred tor wrt (P, <) if and only if 7’ satisfies the preference formula in (2).

Theorem 1 follows from (2) by construction. In Figure 1 we gamet the new solving
procedures, in which:

— in QL-PLAN-GNT-2: for eachp € P, v(p) is a newly introduced variablej( P) is
the set of new variables, i.€y(p) : p € P}; v(<) =<’ s the partial order on(P)
defined byv(p) <" v(p’) iff p < p’; iN QL-PLAN-GNT-1: P’ = P and<'=<.

— m is anassignmentor, equivalently, a (candidate) plan fff, ), i.e., a consistent set
of literals. An assignment corresponds to the partial interpretation mapping to true
the literals! € .



— cnflp), wherey is a formula, is a set of clauses (i.e., set of sets of literaith
T denoting the empty set of clauses) such tiigtfor any interpretationr in the
signature ofenf(y) such thatr = cnf(y) it is true also thatr’ = ¢, wherern' is
the interpretationr restricted to the signature af; and (i¢) for any interpretation
7' |E o there exists an interpretation = 2 7/, such thatr = cnf(y).

There are well known methods for computiogf(y) in linear time by introducing
additional variables, e.g., [12].

— lis a literal and is the complement of

— ¢ returns the set of clauses obtained frprhy (i) deleting the clauseS € ¢ with
I € C, and(ii) deletingl from the other clauses ip;

— Reasoneturns the set of clauses corresponding to (2);

— ChooselLiteraleturns arunassignetiteral [ (i.e., such tha{l, 1} N7 = 0) in .

(P, <) := a qualitative preference) := T; Topt := 0

function QL-PLAN-GNT-1(11,n)
1 return PREFDLL(cnf(I1,,),0,P,<)

function QL-PLAN-GNT-2(11,n)
2 return PREFDLL(cnf(Io A AP_itr; Apepr (v(p) V p)),0,0(P),0(<))

function PREFDLL (o U 1,m,P’,<")
3if (0 € (p U),) return FALSE;
4 if (m is total) mopt := 7; ¢ := Reasofir, P, <); return FALSE;
5if ({I} € (p U)x) return PREFDLL (¢ U, U {I});
6 [ := Chooseliterdlp U v, );
7 return  PREFDLL(p U4, w U {i}) or
PREFDLL (¢ U ¢, m U {I}).

Fig. 1. The algorithms oBEATPLAN-GNT.

Note that in the algorithm we have not specifigt) <) to be a preference on literals:
in fact, goals are usually formulas. Thus, when dealing witft goals QL-PLAN-GNT-

2 algorithm), we add what are called “goal selectors”, varjables which are place-
holders for the goals: preferences are then expressed oeerset of variables, and in
this way we are back to our setting of preferences on litefatml selectors have the
same meaning of clause selectors in Max-SAT. When prefeseaiee expressed over
action variables@L-PLAN-GNT-1 algorithm), adding such variables and modifying the
ordering is not needed.

Thus, given a planning problerfY, a makespam, and a qualitative preference
(P, <), an optimal plan is computed by invokimeRerDLL [11], a modified version
of standarcdLL for computing “optimal” solutions, oknf(), i.e., the set of clauses cor-
responding to the planning problef with makespam, possibly with the modified
preferences. More in detailBREFDLL is standardLL except that when a new plan
= is found (at line 4), it is set to be the (actual) optimal pfagpt (initially set to 0), a
set of clauses corresponding to (2) are assigned BndFALSE is returned to continue
the search looking for “better” plans. WherREFDLL terminates, the last plan found is
optimal (if one exists), i.e., no plan exists which is predefrto the actuatopt, as stated
by the following theorem.



Theorem 2. Let I be a planning problemy the makespan, an@P, <) a qualitative
preferenceQL-PLAN-GNT-1 and QL-PLAN-GNT-2 terminate, and themopt is empty
if IT does not have a plan of makesparand an optimal plan wr{ P, <), otherwise.

