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Abstract

Business processes under authorization control are sets of coordinated activities subject to a security policy stating
which agent can access which resource. Their behavior is difficult to predict due to the complex and unexpected inter-
leaving of different execution flows within the process. Serious flaws may thus go undetected and manifest themselves
only after deployment. For this reason, business processes are being considered a new, promising application domain
for formal methods and model checking techniques in particular. In this paper we show that action-based languages
provide a rich and natural framework for the formal specification of and automated reasoning about business processes
under authorization constraints. We do this by discussing the application of the action language C to the specification
of a business process from the banking domain that is representative of an important class of business processes of
practical relevance. Furthermore we show that a number of reasoning tasks that arise in this context (namely checking
whether the control flow together with the security policy meets the expected security properties, building a security
policy for the given business process under given security requirements, and finding an allocation of tasks to agents
that guarantees the completion of the business process) can be carried out automatically using the Causal Calculator
CC. We also compare C with the prominent specification language used in model-checking.1
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1. Introduction

Business processes under authorization control are sets of coordinated activities subject to a security policy stating
which agent can access which resource. The order according to which the activities must be executed is given by the
workflow, which is usually specified by means of graphical notations, e.g., Petri nets [2], Business Process Modelling
Notation (BPMN) [3]. The specification of the policy is usually given in terms of a basic access control model
(e.g., the Role-Based Access Control (RBAC) model [4]) possibly enriched with features providing the flexibility
required by the application domain (e.g., delegation) and mechanisms that are necessary to meet mandatory regulations
(e.g., separation of duty constraints). The behavior of business processes is difficult to predict due to the complex

1This paper is an extended and thoroughly revised version of [1].
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and unexpected interleaving of different execution flows within the process. Serious flaws (either in the control
flow or in the security policy, or in both) may thus go undetected and manifest themselves only after deployment.
Since these undesirable behaviors are very difficult to spot by simple inspection of the system, or by simulation,
business processes are being considered a new, promising application domain for formal methods and model checking
techniques in particular. In previous works, e.g., [5, 6], it has been shown that model checking can be profitably used
for the automatic analysis of business processes, and a number of techniques have been designed to alleviate the state
explosion problem, see, e.g., [7]. Yet, their applicability to business processes appears to be problematic as state-of-
the-art model checkers—being geared to the analysis of hardware designs—require the system to be modeled as the
composition of independent (yet interacting) sub-components. On the contrary, business processes and the associated
security policy are best viewed as a collection of actions subject to a given workflow pattern and a set of independent
access control rules.

Reasoning about actions and change is a long standing research area in Artificial Intelligence (AI), and several
languages for knowledge representation [8] (e.g., logic programming [9, 10] and action languages [11, 12, 13]) and
automated reasoning tools (e.g.,  [14], DLV [15], DLVK [16], CC [17]) have been put forward. In this
paper we show that the action-based language C [18] provides a rich and natural specification framework for sup-
porting formal declarative specifications of business processes under authorization constraints and that a number of
reasoning tasks that arise in this context can be automated by using the Causal Calculator CC. The effectiveness
of the proposed approach is illustrated by using C to specify the Loan Origination Process (LOP), a business process
from the banking domain that is representative of an important class of business processes of practical relevance as it
features many aspects that frequently occur in practice: non trivial interplay between the control flow and the security
policy, sophisticated access-control policies, events and tasks with nondeterministic, conditional and indirect effects.
To the best of our knowledge, no other approach to the specification and automatic analysis of business processes en-
compasses all the above aspects: [19, 20] consider complex security policy but do not take into account the workflow;
[21, 22] analyze SoD constraints while considering both the workflow and the security policy but do not support im-
plicit preconditions of tasks, events, roles hierarchy, and delegation; finally [5] considers the workflow and an RBAC
security policy enhanced with delegation but does not consider, e.g., nondeterministic, indirect, and conditional effects
of tasks, events, and policy exceptions.

More specifically we show that C supports

• the separate specification of the workflow and of the associated security policy;

• the formal and declarative specification of a wide range of security policies;

• the specification of a variety of business process features, e.g., events, tasks with nondeterministic, indirect, and
conditional effects; and, most importantly,

• the seamless integration of all the above aspects.

Moreover C provides modelers with the ability to specify the system incrementally. This is an important feature
that is seldom supported by the specification languages of state-of-the-art model-checkers. We substantiate this ob-
servation by comparing C with SMV, the specification language of the NSMV model checker [23, 24].

We also show that a variety of automated reasoning tasks occurring in the domain of business processes can be
recast as (a sequence of) satisfiability problems of C specifications which can be automatically tackled with the aid of
CC:

1. to establish whether the control flow together with the security policy meets the expected security properties;
2. for a given number of agents, synthesize a security policy for the business process under given security require-

ments;
3. for a given number of agents and for all execution flows, find (if any) an assignment of activities to agents

ensuring the process executability according to the given security policy.
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Figure 1: Extended elementary net for the LOP

The rest of the paper is structured as follows. In the next section we provide a brief introduction to business
processes under authorization constraints and describe our working example, which will be used throughout the paper.
In Section 3 we overview the action language C. In Section 4 we show how a business process under authorization
constraints can be modeled in C. In Section 5 we describe the analysis of the LOP carried out with CC. Then, in
Section 6 we compare C and SMV. In Section 7 we discuss the related work and we conclude in Section 8 with some
final remarks.

2. Business Processes under Authorization Constraints

Let us consider the Loan Origination Process (LOP) graphically presented in Figure 1. The workflow of the
process is represented by means of an extended elementary net (see, e.g., [25]), a simple Petri net [2], extended with
conditional arcs between places and transitions.
Let a fact be an atomic proposition. A literal is either a fact or its negation.
Formally, an extended elementary net is a 6-uple 〈S ,T, A, F, γ,M0〉 where

• S and T are finite sets of places and transitions, respectively, such that S ∩ T = ∅;
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• A ⊆ (S × T ) ∪ (T × S ) is the flow relation, representing a set of directed arcs connecting places and transitions.
Places from which arcs run to a transition are called the input places of the transition; places to which arcs run
from a transition are called the output places of the transition;

• F is a set of facts, and the set of literals over F is denoted with L. A set of literals L is consistent if and only if
L does not contain a fact and its negation.

• γ: (S × T )→ L is a function that associates arcs between places and transitions with literals over F expressing
applicability conditions;

• M0 ⊆ S defines the initial marking for places.

In Figure 1

• S ={p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p12, p13, p14, p15, p16, p17, p18};

• T={exec(inputCustData), exec(prepareContract), exec(intRating),
exec(extRating), invoke(creditBureau), exec(approve), exec(sign),
exec(createAccount), beginFlow1, beginFlow2, beginFlow3,
endFlow1, endFlow2, endFlow3, nop1, nop2, nop3};

• A = {(p1, exec(inputCustData)), (p2, beginFlow1),
(p3, exec(prepareContract)), (p4, beginFlow2),
(p5, endFlow1), (p6, exec(intRating)),
(p7, invoke(creditBureau)), (p7, nop1),
(p8, endFlow2), (p9, exec(extRating))
(p9, nop2), (p10, endFlow2),
(p11, endFlow1), (p12, exec(approve))
(p13, nop3), (p13, beginFlow3),
(p14, exec(sign)), (p15, exec(createAccount)),
(p16, endFlow3), (p17, endFlow3),
(exec(inputCustData), p2), (beginFlow1, p3),
(beginFlow1, p4), (exec(prepareContract), p5),
(beginFlow2, p6), (beginFlow2, p7),
(exec(intRating), p8), (nop1, p10),
(invoke(creditBureau), p9), (nop2, p7),
(exec(extRating), p10), (endFlow2, p11),
(endFlow1, p12), (exec(approve), p13),
(nop3, p18), (beginFlow3, p14),
(beginFlow3, p15), (exec(sign), p16),
(exec(createAccount), p17), (endFlow3, p18)};

• F = {highValue, interrupted, productApproved};

• γ(p7, invoke(creditBureau)) = highValue, γ(p7, nop1) = ¬ highValue,
γ(p9, nop2) = interrupted, γ(p9, exec(extRating)) = ¬ interrupted,
γ(p13, beginFlow3) = productApproved, γ(p13, nop3) = ¬ productApproved;

• M0 = {p1}.

A state of the extended elementary net is a pair (M, L), where M is a marking and L ⊆ L is a maximally consistent
set of literals, (i.e., a truth-value assignment to the facts in F). A marking represents an execution state of the extended
elementary net, initially set to M0. Given a marking M, a set of literal L and a place p, if p ∈ M then we say that the
place p contains a token, otherwise we say that p is empty. Starting from M0, a transition of the extended elementary
net can fire if there is a token in every input place of the transition and the conditions associated with the arcs between
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the input places and the transition hold in L. As a consequence, a new marking is reached where, for a transition that
has fired, each output place contains a token, while the token of each input place is eliminated, and L is updated by
the effects of the transition.

