
DLVMC: Enhanced Model Checking in DLV

Marco Maratea2, Francesco Ricca1, and Pierfrancesco Veltri1

1 Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
{veltri,ricca}@mat.unical.it

2 DIST, University of Genova, 16145 Genova, Italy
marco@dist.unige.it

Abstract. Stable Model Checking (MC) in Answer Set Programming systems is,
in general, a co-NP task for disjunctive programs. Thus, implementing an efficient
strategy is very important for the performance of ASP systems. In DLV, MC is
carried out by exploiting the SAT solver SATZ, and the result of this operation
also returns (in case the check fails) an ”unfounded set”, as by-product, which is
also used for pruning the search space during answer set computation.
In this paper we report on the integration of a “modern” SAT solver, MINISAT,
in DLV. The integration poses not only technological issues, but also challenges
w.r.t. the ”quality” of the returned unfounded set and w.r.t. the interplay with the
existing DLV techniques.

1 Introduction

Disjunctive Logic Programming under the answer set semantics, a.k.a., Answer Set
Programming (ASP for short, [1, 2]), is a powerful declarative formalism for knowl-
edge representation and reasoning [3]. ASP is expressive in a precise sense: it allows to
solve any problem belonging to the second level of the polynomial hierarchy. The idea
of ASP is to represent a given computational problem by a logic program, the answer
sets of which correspond to solutions; and, then, to use an answer set solver to find such
solutions [4]. Answer set computation of propositional (i.e., without variables) ASP
programs is carried out in DLV [5], as well as in most ASP systems (like e.g., GnT [6],
Cmodels [7] and CLASPD [8]) by exploiting two main modules: model generator and a
model checker. The first, which is similar to the DPLL procedure [9] for SAT, generates
“candidate” answer sets; the second verifies if such candidates are indeed answer sets.
On the class of non Head-Cycle-Free (HCF) [10] disjunctive programs, stable model
checking is co-NP-complete. To handle this case, DLV exploits a reduction to a sat-
isfiability (SAT) problem [11]: verifying if the candidate solution is “stable”, i.e., if it
is an answer set, is reduced to checking the unsatisfiability of a SAT formula φ, built
from the ASP program and the candidate solution. If the formula is satisfiable, then the
MC module of DLV also returns a set of “unfounded” atoms, i.e., a set of atoms which
can be freely assigned to false. Such unfounded set corresponds to the set of atoms
assigned to true in a satisfying interpretation of φ returned by the SAT solver (thus, it
is available for free after a MC call) and is exploited in the model generator of DLV
for enhancing the search together with other techniques like partial checking [11–14].
In particular, once a (total) model check fails during the search DLV goes back in the



search and performs partial model checks while backtracking, in order to unroll the
choices in current partial interpretations causing the original stability failure. This tech-
nique is combined with another approach, in which DLV speculatively performs partial
model checks while moving forwards (as opposed to backtracking) in the search tree.
Those checks allows to detect in advance (i.e., before reaching a complete assignment)
that the current branch of the search tree is actually inconsistent.

As a matter of fact, DLV performance on non-HCF programs depends on both the
efficiency of the SAT checker employed and the “quality” of the returned “unfounded
set” (in case the candidate solution is not stable).

In this paper, we report on the integration of a “modern” SAT solver, MINISAT,
in DLV, which results in the enhanced system DLVMC . The integration poses not
only technological issues; indeed, modern SAT solvers are significantly different from
previous propositional checkers such as SATZ (which is the SAT solver employed in
the standard version of DLV). The difference is not only in the data structures and/or
in the optimization techniques implemented but also in the termination conditions. A
CNF formula is declared satisfiable if either all variables of the problem have been as-
signed (without any conflict) as in MINISAT; or when all clauses have been satisfied,
as in SATZ. The choice of the termination condition clearly affects the nature of the
returned assignment, and thus the “quality” of the unfounded set. The branching heuris-
tic we used within MINISAT by default assigns all variables to false, i.e., it guarantees
to return subset-minimal “minimal” unfounded sets (see, e.g., [15]). Theoretically, im-
posing an ordering to be followed while branching can have significant degradation in
performance [16], but some preliminary experiments shows that this approach can pay
off when exploited in DLV, sometimes by orders of magnitude.

2 System usage and options

DLVMC has to be invoked as follows:

./DLVMC -solver <> [-heurm <>] [filename [filename [...]]]

The command line of DLVMC inherits all the options of DLV, and adds some new
options. In more detail: (i) “-solver” indicates the SAT solver to be used for stable
model checking. The two SAT solvers available are SATZ and MINISAT (“satz” and
“minisat” are the specific strings to be specified in place of <>). DLVMC relies on
MINISAT, but the default setting of DLV (i.e., SATZ) can be also selected; and (ii)
“-heurm” specifies the type of heuristic used inside MINISAT, by allowing to em-
ploy heuristics where variables are first assigned negatively, or positively, or randomly
(“neg”, “pos”, “ran” are the specific strings to be specified in place of <>). Negative
first heuristic is the default setting. The option has no effect in case of SATZ.
System Availability. The home page of the system, together with the Linux executables
and the QBF benchmarks used are available at: http://www.mat.unical.it/ ricca/DLVMC.