Theorem 2 follows from the correctnessrEEFDLL (Theorem 2 in [11]) and the
assumptions oanf. Notice that each time a nex' is found at line 4 of Figure 1, which
is better than the actuabpt, v may be overwritten because we can discard the clauses
added because af since they are entailed by the new clauses added becausgasf
stated by the following theorem.

Theorem 3. Let (P, <) be a qualitative preference. Let, 7o, ..., 7 be the sequence
of plans computed i@L-PLAN-GNT-1 or QL-PLAN-GNT-2 for a fixed makespan, and
1,1, ..., Yy be the corresponding formulas computed as in (2). For éaeh< i < k,

;11 entailsy;.

As a consequence, PREFDLL, the formulay is overwritten as soon as a new model
m is found (line 4).QL-PLAN-GNT-1 andQL-PLAN-GNT-2 are thus guaranteed to work
in polynomial space in the size of the input planning prohlerakespan and preference.
Coming back to our original problems, if we want to computnglwith minimal num-
ber of actions, assuming:t(II,,) is the set of variables ifl,, corresponding to action
variables, it is enough to sét := {ala € act(Il,)} and< := }, and calling theqL-
PLAN-GNT-1 algorithm to obtain the expected result (in the qualieatase). If we are
interested in computing plans with the maximal number of goéls satisfied, giveBG
to be the set of soft goals of the problem, it is enough taFset {v(p)|p € SG} and<
:=(, and calling thepL-PLAN-GNT-2 algorithm to obtain the expected result.

As an example of the behavior of tige -PLAN-GNT-1 algorithm in Figure 1, con-
sider the planning problem (1) (which thus correspond#/t9 and the preference.
at the end of the previous section, the search for a minimiédizs plan may proceed
(depending orChooselLiterdl as follows:

1. m={Cary, Bikey, Bus)}, thenw; : Car, v Bike, V Bug, i.e., at least one action has
to be assigned as iR. Assume the next plan is

2. m={Bikey, Bug}, thenv» : (Bikg V Bug) A Cary, which asks that at least one
amongBike, andBus has to be assigned asit while Car, has to remain assigned
as inP; assume now the next computed plan is

3. m3={Bike}, theny; : Bikey A Cary A Bus), which would be satisfied only by a plan
where all actions are not performed: given this plan doesatisfy (the constraints
related to the transition relation of) ()3 is optimal. INnPREFDLL, this is achieved
by means of no other plan is computed at line 4 of Figure 1, &edptocedure
eventually exits at line 3 withr; asmopt.

5 Implementation and experimental evaluation

As we already said in the introduction, we usesrPLAN (ver. of Feb. 2006) as under-
lying planning systemsATPLAN is the reference SAT-based syst&nTPLAN can only
handle STRIPS domains. We extendad PLAN in order to incorporate such ideas (i.e.,
to implementQL-PLAN-GNT-1/QL-PLAN-GNT-2 at each makespan of tlsaTPLAN'S
approach), and we calle&shTPLAN-GNT the overall system: it implementREFDLL in



| [[sATPLAN(P)(W)[SATPLAN-GNT(W)[[SATPLAN(P) ()[SATPLAN-GNT()]

pipesworld-notankad 85.57(9) 110.37(9) 40.92(11) 100.21(13)
pipesworld-tankage 193.86(6) 217.72(7) 32.59(7) 97.96(8)
satellite 12.6(2) 7.34(2) 3.34(4) 226.04(4)
promela-optical 58.96(11) 108.2(13) 123.38(9) 18.59(13)
psr-small 34.82(47) 32.08(48) 11.85(44) 15(48)
depots 76.02(5) 43.84(5) 194.24(5) 123.08(9)
zenoTravel 10.44(8) 10.79(8) 64.41(9) 40.76(11)
freeCell 10.8(2) 8.91(2) 89.81(4) 15.19(3)
logistics 97.92(10) 5.77(13) 2.4(22) 78.37(25)
mprime 60.17(19) 60.24(19) 27.59(14) 12.58(19)
mystery 24.47(13) 28.29(15) 32.36(13) 11.69(15)
openstacks — — 717.31(4) —
pathways 22.89(5) 13.96(5) 63.78(7) 5.79(7)
storage 16.67(9) 7.83(9) 42.1(12) 24.24(11)
TPP 0.08(5) 151.17(7) 0.14(8) 123.59(19)
elevator 18.99(15) 1.75(15) 54.08(30) 0.63(15)
rovers 83.41(6) 22.9(6) 79.31(8) 110.38(16)

Table 1.Results on domains coming from IPGgy) stands fory instances solved with secs of
mean CPU time.