Figure 1 represents the LOP as an extended elementary net. Notice that in our model we have some artificially
added transitions to begin/end a flow of business activities (i.e., transitions beginFlow1, beginFlow2, beginFlow3,
endFlow1, endFlow2, and endFlow3) and to skip certain operations according to particular conditions (i.e., transitions
nop1, nop2, and nop3). Such transitions are thus inserted for workflow modeling purposes, and are triggered as soon
as their preconditions hold.

In our example, the process starts with the input of the customer’s data (inputCustData). Afterwards a contract for
the current customer is prepared (prepareContract) while the customer’s rating evaluation takes place concurrently.
By means of the rating evaluation the bank establishes if the customer is suitable to receive the loan. In our model,
the execution follows different paths: if the amount of the requested loan is not high (¬ highValue), then an internal
rating suffices (intRating); otherwise, an external rating (extRating) is executed concurrently by invoking a Credit
Bureau, a third-party financial institution. As soon as it is ascertained that the external rating is needed, a request
to obtain the credit information about the current customer is sent to the Credit Bureau (invoke(creditBureau)). By
using this information, the external rating evaluation is performed by executing the task extRating. Notice that the
invocation of the Credit Bureau and the execution of the task extRating must be performed by the same agent. In
case there is a forbidden access to the information sent by the Credit Bureau to the bank, i.e., an agent who is not the
director and different from the one who sent the request has accessed the information exchanged, then the execution
of the task is prevented and the rating evaluation is interrupted. In case of interruption, the director of the bank must
re-invoke the Credit Bureau and execute the task extRating. Thus, the loop in Figure 1 can be executed at most once.2

The loan request must then be approved (approve) by the bank. As soon as the customer and the bank have reached
an agreement, the contract is signed (sign) and an account for the customer is created concurrently (createAccount).
Notice that the execution of a task may affect the state of the process. In particular

• task inputCustData may modify the state of the execution by issuing statements about the type of customer (i.e.,
if it is industrial, isIndustrial) and the amount of the loan (i.e., if it is high, highValue),

• task intRating may issue statements about the evaluation of the customer, i.e., if the internal rating of the
customer is positive, and

• tasks approve may issue a statement asserting if the proposed product is suitable or not for the customer.

Moreover a task may perform further operations affecting the state of the process only if some conditions hold. In
particular, in case the customer is industrial, during the evaluation of the internal rating the bank also establishes if
it is important to deserve a particular care to the customer, i.e., if the customer is industrial the task intRating may
issue a statement asserting if the customer has a high profile (highProfileIndCust). Finally, different statements may
determine new process features, e.g., the lowRisk condition is used to denote a situation in which the internal rating is
positive and the amount of the loan is not high.

An agent can execute a task only if she has the required permissions. As it is common in the business domain, the
security policy of the LOP relies on an access control model based on RBAC enhanced with delegations and separation
of duty constraints. According to the RBAC model [4], in order to perform a task an agent must be assigned a role
enabled to execute the task and the agent must be also active in that role. The roles used in our case study are director,
manager, supervisor, postprocessor, and preprocessor. Roles can be organized hierarchically. In our case study, a
director is more senior than a manager and a supervisor is more senior than a postprocessor. Senior roles inherit the
permissions to perform tasks assigned to more junior roles. Thus, an agent can execute a task if her role

• is directly assigned the required permissions; or

• is more senior than a role owning such permissions.

2Note that this does not limit the specification capabilities of our approach: the fact that such loop can be executed at most once is, by chance,
the result of the separate specification of the workflow (which allows for multiple executions of the loop) with a particular security policy adopted.
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Table 1: Permission assignment for the LOP
Task Role

inputCustData preprocessor
prepareContract postprocessor

intRating if (isIndustrial) then postprocessor else preprocessor
extRating if (interrupted) then director else supervisor

approve if (lowRisk) then manager else director
sign if (highProfileIndCust) then director else manager

createAccount postprocessor

In our case study we consider permission assignments subject to the following requirements

• task inputCustData is assigned to role preprocessor;

• tasks prepareContract and intRating cannot be assigned to roles director or manager;

• task createAccount cannot be assigned to roles director, manager, or preprocessor;

• tasks approve and sign cannot be assigned to roles preprocessor,postprocessor, or supervisor;

• if a customer is industrial, then role preprocessor cannot be enabled to perform the task intRating;

• if the process has been interrupted, the task extRating has to be performed by a director;

• if the process has not been interrupted, the task extRating cannot be assigned to roles director, or manager;

• if the risk of the loan is not low, then role manager cannot be enabled to perform the task approve;

• if the industrial customer has a high profile, then role manager cannot be enabled to perform the task sign.

Table 1 shows a possible permission assignment for the LOP satisfying the requirements presented above. Notice that
the invocation of the Credit Bureau does not appear in Table 1 as this activity has to be executed by the same agent of
the task extRating and, as a consequence, uses its permission assignment.

A user assignment is a relation that associates agents and roles. We consider a static assignment of agents to roles
subject to the following requirements

• there must be only one director,

• the director must not be assigned to any other role,

• an agent must not be assigned to roles hierarchically related, e.g., an agent cannot be assigned to the roles
supervisor and postprocessor, and

• an agent can be assigned to two different roles at most.

Notice that the requirements we have specified above, for both permission and user assignments, correspond to a
class of security policies, given, e.g., the use of conditional statements in the permission assignment.

A possible user assignment for the LOP is given by the following assignments of agents to roles: davide, the
director, maria and marco, managers, pierPaolo, who can act both as preprocessing clerk and as postprocessing
clerk, pierSilvio, who can act both as preprocessing clerk and as supervisor, pietro, postprocessing clerk, and stefano,
supervisor.

Our RBAC access control model is enhanced with delegation that represents a typical flexibility requirement.
Following the idea of conditional delegation presented in [26], we consider delegation rules of the form

〈PreConds, ARole,DRole,Task〉
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Table 2: Delegation rules of the LOP
Name Type Delegation Rule

D1 transfer 〈¬ isIndustrial, supervisor, postprocessor, extRating〉
D2 grant 〈intRatingPositive,manager, supervisor, approve〉
D3 grant 〈¬ highValue, director, supervisor, sign〉

Table 3: Critical tasks of each object-based SoD of the LOP
Name Object Critical Tasks

C1 customer’s data inputCustData, prepareContract, intRating,
extRating

C2 rating report intRating, extRating
C3 contract prepareContract, approve, sign

where ARole and DRole are roles, Task is a task, and PreConds is a set of conditions that must hold for the delegation
to be applicable. A delegation rule states that if PreConds holds and ARole is authorized to perform Task according to
the permission assignments, then ARole can delegate DRole to execute Task. We also distinguish between grant and
transfer delegation [27]. Considering a grant delegation rule, both agents involved are then allowed to perform the
task being delegated; considering a transfer delegation rule the ability to perform the task is transferred and the agent
who executed the delegation cannot perform the delegated task anymore. Notice that our delegation rules express task
delegation rather than role delegation. In fact, the delegated agent does not acquire a new role but she only obtains
the permission to perform Task by means of ARole. Also notice that in [26] three different kinds of conditions are
considered, i.e., temporal, value, and workload delegation conditions, however in our work PreConds can only be
related to the value of the attributes of the process, i.e., value delegation conditions. In our case study we consider the
delegation rules in Table 2.

We also consider the ability of the director to disable an agent from performing a task overriding the security
policy in use. As a result, an agent can execute a task if she is granted the permission by means of the RBAC model
or by means of delegation unless the director explicitly disables her from performing the task.

Finally, the RBAC model of our case study is enhanced with a mechanism that is necessary to satisfy separation of
duty (SoD) constraints. SoD constraints are used for internal control and amount to requiring that some critical tasks
are executed by different agents (see [5] for a survey on SoD). In this paper we focus on a relaxed form of object-based
SoD according to which an agent can access the same object through different roles as long as she does not perform
all the tasks accessing that object. For each object involved in the LOP, we define the corresponding critical tasks
consisting of all and only the tasks accessing the object. We then assume that an agent cannot execute all the critical
tasks associated to each object. Such associations are presented in Table 3.