3 Preliminary analysis

We have performed a preliminary experimental analysis involving both hard QBF bench-
marks coming from the QBF evaluations, and StrategicCompanies benchmarks. The



instance DLV -PC DLVMC -PC #MC DLV -noPC DLVMC -noPC CLASPD
qbf1 0.85 0.88 65 0.92 0.96 2.31
qbf2 3.95 3.60 129 4.15 3.86 12.93
qbf3 14.53 14.14 257 15.43 15.17 63.47
qbf4 77.39 70.80 513 82.76 75.65 315.68

x100.0q 1.71 0.97 3 28.12 10.14 4.71
x110.0q 13.79 10.96 12/7 95.26 60.19 279.89
x135.02q 80.00 113.24 12/9 TIME TIME TIME
x145.0q 137.82 51.86 12/7 TIME 992.80 TIME
x150.02q 233.73 49.89 15/8 TIME 876.94 TIME
x150.04q 208.11 76.74 12/7 TIME 984.08 TIME
x165.03q 376.58 842.01 13/8 TIME TIME TIME
x165.04q 286.10 1084.68 12/8 TIME TIME TIME
x170.0q TIME 503.42 −/8 TIME TIME TIME
x170.02q 919.03 475.11 15/7 TIME TIME TIME
x175.01q TIME 763.78 −/8 TIME TIME TIME
x175.04q 816.79 689.10 15/9 TIME TIME TIME
x185.0q TIME 527.99 −/9 TIME TIME TIME

Table 1. Experimental analysis: DLV and DLVMC with (-PC) and without (-noPC), and
CLASPD, on QBF and StrategicCompanies benchmarks.

second ones being the only “hard” benchmarks submitted to the last ASP competition.
All experiments were run on a machine equipped with two Intel Xeon “Woodcrest”
(quad core) processors clocked at 3.GHz with 4MB of Level 2 Cache and 4GB of RAM,
running Debian GNU Linux 4.0. Time measurements have been done using the time
command provided by the system, counting total CPU time for the respective process.
We report the results in terms of execution time for finding one answer set, if any, within
20 minutes (“TIME” otherwise). The virtual memory available to the solvers has been
limited to 512MB. qbf1-qbf4 instances are translation of the bigger MutexP QBF in-
stances. Few StrategicCompanies benchmarks are non solved by any system.

Results are presented in Table 1, where the first column is the instance, the sec-
ond and third columns contain results for DLV with partial check (-PC) employing
SATZ and MINISAT, respectively, the fourth column contains the number of stabil-
ity checks performed (if “DLV -PC” and “DLVMC -PC” perform the same number of
checks there is one number), the fifth and sixth columns are the same as the second and
third, but with partial check disabled (-noPC), and the last column contain results for
CLASPD [8], as reference. “DLV -PC” and “DLVMC -PC” always perform the same
number of stability checks on these benchmarks.

On QBF benchmarks, the advantages of DLVMC over DLV is of around a 10% on
both configurations, i.e., with and without PC: the number of stability checks is here
always the same, and the advantages of DLVMC seem to be due to the efficiency of
MINISAT. All DLV-based versions are much faster than CLASPD. On the Strategic-
Companies benchmarks, the impact of MINISAT is instead much higher: on all but
two instances, “DLVMC -PC” performs much better than “DLV -PC”, solving three



instances more among the biggest showed. Considering the related number of stabil-
ity checks, here is very important both the efficiency of MINISAT and the quality of
the returned unfounded sets. As a matter of fact, PC is of fundamental importance for
the efficiency of DLV; nonetheless, the results without MC show an even more signifi-
cant and consistent gain for the version with MINISAT, even if the number of stability
checks is the same. CLASPD solves only the two smallest instances of this set.

Acknowledgements. We thank Nicola Leone for fruitful discussion about the topic of
the paper. This work has been partially supported by the Calabrian Region under PIA
(Pacchetti Integrati di Agevolazione industria, artigianato e servizi) project DLVSYS-
TEM approved in BURC n. 20 parte III del 15/05/2009 - DR n. 7373 del 06/05/2009.
Part of this work has been done while the first author has been with the Università degli
Studi e-Campus.

References

1. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In:
ICLP/SLP 1988, Cambridge, Mass., MIT Press (1988) 1070–1080

2. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
NGC 9 (1991) 365–385

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP
(2003)

4. Lifschitz, V.: Action Languages, Answer Sets and Planning. In: The Logic Programming
Paradigm – A 25-Year Perspective. (1999) 357–373

5. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3) (2006) 499–562

6. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-
junctions in Stable Model Semantics. ACM TOCL 7(1) (2006) 1–37

7. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: LPNMR’05. LNCS
3662, (2005) 447–451

8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In: IJCAI 2007,(2007) 386–392

9. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. Com-
munications of the ACM 5 (1962) 394–397

10. Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs.
AMAI 12 (1994) 53–87

11. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by
SAT Checkers. AI 15(1–2) (2003) 177–212

12. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint
Semantics and Computation. Inf.Comp. 135(2) (1997) 69–112

13. Pfeifer, G.: Improving the Model Generation/Checking Interplay to Enhance the Evaluation
of Disjunctive Programs. In: LPNMR-7. LNCS 2923, (2004) 220–233

14. Janhunen, T., Niemelä, I., Simons, P., You, J.H.: Partiality and Disjunctions in Stable Model
Semantics. In: KR 2000, 12-15,(2000) 411–419

15. Giunchiglia, E., Maratea, M.: Solving optimization problems with DLL. In: Proc. of the
17th European Conference on Artificial Intelligence (ECAI 2006). Volume 141 of Frontiers
in Artificial Intelligence and Applications., IOS Press (2006) 377–381

16. Järvisalo, M., Junttila, T.A., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for
boolean circuits. Annals of Mathemathics and Artificial Intelligence 44(4) (2005) 373–399