MINISAT which is also one of the solveBATPLAN can use, and that we set as default
for SATPLAN.2

Experiments for minimal-actions plan§Ve considered several STRIPS domains from
the first five IPCs (the recent IPC-6 does not have basic STRtBI8ems). GiverP ;=
{@la € act(Il,)} defined above, we considered both the qualitative preferéRd))
and the quantitative preferen¢®, ¢) in which ¢ is the constant function 1, i.e, the set-
ting where an uniform cost is associated to “not to performtteaction: the related
objective function is thus the minimization of the numberaations involved in the
plan. We used Warners encoding [13] (denoted with “W") to wdto qualitative pref-
erences (with a non-empty partial order): it showed the pegformances on planning
problems in [6, 7], and it is thus the same usedATPLAN(P). In Table 1 there are the
results of our analysis. The first column is the domain of feol thensaTPLAN(P)(W)
andSATPLAN-GNT(W) (resp.SATPLAN(P)() andsATPLAN-GNT()) denote the systems
working on the quantitative (resp. qualitative) case. Resue presented as in the Max-
SAT Evaluation3 by z(y), wherey is the number of solved instances within the time
limit (900s on a Linux box equipped with a Pentium 1V 3.2GHbpgessor and 1GB of
RAM), andz is the mean solving time of solved instances (used to break t-" means
that no instance is solved within the time limit. Thesystems solve the same (sub)set
of instances in all domains, but for satellite and storagiénqualitative case. We can
note that in the quantitative casaTPLAN-GNT(W) has an edge oveyATPLAN(P)(W):

it often solves more instances, and never less, while in tiaditgtive case results are
mixed. In generalSATPLAN-GNT convergence to the optimal solution is effective, and

2 sATPLAN's default solver iSSIEGE we run SATPLAN with SIEGE and MINISAT and we have
seen no significant differences in performances in terms of both CRJaimd plans quality.
8 Seehttp://www.maxsat07.udl.es/ for the last.
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Fig. 2. Pathways domain, “SimplePreferences” track of IPC-5. Left: Platijpé.e., number of
unsatisfied soft goals, faATPLAN(P)(W) (and thussATPLAN-GNT(W)) and SGRAN. Right:
CPU time forsatPLAN(P)(W), SATPLAN-GNT(W) and SGRAN (in log scale).
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Fig. 3. Storage domain, “SimplePreferences” track of IPC-5. Left: Planimdte., number of
unsatisfied soft goals, f@ATPLAN(P)(W) (and thussATPLAN-GNT(W)) and SGRAN. Right:
CPU time forsaTPLAN(P)(W), SATPLAN-GNT(W) and SGRAN (in log scale).

only few interactions are needed: we performed a detailadlsis on selected bench-
marks, and we noted that, in mean, only 2.5 iterations wezded, and the quality of the
first solution was already very good. In the qualitative casesame domains, splitting
preferentially on action variables, without the burdendduced by the W-encoding, can
efficiently lead to the optimal solution. Finally, note thudten the differences in perfor-
mances are in the order of one/few instances, or just in témean CPU time: thisis in
line with state-of-the-art results, given that often inioptation problems solving even
one more, or just in a faster way, the available benchmarksbeaa significant result
(e.g., inthe Max-SAT Evaluations, where often the domaimer is granted by only the
mean CPU time).