3. The Action Language C

Action languages are high level formalisms for expressing actions and how they affect the world described with a
set of atomic formulas called fluents. Thus, the signature σ of the language is partitioned into the fluent symbols σfl

and the action symbols σact. Intuitively, actions are a subset of the interpretations of σact while states are a subset of
the interpretations of σfl. A formula in σ is a propositional combination of atoms. Each action language differs from
the others for the constructs used to characterize how actions affect states.
C [18] is an expressive propositional action language allowing for two kinds of propositions: static laws of the

form
caused F if G (1)

and dynamic laws of the form
caused F if G after H, (2)

where F and G are fluent formulas (i.e., formulas in σfl) and H is an action formula (i.e., a formula in σ). In a
proposition of either kind, the formula F will be called the head of the law.
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Table 4: Abbreviations for causal laws.
Abbreviation Expanded Form Informal Meaning

nonexecutable H′ if F caused ⊥ after H′ ∧ F ¬F is a precondition of H′

H′ causes F if G caused F if > after G ∧ H′ F is true after H′ is executed
in a state in which G is true

H′ may cause F if G caused F if F after H′ ∧G F is true by default after H′ is executed
in a state in which G is true

default F caused F if F F is true by default
caused F if G unless Q caused F if G ∧ ¬Q, F is true after G in a state

default ¬Q in which Q is false
constraint F caused ⊥ if ¬F F must be true
inertial F caused F if F after F, F is inertial

caused ¬F if ¬F after ¬F
exogenous F default F, F is exogenous

default ¬F

An action description is a set of propositions. Consider an action description D. A state is an interpretation of σfl

that satisfies G ⊃ F for every static law (1) in D. A transition is any triple 〈s, a, s′〉 where s, s′ are states and a is an
action; s is the initial state of the transition, and s′ is its resulting state. A formula F is caused in a transition 〈s, a, s′〉
if it is

• the head of a static law (1) from D such that s′ satisfies G, or

• the head of a dynamic law (2) from D such that s′ satisfies G and s ∪ a satisfies H.

A transition 〈s, a, s′〉 is causally explained according to D if its resulting state s′ is the only interpretation of σfl that
satisfies all formulas caused in this transition.

The transition diagram represented by an action description D is the directed graph which has the states of D as
nodes and includes an edge from s to s′ labeled a for every transition 〈s, a, s′〉 that is causally explained according to
D. Intuitively, if 〈s, a, s′〉 is a transition of the diagram, the concurrent execution of the atomic actions satisfied by a
causes a transition from the state s to the state s′. Despite the fact that C consists of only two kinds of propositions,
several other propositions can be defined as abbreviations of either (1) or (2), modeling, e.g., actions’ preconditions,
actions’ nondeterministic effects, fluents with default values, and inertial fluents. The abbreviations used in this paper
are given in Table 4, where F and G are defined as before, and H′ is a formula in σact.

Example (from [18]). Let σfl = {P,Q}, σact = {A}, and let D consist of the propositions

inertial P,Q,
caused P after Q ∧ A. (3)

The second line of (3) tells us that P is made true by the execution of A if the precondition Q is satisfied (as, for in-
stance, in the familiar shooting example which corresponds to Dead as P, Loaded as Q, and Shoot as A). Preconditions
are specific conditions holding in a state they are executed. According to Table 4, (3) is a shorthand for

caused P if P after P,
caused ¬P if ¬P after ¬P,
caused Q if Q after Q,
caused ¬Q if ¬Q after ¬Q,
caused P if True after Q ∧ A.

(4)
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Figure 2: Transition diagram for action description (3)

In this action description, there are 4 states (PQ, PQ, PQ, P Q)3 and 2 actions (A and A). Consequently, there are
4 × 2 × 4 = 32 transitions. Out of these, 8 transitions are causally explained: 〈PQ, A, PQ〉 and the transitions of the
form 〈s, a, s〉 where s , PQ or a , A.

Figure 2 shows the corresponding transition diagram. We can see from it that each of the actions A, A can be
executed in any state in exactly one way. To check that the transition 〈PQ, A, PQ〉 is causally explained, note that
the formulas caused in this transition are the heads Q, P of the 3rd and 5th propositions in (4), and that the resulting
state PQ of the transition is the only interpretation that satisfies both heads. We can also see that 〈PQ, A, PQ〉 is not
causally explained: the only formula caused in this transition is the head Q of the 3rd proposition in (4), and Q is
satisfied by more than one interpretation.

4. Formal Modeling of Business Processes with C

We now present a list of desired features for modeling business processes under authorization constraints, and we
show the natural correspondence between the features, exemplified by using the LOP as a working example, and the
C constructs we use. This section clearly shows that C is a well-suited modeling language for our domain.

The set of fluents involved consists of the fluents listed in Table 5. All the fluents in Table 5 but pa(r, t), lowRisk,
granted(a, r, t), activated(a, r), accessed(a), and disabled(a, t) are inertial. The set of actions involved is listed in Table
6. All the fluents in Table 5 and actions in Table 6 have to be suitably instantiated for all tasks and roles in Table 1 and
the set of available agents.

4.1. Internal and External Events
Events are effects of activities which are not explicitly represented in the model. We distinguish between internal

and external events

• internal events are effects of procedures implemented within the process but not explicitly represented in the
model;

• external events are effects of activities which are not part of the process but whose effects have an impact on the
process itself.

Examples in the LOP are, respectively,

• the activation of a role, which is modeled as an internal event making sure that an agent is active in a role only
if she is assigned to that role; and

• the access to some information by an agent not allowed to, which is modeled as an external event making sure
that once an agent has accessed the information, a trace of this event remains in the process.

3We represent a propositional interpretation by listing the literals that are satisfied by it. L is the literal complementary to L.
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Table 5: Fluents and their informal meaning
Fluent Meaning

activated(a, r) agent a is playing role r
accessed(a) agent a has accessed the information sent by the Credit Bureau

delegated(a, r, t) agent a is delegated by an agent in role r to perform task t
disabled(a, t) agent a cannot perform task t

pa(r, t) role r has the permission to perform task t
ua(a, r) agent a is assigned to role r

granted(a, r, t) agent a obtained by means of role r the permission to perform task t
executed(a, t) agent a has executed task t

invoked(a, r, e) agent a has invoked entity e obtaining the authorization from role r
senior(r1, r2) role r1 is more senior than or is as senior as r2

lowRisk the risk associated with the loan is low
highValue the loan amount is high wrt the financial status of the customer

isIndustrial the customer is industrial
highProfileIndCust the industrial customer has a high profile

intRatingPositive the customer’s internal rating is positive
productApproved both the customer and the bank agree on the contract

interrupted the execution of the process is interrupted
p1, . . . , p18 the places of the extended elementary net (cf. Fig. 1)

Table 6: Actions and their informal meaning
Actions Meaning

exec(a, r, t) agent a executes task t by means of role r
invoke(a, r, e) agent a invokes entity e obtaining the authorization from role r

disable(a1, a2, t) agent a1 disables agent a2 from performing task t
d1(a1, a2) agent a1 delegates agent a2 by means of delegation rule d1
d2(a1, a2) agent a1 delegates agent a2 by means of delegation rule d2
d3(a1, a2) agent a1 delegates agent a2 by means of delegation rule d3

beginFlow1 dummy activity to begin the first flow of business activities in Fig. 1
endFlow1 dummy activity to end the first flow of business activities in Fig. 1

beginFlow2 dummy activity to begin the second flow of business activities in Fig. 1
endFlow2 dummy activity to end the second flow of business activities in Fig. 1

nop1,nop2,nop3 dummy activities to skip operations

Internal and external events are modeled in C as exogenous fluents. Exogenous fluents are fluents that can change
their value during the transition from one state to another (unless there is some other law constraining their values).
In the case of the LOP, two exogenous fluents are used:

exogenous activated(a, r), accessed(a).

The former is subject to the law

caused ¬ activated(a, r) if ¬ ua(a, r)

to state that an agent cannot be active in a role she is not assigned to. The latter is subject to the law

caused accessed(a) after accessed(a)

to state that the access to the information exchanged in the process by an agent is not reversible.
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4.2. Execution of Tasks and Invocation of Entities

The execution of a task can take place only if its preconditions are met. Preconditions of each task contain
information about

• the input places of the corresponding transition in the extended elementary net;

• the condition associated with the arc from the input places, if any; and

• the authorized agent that will perform the task by means of the fluent granted(a, r, t).

In C, preconditions can be expressed by the law

nonexecutable H if ¬F (5)

where H is an action formula and F is a formula expressing the preconditions of H. Consider a task t, and let I be
the set of input places of the transition, and I′ the set of conditions on the arcs from the input places (if any). Task
preconditions have the following pattern:

nonexecutable exec(a, r, t) if ¬(∧p∈I p ∧ ∧ f∈I′ f ∧ granted(a, r, t)).

An example about intRating is the following

nonexecutable exec(a, r, intRating) if ¬(p6 ∧ granted(a, r, intRating)).

Note that for the task extRating we do not need to add the fluent granted(a, r, extRating) in its preconditions as it is
implicit in invoked(a, r, creditBureau) because, as presented in Section 2, the task extRating must be executed by the
same agent who performed invoke(a, r, creditBureau), i.e.,

nonexecutable exec(a, r, extRating) if ¬(p9 ∧¬ interrupted∧ invoked(a, r, creditBureau))

The execution of tasks has deterministic effects that affect the process each time the task is performed. Consider
a task t, and let I (resp. O) be the set of input (resp. output) places of the related transition. The specifications of the
deterministic effects of a task is C have the following pattern:

exec(a, r, t) causes ∧p∈I ¬p ∧ ∧p′∈O p′ ∧ executed(a, t)

As an example, the deterministic effects of the execution of task intRating are expressed in C with

exec(a, r, intRating) causes p8 ∧¬ p6 ∧ executed(a, intRating)

Some effects of a task can be nondeterministic, i.e., they can, or cannot, be true in the resulting state. As an
example, the execution of task intRating has the nondeterministic effect of switching to true the internal rating of a
customer initially set to false. The corresponding C construct is

exec(a, r, intRating) may cause intRatingPositive .

The execution of a task can also have conditional effects, i.e., effects which can take place or not depending on
the state in which the task is executed. As an example, if the customer is industrial the task intRating does not only
evaluate if the internal rating is positive but also establishes if the customer has a high profile, i.e., if it is convenient for
the bank to reserve particular care to this customer. The result of this evaluation is nondeterministic and conditional
as it only takes place if the customer is industrial. This can be expressed in C with

exec(a, r, intRating) may cause highProfileIndCust if isIndustrial .
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The execution of a task can also have some indirect effects in addition to those explicitly stated, resulting from the
interaction among action effects and/or static laws. As an example, the execution of task inputCustData, that has the
nondeterministic effect of stating if the customer is industrial, has an indirect effect on the permission assignment of
the RBAC model. In fact, according to the permission assignments of Table 1, the permission to execute task intRating
is given to role postprocessor if the customer is industrial. This can be expressed in C with the law

caused pa(postprocessor, intRating) if isIndustrial

where pa(postprocessor, intRating) can be an indirect effect of the execution of inputCustData through its nonde-
terministic effect isIndustrial. Notice that pa(postprocessor, intRating) is a statically determined fluent, i.e., a fluent
whose value is determined by means of static laws only. Also notice that we set the value of pa(postprocessor, intRating)
to be false by default by means of

default ¬ pa(postprocessor, intRating).

Laws related to an invocation of an entity have the same patterns as for the execution of a task. As an example the
invocation of the Credit Bureau can be expressed in C by

nonexecutable invoke(a, r, creditBureau) if ¬(p7 ∧ highValue∧ granted(a, r, extRating)) (6)

where invoke(a, r, creditBureau) is the action symbol, p7 is the input place as shown in Figure 1, highValue represents
the condition associated with the arc between place p7 and the current transition, and granted(a, r, extRating) expresses
the fact that the invocation must be performed by an agent granted the right to execute the task extRating as presented
in Section 2.

Deterministic effects of the invocation of an entity can be expressed in C in the same way as for the invocation of
tasks. As an example, the deterministic effects of the invocation of the Credit Bureau are expressed by

invoke(a, r, creditBureau) causes p9 ∧¬ p7 ∧ invoked(a, creditBureau).

According to (6), in our working example the invocation of the Credit Bureau cannot be executed if the precon-
ditions do not hold; however, in case the preconditions hold, the invocation is not forced. The fact that the in our
working example the invocation of the Credit Bureau is triggered as soon as its preconditions hold can be expressed
in C with

nonexecutable ¬ invoke(a, r, creditBureau) if p7 ∧ highValue∧ granted(a, r, extRating).

4.3. Delegation of Tasks
As in Section 4.2, the preconditions for delegation express the requirements for the delegation to take place and

are expressed in C by a formula of the form (5). The set of preconditions for the delegation of tasks through the
delegation rules presented in Section 2 has a common pattern. In fact, a delegation of a task always requires that

• an agent is assigned to the role ARole of the rule,

• there exists a permission assignment between Arole and Task,

• an agent is assigned to the role DRole of the rule,

• PreConds are satisfied,

regardless the type of delegation. The preconditions of the rules in Table 2 in C have the following pattern

nonexecutable d(a1, a2) if ¬(ua(a1, Arole) ∧ ua(a2,Drole)∧ pa(Arole,Task) ∧ Preconds)

for all a1 , a2.
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For example the preconditions of rule D1 are expressed with

nonexecutable d1(a1, a2) if ¬(ua(a1, supervisor)∧ua(a2, postprocessor)∧ pa(supervisor, extRating)∧¬ isIndustrial)

Delegation can also have implicit preconditions. In fact, the effects of a delegation may interact with different
parts of the business process; as a result, a delegation can be performed not only if its preconditions are fulfilled but
also if its execution does not violate existing dependencies. In C implicit preconditions can be expressed by means of
static laws. As an example, delegation has the effect of granting the execution of a task t to an agent a by means of a
role r, granted(a, r, t). It appears reasonable that a delegated agent must not be disabled from executing the delegated
task. In the LOP case study this can be achieved with

caused ¬ granted(a, r, t) if disabled(a, t) (7)

to state that ¬ disabled(a, t) is an implicit precondition for the delegation of task t to agent a. Notice that this is not
equivalent to add ¬ disabled(a, t) to the preconditions of the delegation as it corresponds to the fact that the agent is not
disabled in the state before the delegation. On the other hand, (7) requires ¬ granted(a, r, t) whenever disabled(a, t)
holds.

Delegation of tasks has the deterministic effect of granting the execution of the tasks to the delegated agents.
Moreover, in case of transfer delegation the agent who performed the delegation is disabled from performing the del-
egated task in the future. Given Type to be the type of delegation, Type ∈ {trans f er, grant}, the deterministic effects
can be expressed in C using the following pattern

d(a1, a2) causes granted(a1, Arole,Task) ∧ delegated(a2, Arole, task) ∧Type=tras f er disabled(a1,Task) (8)

for all a1 , a2.

As an example, the deterministic effects of the transfer delegation rule D1 are expressed by

d1(a1, a2) causes granted(a1, supervisor, extRating) ∧ delegated(a2, supervisor, extRating) ∧ disabled(a1, extRating)
(9)

while the deterministic effects of the grant delegation rule D2 are expressed with

d2(a1, a2) causes granted(a1,manager, approve) ∧ delegated(a2,manager, approve).

Notice that the fluent disabled(a, extRating) as effect of rule D1 in (8) represents the means of transfer delegation:
the agent performing the delegation is disabled from performing the task in the future.

4.4. Internal Dependencies
Different elements within a business process may be characterized by dependencies. For example results of

evaluations performed during the process may influence the value assumed by other fluents describing the state of the
process.

In C such dependencies can be expressed by means of static laws. As an example, the inertial fluent interrupted
depends on the value of other fluents as follows

caused interrupted if p9 ∧ invoked(a1, r, creditBureau) ∧ accessed(a2)

for all a1 , a2 and r , director, and

caused ¬ interrupted if p9 ∧ invoked(a, director, creditBureau).

As another example, the statically determined fluent lowRisk has a default value false expressed with

default ¬ lowRisk

and depends on the value of highValue and intRatingPositive through

caused lowRisk if ¬ highValue∧ intRatingPositive

to state that the risk of a loan is low if its amount is not high and the internal rating is positive.
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4.5. Workflow

As we have already seen in Section 2, the workflow of a business process manages the invocation of entities and
the execution of tasks: in our work we model it by adding “dummy” activities to begin/end a flow of business activities
and to skip certain operations.

In C these activities can be expressed by dynamic laws. The preconditions of dummy activities only deal with input
places and conditions associated to inner arcs, if any. Moreover, being activities that do not require to be performed
by an agent and do not perform any task, dummy activities are triggered as soon as their preconditions hold. Consider
an activity e, and let I (resp. O) be the set of input (resp. output) places of the related transition, and I′ be the set of
conditions on the arcs from the input places (if any). Such activities follow the pattern

nonexecutable e if ¬(∧p∈I p ∧ ∧ f∈I′ f ),
nonexecutable ¬e if ∧p∈I p ∧ ∧ f∈I′ f ,
e causes ∧p∈I ¬p ∧ ∧p′∈O p′.