Experiments with soft goalsWe considered two type of problems. First, we evaluated
SATPLAN-GNT on some of the instances from [6, 7]. Such instances werdectéam

the original STRIPS instances of the domain we mentionedegldmut considering all
goals as being “soft” (but with the constraint that at leas bas to be satisfied, other-



wise the empty plan is always a solution). We do not show tesai this analysis, but
we just summarize it. The vast majority of these benchmarmewalready solved very
efficiently by SATPLAN(P). We considered0 problems (each from a different domain)
wheresATPLAN(P) took considerable time to solve, in the quantitativeecas such
problems,SATPLAN-GNT took in mean around half a time waATPLAN(P) to solve
them. But, besides the fact that in the instances so far oredi goals are precisely
soft, i.e., they can be satisfied, or not, without affectiteppralidity, such instances are
not fully satisfactory because they are non-conflicting, all soft goals can be satisfied
at the same time. For this reason, given that the case in witthll the goals can be
satisfied (often called over-subscription planning) iscpically very important, we also
evaluated some domains from the “SimplePreferences” todt¢ke IPC-5, which in-
clude the possibility to express and reason on conflictiriggemals. Given that such do-
mains are non-STRIPS, and some ADL constructs are used,weeulsad the following
compilation technique: the preferences (goals) in the BRZeblems are translated into
preconditions of dummy actions, which achieve new dumneydis defining the new
problem goals. Then, these new actions can be compiled RIS actions by using
an existing tool (we have used both Hoffmann’s tool for cdmgiADL actions into
STRIPS actions, namelpL 2sTRIPS and a modification of the same tool used in IPC-
5, based on LPG). In our analysis we have included the dormdiege all goals are soft
(but conflicting in general, changing all weights assocdabagoals violation to b&), and
preferences are only expressed on goals, i.e., the Stonddeasdhways domains. Results
are presented as in the reports of the IPC-5, consideringafth domain, both plan met-
ric and CPU time to find the plan. In the analysis, we considiererPLAN(P)(W) and
SATPLAN-GNT(W) (given the metric is defined quantitatively in IPC-5 ontgufals) and,
as areference, SGRN, the clear winner of the “SimplePreferences” track at IREes
the Pathways domain in Figure 2 we can note (Figure2 Rigat)sthrpLAN(P)(W) and
SATPLAN-GNT(W) perform similarly (withsaTPLAN(P)(W) being slightly better) and
better than SGPAN for non-easy (i.e., from problem #6, as numbered in the IPC-5
problems, but for two problems (#13 and #15) only solved byPS4 within the time
limit. About the plan metric (Figure 2 Left), we can see th&R AN, overall, returns
plans of slightly better quality, i.e., it can satisfy mooftgoals. For the Storage domain,
instead, in Figure 3 (Right) we can note that all systemsesallinstances consider&d
with SGR.AN being around one order of magnitude faster than the oth&eragswhich
nonetheless solve each problem in less than 20s,smitiRLAN-GNT(W) being faster of
around a factor of. This fact is in line with all our results, given that this daim in-
cludes a high number of preferences on the biggest instaneesnsidered. The reason
for the performance gap wrt SGERN can be explained by looking at Figure 3 (Left):
SATPLAN(P)(W) andsATPLAN-GNT(W) return plans of much better quality than SG-
PLAN. The tradeoff between CPU performances and plan quali§poPLAN-GNT (and
SATPLAN(P)) is effective, at least on this domain.

6 Conclusions and future works

In this paper we have presented a generate-and-test apdardinding optimal plans
which, differently to a previous SAT-based appro&thdoes not constrain the heuristic,

4 We have considered all instances that the tools could compile. We aretogthe authors to
be able to possibly compile bigger instances.



(#4) works in polynomial space, ar(@ii) shows performance benefits. The most related
approach is the one in [14] where the authors show how to ex¢@nrcspPin order to
planning with preferences expressed as a TCP-net [15].dBtolean case, TCP-net
can be expressed as Boolean formulas, and the problem thejdeo is the same we
deal with. In the future we plan to both relax the computatibrm makespan-optimal
plan in order to find even better solutions, like, e.g., [I8, &and to address non-uniform
action costs (e.qg., [18]), by also dealing with the “:act@msts” requirement introduced
in IPC-6. The planning problems used in this paper and tte¢aelsystem can be found
athttp://www.star.dist.unige.it/ ~ marco/SATPLAN-GNT/.
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