As an example, nop1 is expressed by

nonexecutable nop1 if ¬(p7 ∧¬ highValue),
nonexecutable ¬nop1 if p7 ∧¬ highValue,
nop1 causes p10 ∧¬ p7 .

4.6. Separation of Duty Constraints

SoD represents an important aspect of business processes used to prevent frauds by stating that conflicting tasks
must be performed by different agents. With reference to the LOP, SoD constraints in Table 3 can be expressed in
C by static laws constraining each set of critical tasks to be executed by at least two different agents. For example,
constraint C3 is expressed by

constraint ¬(executed(a, r1, prepareContract) ∧ executed(a, r2, approve) ∧ executed(a, r3, sign)).

4.7. Security Policy

The security policy establishes which agent can perform which task. As described in Section 2, we consider a
security policy based on an RBAC model enhanced with delegation and SoD constraints. We model the permission
of an agent a to perform a task t with role r using the fluent granted(a, r, t). Then, the RBAC model enhanced with
delegation can be expressed with the law

caused granted(a, r, t) if ua(a, r) ∧ activated(a, r) ∧ pa(r1, t) ∧ senior(r, r1) (10)

and

caused ¬ granted(a, r, t) if ¬ ua(a, r)∨¬ activated(a, r)∨ (
∧
r1∈R

(¬ pa(r1, t)∨¬ senior(r, r1))) unless delegated(a, r, t)

(11)
where R is the set of roles involved in the business process. Notice that (11) is made defeasible by “unless
delegated(a, r, t)” to express the fact that an agent can be granted the execution of a task even if she does not fulfill the
RBAC model assuming she has been delegated to execute it. Also notice that in the overall specification of a business
process an agent can be granted the execution of a task only if the SoD constraints specified as presented in Section
4.6 are satisfied.

As it appears from (10), the RBAC model relies both on the user assignment, ua(a, r), and the permission assign-
ment, pa(r, t). A specific, static, user assignment can be expressed in C by initializing the inertial fluents ua(a, r) in
the initial state as long as no action affects their values. In this way, the assignment of agents to roles will not change
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during the process execution. As an example, the static assignment of agents davide and maria given in Section 2 can
be modeled as follows

ua(davide, director),
¬ ua(davide, r1),
ua(maria,manager),
¬ ua(maria, r2)

for all r1 , director and r2 , manager.
A specific permission assignment can be expressed in C by defining the fluents pa(r, t) as statically determined

and specifying static causal laws for them. As an example, an excerpt of the permission assignment in Table 1 can be
expressed in C by

default pa(preprocessor, inputCustData),
default ¬ pa(postprocessor, inputCustData),
caused pa(preprocessor, intRating) if ¬ isIndustrial,
default ¬ pa(preprocessor, intRating),
caused pa(postprocessor, intRating) if isIndustrial,
default ¬ pa(postprocessor, intRating).

Notice that the assignment of permissions to roles can change during the process execution according to some condi-
tions.

The partial specifications on user and permission assignments can, in general, be modeled by means of the set
of requirements they have to ensure. As an example, for the specific requirements on a user assignment defined in
Section 2, the following C laws can be used

constraint ¬(ua(a1, director) ∧ ua(a2, director)),
constraint ¬(ua(a, director) ∧ ua(a, r)),
constraint ¬(ua(a, supervisor) ∧ ua(a, postprocessor)),
constraint ¬(ua(a, r1) ∧ ua(a, r2) ∧ ua(a, r3))

for all a1 , a2, r1 , r2, r2 , r3, r1 , r3, and r , director.
Analogously, an excerpt of the requirements for the permission assignments defined in Section 2 can be expressed

in C with
constraint ¬ isIndustrial∨¬ pa(preprocessor, intRating),
constraint ¬ highProfileIndCust∨¬ pa(manager, sign).

Notice that in this case the fluents pa(r, t) are defined as exogenous.

4.8. Exceptions

A business process may also be characterized by exceptions to its normal behavior. In the presented scenario
the security policy is based on an RBAC model enhanced with delegation. However, we can have exceptions to the
RBAC, e.g., in case an important agent (e.g., a director) decides to do so. To model this behavior in C we enhance the
model with a law

disable(a1, a2, t) causes disabled(a2, t) ∧
∧
r∈R

(¬ granted(a2, r, t)) if ua(a1, director) ∧ ¬ disabled(a2, t) (12)

where a1 , a2, and modifying (10) as follows

caused granted(a, r, t) if ua(a, r) ∧ activated(a, r) ∧ pa(r1, t) ∧ senior(r, r1) unless disabled(a, t)

to make the policy defeasible, i.e., an agent can be granted the execution of a task unless a director disables her from
executing the task.
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5. Experiments

Given a set of causal laws expressed in C and a query (i.e., a Boolean formulas built out of time-indexed facts),
CC automatically checks whether there exist paths in the transition system specified by the action description that
satisfies the query. The length of the path considered is determined by fixing the maxstep variable in CC. In
particular, CC

1. produces a description of the transition system in the form of a set of clauses (where a clause is a disjunction
of literals): assuming the head of each causal law is a literal (as in the LOP), this process is done in polynomial
time through literal completion [28];

2. produces maxstep − 1 copies of the clauses, each copy corresponding to a time step as in planning as satisfia-
bility [29];

3. converts each query into a corresponding set of clauses; the clauses generated so far are such that there exists
a 1-1 correspondence between the paths of length maxstep of the transition system satisfying the query and the
assignments satisfying the set of clauses;

4. calls a SAT solver to determine an assignment satisfying the set of clauses (if any);
5. if the SAT solver returns a satisfying assignment, then the corresponding path is returned to the user.

Notice that there is no 1-1 correspondence between the paths in the extended elementary net of the LOP and
the paths in the transition diagram corresponding to the formalization of the LOP as an action description. Indeed,
in our formalization we have transitions from one state to the state itself because no action is performed. These
loops, called stuttering steps (cf., page 17 in [30]), can be practically useful because they allow us to have paths
in the transition diagram with length maxstep corresponding to paths in the extended elementary net with length
≤ maxstep. (Because of the security policy, the loop in the LOP can be executed at most once, and thus maxstep=14.)
Considering that only p1 is true in the initial states of the transition diagram, we take into account all the possible
paths in the extended elementary net leaving from p1. Other conditions on paths are imposed depending on the
specific problem we consider, detailed in the following subsections. The complete specification is available at http:
//www.ai-lab.it/serena/jcss.txt .

In the rest of this section we describe how we have used CC to (i) to establish whether the control flow
together with the security policy meets the expected security properties, (ii) to synthesize a security policy for the
business process under given security requirements, and (iii) to find a resource allocation plan ensuring the process
executability according to the given security policy.

5.1. Verification of Security Properties

The security policy of a business process manages the access of agents to tasks, and should ensure that undesirable
behaviors, e.g, frauds, do not occur. In this paper the security policy is given in terms of an RBAC model enriched
with delegation rules and object-based SoD constraints. Because of the complexity of the resulting specifications, and
the interplay with the security policy, it may not be trivial to establish if other desirable security properties hold (e.g.,
because entailed by the already enforced security policy) or if it is necessary to revise the model and/or the security
policy in order.

In our first experiment we fed CC with the specification of the LOP given in Section 4 featuring a security
policy characterized by

• a specific RBAC model with the permission assignment of Table 1 and the user assignment presented in Section
2;

• the delegation rules in Table 2; and

• the SoD constraints in Table 3,

and we considered the following property:

“If the process terminates successfully, then no single agent has performed all the tasks intRating, extRating
if highValue, approve, and sign.”
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Thus, we used CC to determine whether there exists a path leading to a state in which the same agent performs the
tasks intRating, extRating if highValue, approve, and sign, i.e., where the following property is satisfied:

p18 ∧ productApproved∧ executed(a, intRating) ∧ (¬ highValue∨ executed(a, extRating))∧
executed(a, approve) ∧ executed(a, sign) (13)

CC found the trace, an excerpt of it is reported in Figure 3. The trace shows that (13) is satisfied, i.e., the violation
occurs, if the loan amount is not high, i.e., ¬ highValue, and thus the external rating is not evaluated. The perpetrator
for the violation is stefano, who executes intRating as supervisor and can nevertheless execute approve and sign by
means of delegation. In fact a manager, marco, delegates him to approve the document by means of the delegation
rule D2 and the director delegates him to sign the contract by means of the delegation rule D3. By inspecting the
intermediate states of the trace it is easy to conclude that the violation occurs if the internal rating is positive and the
customer is industrial with a high profile.

To avoid this violation we restricted the applicability conditions of delegation rule D2 by conjoining it with the
fact highValue. In fact, when the loan has not an high value, the security policy is less restrictive and the application
of D2 must be prevented. CC does not find any violation in the specification modified in this way.

The verification of SoD properties over a version of the LOP is carried out by using NSMV in [5]. However the
case study considered is rather different, e.g., the workflow (which involves different tasks) structure and the delegation
model are different and no exceptions to the RBAC security policy with delegation are considered. Moreover, the
specification of the case study and the experimental analysis performed in [5] are not mature, e.g. though an RBAC
policy is considered, the assignment between agents and tasks, via roles, is static. Thus this work can be compared
with ours wrt the overall approach and the expressiveness of the language used but it is not possible a comparison of
the analysis results.

5.2. Synthesis of the Permission Assignment
In our second experiment we synthesize the permission assignment for an RBAC model for the LOP given the re-

quirements for the user and the permission assignment presented in Section 2. Note that the approach we use is general
as it relies on the idea of partially defining an aspect of the business process, i.e., only defining a set of requirements
we want it to satisfy, and automatically sinthesizing a specific instance that ensures the process executability and
satisfies the requirements. As an example, in this experiment we consider the problem of synthesizing the permission
assignment but the approach could be used as well to synthesize the user assignment.

We fed CC with the specification of the LOP given in Section 4 featuring a security policy characterized by

• a generic RBAC model with the requirements for the user and permission assignments given in Section 2; and

• the SoD constraints in Table 3,

and we considered the problem of finding a permission assignment that ensures a successful process execution. The
process ends successfully if it reaches a state in which both p18 and productApproved hold regardless of the value of
intRatingPositive, isIndustrial, highValue, and highProfileIndCust and the fact that the process has been interrupted.
We have therefore run CC against all possible scenarios requiring p18 ∧ productApproved and we extracted the
permission assignment from the execution traces returned by the tool. Additionally, we looked for a permission
assignment such that the process can be executed involving the minimal number of agents.

SoD constraints require at least two agents for performing the critical tasks. CC reports that it is not possible
to find an execution path for all the scenarios with two agents. Thus, we considered three agents. In this case CC
was able to find an execution trace for all the scenarios. We then extracted from the execution traces returned by the
tool the permission assignment through the values of the fluents pa(r, t). The permission assignment we extracted is
reported in Table 7.

5.3. Resource Allocation Plan
Our last experiment was to determine a resource allocation plan ensuring a successful process completion accord-

ing to the security policy.
We fed CC with the specification of the LOP given in Section 4 featuring a security policy characterized by
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...

4: granted(stefano ,supervisor ,intRating) isIndustrial p5 p6

p7 ...

ACTIONS: exec(stefano ,supervisor ,intRating) nop1 ...

5: isIndustrial intRatingPositive highProfileIndCust lowrisk

executed(stefano ,intRating) p5 p8 p10 ...

...

7: isIndustrial intRatingPositive highProfileIndCust

ua(marco ,manager) ua(stefano ,supervisor) lowrisk

executed(stefano ,intRating) p12 pa(manager ,approve) ...

ACTIONS: d2(marco ,stefano) ...

8: granted(stefano ,manager ,approve) executed(stefano ,intRating)

delegated(stefano ,manager ,approve) p12 lowrisk ...

ACTIONS: exec(stefano ,manager ,approve) ...

9: isIndustrial intRatingPositive highProfileIndCust

productApproved executed(stefano ,intRating) lowrisk

executed(stefano ,approve) p13 ...

...

10: isIndustrial intRatingPositive highProfileIndCust lowrisk

productApproved ua(davide ,director) ua(stefano ,supervisor)

executed(stefano ,intRating) executed(stefano ,approve)

p14 p15 pa(director ,sign) ...

ACTIONS: d3(davide ,stefano) ...

11: granted(stefano ,director ,sign) isIndustrial lowrisk

intRatingPositive highProfileIndCust productApproved

executed(stefano ,intRating) executed(stefano ,approve)

delegated(stefano ,director ,sign) p14 p15 ...

ACTIONS: exec(stefano ,director ,sign) ...

12: isIndustrial intRatingPositive highProfileIndCust lowrisk

executed(stefano ,intRating) executed(stefano ,approve)

executed(stefano ,sign) productApproved p15 p16 ...

...

14: isIndustrial intRatingPositive highProfileIndCust

productApproved executed(stefano ,intRating) lowrisk

executed(stefano ,approve) executed(stefano ,sign) p18 ...

Figure 3: An excerpt of the trace violating property (13) found by CC

• the specific permission assignment in Table 1;

• a generic user assignment with the requirements given in Section 2;

• the delegation rules in Table 2 with the applicability conditions of D2 restricted according to Section 5.1; and

• the SoD constraints in Table 3,

and we considered the problem of finding for all possible scenarios a resource allocation plan that ensures a successful
process completion, i.e., p18 ∧ productApproved. Notice that as a specific assignment of agents to roles is not given,
a possible agent-role assignment can also be obtained from the execution trace returned by CC.

As in Section 5.2, the process can take place in different scenarios characterized by different nondeterministic
effects. As a result, we run CC against all possible successful process completions and we extracted a resource
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Table 7: Permission assignment for the LOP automatically synthesized
Task Role

inputCustData preprocessor
prepareContract preprocessor

intRating if (isIndustrial) then postprocessor else preprocessor
extRating if (interrupted) then director else preprocessor

approve director
sign director

createAccount postprocessor

Table 8: Resource Allocation Plan for all scenarios where the process is interrupted
Agent Roles Tasks

a1 preprocessor, supervisor inputCustData, intRating, prepareContract,
createAccount

a2 director extRating, approve, sign

allocation plan (i.e., an assignment of agents to tasks) from the execution trace returned by the tool. We considered
the further requirement of finding resource allocation plans involving the minimal number of agents.

Considering two agents, say a1 and a2, CC found an execution trace for all the scenarios where

• the process is interrupted; or

• intRatingPositive and isIndustrial hold while highValue and highProfileIndCust do not; or

• intRatingPositive holds while highValue, isIndustrial, and highProfileIndCust do not.

The resource allocations found by CC for each of these scenarios are reported in Tables 8, 9, and 10, respectively.
However CC could not find an unique execution trace for all other scenarios involving only two agents.

Thus, we considered three agents and CC found an execution trace for all the remaining scenarios. The resource
allocation plans extracted from the execution traces are reported in Tables 11, 12, 13, 14. In this way we obtained
assignments of agents to roles for every scenario in which the process can be executed. Furthermore, we found that the
minimal number of agents depends on the specific scenario and, for each scenario, we also obtained the assignments
of agents to roles that allow them to complete the process.

Table 9: Resource allocation plan for all scenarios where ¬ highValue, intRatingPositive, isIndustrial, and ¬ highProfileIndCust
Agent Roles Tasks

a1 manager, supervisor intRating, approve, sign
a2 preprocessor, supervisor inputCustData, prepareContract, createAccount

As far as computational aspects of our approach are concerned, we herewith briefly mention what are the CPU
times that CC spent for solving the three tasks of interest. On a Pentium IV 1.6GHz machine with 3GB of RAM,
CC takes from 30 to 50 seconds to ground the specifications in input and create the corresponding set of clauses.
A satisfying assignment is then found in negligible time by running a modern, e.g., , SAT solver on φ.

6. A Comparison between C and the SMV Language

In this section we analyze the languages C and SMV, which are supported by CC and NSMV respectively.
The comparison focuses on the ability of the two languages to manage changes and updates of the specifications.

Here we provide a very brief introduction of the SMV language focusing on the aspects that are relevant for our
comparison. A detail account of the language can be found in [31]. In a SMV specification the system under design
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Table 10: Resource allocation plan for all scenarios where ¬ highValue, intRatingPositive, ¬ isIndustrial, and ¬ highProfileIndCust
Agent Roles Tasks

a1 manager, postprocessor prepareContract, createAccount
a2 preprocessor, manager inputCustData, intRating, approve, sign

Table 11: Resource allocation plan for all scenarios where highValue and ¬ highProfileIndCust
Agent Roles Tasks

a1 preprocessor, supervisor inputCustData, intRating, prepareContract
a2 manager, supervisor extRating,createAccount, sign
a3 director approve

is represented as a Kripke structure defined by state variables and transitions. State variables are defined using the
keyword VAR and, for the scope of our analysis, are boolean. We also consider input variables (defined using the
keyword IVAR) that are used to represent values given as input to the system and are also used to label transitions.
SMV supports two styles for declaring transitions: the assignment style and the constraint style. The assignment style
is based on assignments of initial and next values of each variable using the keyword ASSIGN. (If no assignment
is specified for a variable, then the value of the variable evolves nondeterministically.) The constraint style allows
to specify conditions over variable values on the initial states, the states, and the transitions by using the constructs
INIT, INVAR e TRANS, respectively. In our comparison we use the constraint style as it is more flexible. Moreover,
specifications in assignment style can be easily rewritten as an equivalent specification in constraint style.
C and SMV differ in fundamental way. In C, if there is no cause for a fact, the fact can be neither true nor false

(and thus the formula corresponding to the specification is unsatisfiable). In SMV declared facts are exogenous. The
different semantics given to the facts declared has a considerable impact on the way a model can be specified to obtain
the same behavior in both languages. As an example consider a simple scenario (1) where an agent is granted the
execution of a task if she is a potential owner of the task (potentialOwner) or delegated to perform it (delegated),
while she is not granted the execution if she is not authorized to execute it (unassigned).

This scenario can be described in C by the specification in Figure 4 where either potentialOwner, or delegated, or

1 simpleFluent potentialOwner, delegated, unassigned, granted,
2 exogenous potentialOwner, delegated, unassigned,
3 caused granted if potentialOwner,
4 caused granted if delegated,
5 caused ¬ granted if unassigned,

Figure 4: C specification of scenario (1)

unassigned have to hold in order to provide a cause for granted to be either true or false. To specify the same behavior
in SMV it is necessary to explicity state the dependencies that exist between the facts potentialOwner, delegated,
and unassigned as they all determine the value of granted as shown in Figure 5. A straightforward consequence is
that while modifications to the C specification of Figure 4 can be done incrementally, this is not the case for the
SMV specification. As an example we can imagine to extend the previous scenario by introducing a mechanism that
according to some conditions (abstracted away in our example) disables an agent, i.e. prevents the execution of tasks,
namely a scenario (2). In C this can be specified as shown in Figure 6 by adding to the specification in Figure 4 an
action disable that causes granted to be false, i.e. incrementally adding the lines 3 and 7 in Figure 6. In SMV this new
scenario can be expressed as shown in Figure 7. It is clear that the SMV specification is not incremental and the fact
that the action disable is executed if neither potentialOwner, delegated, nor unassigned hold must be explicit (line 12
of Figure 7).

Many behaviors that can be obtained implicitly in C specifications must be made explicit in SMV. As a further
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Table 12: Resource allocation plan for all scenarios where highValue and highProfileIndCust
Agent Roles Tasks

a1 preprocessor, postprocessor inputCustData, intRating, createAccount
a2 preprocessor, supervisor extRating,prepareContract
a3 director approve, sign

Table 13: Resource allocation plan for all scenarios where ¬ highValue and highProfileIndCust
Agent Roles Tasks

a1 preprocessor, supervisor inputCustData, sign
a2 manager, supervisor intRating, prepareContract, createAccount
a3 director approve

1 VAR
2 potentialOwner : boolean,
3 delegated : boolean,
4 unassigned : boolean,
5 granted : boolean,
6 INVAR potentialOwner→ granted,
7 INVAR delegated→ granted,
8 INVAR unassigned→! granted,
9 INVAR potentialOwner | delegated | unassigned .

Figure 5: SMV specification of scenario (1)

1 simpleFluent potentialOwner, delegated, unassigned, granted,
2 exogenous potentialOwner, delegated, unassigned,
3 exogenousAction disable
4 caused granted if potentialOwner,
5 caused granted if delegated,
6 caused ¬ granted if unassigned,
7 disable causes ¬ granted .

Figure 6: C specification of scenario (2)

example consider a scenario (3) where agents are not granted the execution of tasks by default unless they are assigned
this duty by, e.g., an administrator, or they are delegated. This scenario can be specified in C as shown in Figure 8.
In this example, assigned is exogenous while granted has a negative default value unless assigned or delegate cause
it to be true. This behavior can be specified in SMV as in Figure 9 by explicity stating when the value of granted
is negative (line 8 in Figure 9). Imagine that we now want to modify the scenario by allowing an agent granted the
execution of a task to retain this authorization, namely a scenario (4). In C this can be simply done by incrementally
adding inertial granted to the specification in Figure 8. The main difference of the new specification is that after
granted has become true, either because delegate has been executed or assigned was true, it can retain the true value
other than become false because of the default. To apply the same modification in SMV the specification changes
considerably in the way granted is specified (lines 8 and 9 in Figure 10).

Similar scenarios occur also in the LOP case study presented in Section 2. As an example we can consider the
specification of the authorization to execute task extRating with respect to delegation. In this case it is again possible
to observe that SMV requires to explicitly state all the mechanism which can be left implicit in C. In particular, in the
C specification presented in Section 4, delegated(a, r, t) prevents the authorization to execute to be denied when an
agent is delegated. More in detail, delegated(a, r, t) is an inertial fact which is set to true after D1 is executed and has
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Table 14: Resource allocation plan for all scenarios where ¬ highValue, ¬ intRatingPositive, and ¬ highProfileIndCust
Agent Roles Tasks

a1 preprocessor, postprocessor inputCustData, createAccount
a2 preprocessor, postprocessor intRating, prepareContract
a3 director approve, sign

1 VAR
2 potentialOwner : boolean,
3 delegated : boolean,
4 unassigned : boolean,
5 granted : boolean,
6 IVAR
7 disable : boolean,
8 INVAR potentialOwner→ granted,
9 INVAR delegated→ granted,

10 INVAR unassigned→! granted,
11 TRANS disable→ next(granted) = 0,
12 INVAR !(potentialOwner | delegated | unassigned)→ disable .

Figure 7: SMV specification of scenario (2)

1 simpleFluent granted, assigned
2 exogenous assigned
3 default ¬ granted
4 exogenousAction delegate
5 caused granted if assigned
6 delegate causes granted .

Figure 8: SMV specification of scenario (3)

1 VAR
2 granted : boolean;
3 assigned : boolean;
4 IVAR
5 delegate : boolean;
6 INVAR assigned→ granted;
7 TRANS delegate→ next(granted) = 1;
8 TRANS ! assigned & !delegate→ ! granted;

Figure 9: C specification of scenario (3)

a false default value through the unless abbreviation in (11), and thus its behavior resembles the one of specification
in Figure 8 after the modification according to the scenario (4). As a consequence, its translation in SMV recalls the
specification in Figure 10. Notice that SMV is a propositional language and thus each C predicate has to be specified
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1 VAR
2 granted : boolean;
3 assigned : boolean;
4 IVAR
5 delegate : boolean;
6 INVAR assigned→ granted;
7 TRANS delegate→ next(granted) = 1;
8 TRANS granted→ next(granted) = 1|next(granted) = 0;
9 TRANS ! granted & ! assigned & !delegate→ ! granted;

Figure 10: SMV specification of scenario (4)

for each ground instance, e.g.

INIT ! delegated(pierS ilvio, pierPaolo, supervisor, extRating);
TRANS d1 pierS ilvio pierPaolo supervisor extRating→

next(delegated pierS ilvio pierPaolo supervisor extRating) = 1;
TRANS delegated pierS ilvio pierPaolo supervisor extRating→

next(delegated pierS ilvio pierPaolo supervisor extRating) = 1|
next(delegated pierS ilvio pierPaolo supervisor extRating) = 0;

TRANS ! delegated pierS ilvio pierPaolo supervisor extRating &
!d1 pierS ilvio pierPaolo supervisor extRating→
next(delegated pierS ilvio pierPaolo supervisor extRating) = 0;

where the ground predicates, e.g. delegated(pierS ilvio, pierPaolo, supervisor, extRating), stand for the correspond-
ing propositional letters.

7. Related Work

A preliminary version of this work is [1]. Here we have significantly extended [1] by providing: (i) a mapping
from elementary net and security policy into C, which also clearly shows how the specification of the workflow and
the security policy can be kept separate; (ii) an extended experimental analysis; (iii) a comparison between C and
SMV, which highlights some of the main features of the language C; (iv) am exaustive analysis of the related works
that covers all main aspects of our work; and (v) a detailed description of the reasoning tasks we analyze.

7.1. Action-based Specification Languages and Reasoning Tools

Action languages [11] serve for describing changes that are caused by performing actions. As predecessor of C,
action languageA, i.e., the propositional fragment of ADL, was presented in [32] to enhance the expressive power of
the STRIPS planning language [33] by allowing conditional effects. Action language B extendedA with static laws.
In action language C nondeterministic actions and the concurrent execution of actions are more conveniently described
than in B.4 Moreover, with C we are free to decide for each fluent whether or not to postulate inertia for it. Given it
is based on the theory of causal explanation proposed in [35], C distinguishes between asserting that a fact “simply”
holds, and the stronger assertion that “it is caused”. C+ [28] further extended C by allowing fluents to be multi-
valued, other than some other (minor) changes. The language C+ has been then extended in several directions, e.g.,
to include “additive fluents” [36], to represent numeric-valued fluents [37] and to include the possibility of referring
to other action descriptions in the definition of a new action domain [38]. The applicability of action language
C/C+ spans from the representation of “classical” AI problems [39], to planning [40], multi-agent domains [41]
and robotics [42], coupled with the reasoning capabilities of CC. C has been also used as “basic language” to

4In [34] is presented an alternative extension of the languageA to enable concurrent execution of actions.
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compare [43] and update [44] action domain descriptions. As far as other knowledge representation languages are
concerned, we herewith mention three more languages. The languageK [10] is a declarative planning language based
on principles and methods of logic programming. Its distinguished feature is that K describes transitions between
“states of knowledge” rather than between “states of the world” used in language C/C+. Like C/C+, it uses a notion
of causation. Correspondences between (fragments of) K and C are presented in the mentioned paper. Temporal
Action Logics Language T AL [12] uses a surface language L(ND) (Narrative Description Language) to provide a
high-level notation of “narratives”, i.e., collections of statements. There is the possibility to describe both the static
and dynamic aspects of a narrative. A narrative described in L(ND) is translated, after some steps, into a logically
equivalent first order theory. Dedicated algorithms are then used to reason about narratives. Finally, in [45] Concurrent
Transaction Logic (CTR) is proposed, and used as a language for specifying, analyzing and scheduling of workflows.

Action language C and system CC have been already used in the context of business processes [46, 47]. In [46]
the research objective is to describe, simulate, compose, verify, and develop Web services. However, this work does
not consider (complex) security policies to be modeled or verified. On the contrary, our approach takes into account
security policies and focuses on modeling and reasoning about business processes with the objectives of verifying
security properties, synthetising policies, and finding resource allocation plans. In [47] the author considers activities
with duration and the cost of a workflow execution but, differently from our approach, he does not take into account
complex security policies (i.e., agents are statically assigned to tasks) and mandatory requirements, e.g., SoD. This
means that it does not consider delegations either. The model is simpler than the one we consider, e.g., indirect effects
are not considered.

7.2. Automatic Verification of Business Processes under Authorization Constraints
The use of model checking for the automatic analysis of business processes has been put forward and investigated

in [5]. The paper shows that business processes with RBAC policies and delegation can be formally specified as
transition systems and that SoD properties can be formally expressed as Linear Temporal Logic formulas specifying
the allowed behaviors of the transition systems. The viability of the approach is shown through its application to
a version of the LOP and the NSMV [24] model checker is used to carry out the verification. However the LOP
version considered in [5] is much simpler and does not feature many of the aspects we consider, as already underlined
in Section 5.1. Our approach, by using an action language, allows for a more natural and concise modeling of the
business process and of the associated security policy. Moreover, our approach allows for the separate specification of
the workflow and of the security policy while this is not the case for the approach presented in [5], where even small
changes in the workflow or in the security policy may affect the specification of the whole transition system. Our
approach therefore considerably simplifies the specification process, thereby reducing the probability of introducing
bugs in the specification.

A formal framework that uses the SAL model checker [48] to analyze SoD properties as well as to synthesize a
resource allocation plan for a business process has been presented in [6]. However, differently from our approach,
this framework does not offer a natural modeling and RBAC is the only access control model supported (with tasks
rigidly associated with specific roles). Moreover, this work does not take into account the global state of the process
and assumes an interleaving semantics. This is not the case in our approach as it accounts for a global state that can
be affected by the execution of the tasks as well as for multiple actions to be executed simultaneously.

An approach to the combined modeling of business workflows with RBAC models is presented in [7]. The paper
proposes an extended finite state machine model that allows for the model checking of SoD properties by using the
model checker SPIN [49]. It considers a simple RBAC model only based on previous activation (or non-activation)
of roles and it does not take into account delegation. A number of techniques to alleviate the state explosion problem
are presented.

Some computational techniques for analyzing SoD by integrating workflows of the enterprise processes into the
RBAC framework is presented in [21]. It proposes an algorithm for generating mutually exclusive roles (MER) to
enforce SoD and verification algorithms to check if a role authorization together with a user-role assignmnent satisfy
static and dynamic SoD constraints. The algorithm proposed to check for dynamic SoD also returns a set of user-
role activations that guarantees to satisfy the SoD constraints. However the approach does not allow for the separate
specification of the workflow and the security policy as the workflow in input to the algorithms captures aspects related
to the policy, e.g. a conditional permission assignment has to be captured by duplicating the task and adding an if
condition to the workflow structure. Moreover it does not consider hierarchy of roles that by allowing senior roles to
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perform tasks assigned to junior roles would considerably affect the proposed approach. Also notice that MER is a
way to enforce a subset of SoD that, e.g., is not sufficient for the kind of SoD constraints we consider in our work.
Finally, [21] does not consider the problem of synthesizing the permission assignement relation while this is the case
in our approach.

The paper [22] proposes to model workflows and security policies in a notation based on Colored Petri nets, with
an automatic translation from the process model into a specification language and the usage of SPIN to verify SoD
properties. However, no provision is made for the assignment of an agent to multiple roles, role hierarchy, delegation,
and the global state of the process.

Other approaches that use (Colored) Petri Nets in this context are [51, 52]. The first paper introduced a model for
SoD in workflows that are specified with Petri nets, and allows for simulating and analyzing workflows and security
rules at build time; rules are given as facts of a logic program and expressed in propositional logic. However it
does not take into account, e.g., role hierarchy or conditions in the permission assignment and the reasoning task of
synthesizing the permission assignment. [52], which is much more recent than [51], presents a formal technique to
model and analyze RBAC using Colored Petri nets (CP-nets). The resulting CP- net model can be composed with
context-specific aspects of the application of interest, e.g. the workflow, however the approach focuses on the access
control policy and does not allow for the separate specification of the workflow and the access control policy in a
modular way. Moreover the use of CP-nets does not allow the use of advanced features as, e.g., implicit preconditions
of tasks. A graphical representation of the CP-nets models can be provided by using CPN tools.5 However the
approach does consider the problems of synthesizing permission assignments and resource allocation plans.

A security validation approach for business processes that employs state-of-the-art model checking techniques
and makes them usable by business analysts is presented in [59]. The paper considers business processes expressed in
BPMN enhanced with an application-dependent security policy, e.g. delegation of tasks, agent substitution, and fully
automates their translation into a formal model suitable to formal analysis while offering graphical user interfaces to
define security properties and easy-to-understand feedback for the business analysts. However the approach does not
consider some business processes features which are relevant for an accurate security analysis, e.g., non-deterministic,
indirect and conditional effects of tasks. This is due to the fact that these aspects are not directly available in the in-
dustrially suited languages, as BPMN, as their focus is on the definition of the procedural behavior of the process,
e.g. they define as output of a task all the data that can affected but they do not specify how and when their values
can be affected. It would thus be of great interest to (i) evaluate extentions to the languages used in the industrial
environments in order to support the declarative specification of advanced, relevant features and (ii) automate the pro-
cess of transformation of the extended languages into C. As an example, BPMN could be enhanced with annotations
supporting a declarative, C-like specification of, e.g., non deterministic, indirect and conditional effects of tasks. The
resulting model could then be automatically translated into a C specification as the one presented in Section 4. Notice
that the automation of the translation would make it language- and application-dependent, e.g. [59] relies on BPMN
and the industrial environment SAP Netweaver BPM [60]. We leave these research directions for future work.

7.3. Frameworks for Security Policies

An approach based on model checking for the analysis and synthesis of complex security policies is presented
in [19] and further developed in [20]. In particular, they consider fine-grained policies where permissions are the
ability of agents to access resources to read or write. They propose the RW (Read and Write) access control for-
malism based on propositional logic and define a machine-readable language to express policies modelled in the RW
formalism and properties to be verified against the model. The RW model checking algorithm and a related tool which
implements the algorithm are presented. The proposed framework is expressive and allows for the specification of
administrative policies either. However, there is no way to express mutual exclusions between the values of different
variables, e.g., it is not possible to express a rule of the form “an agent cannot be a student and a lecturer at the same
time”, and there is no way to express inheritance between roles. Moreover, such works do not take into account the
natural interactions between the workflow and the security policy while this is the case in our approach.

In [53, 54, 55, 56] rule-based policy specifications are presented and evaluated. In particular, [56] first presents a
broad view of different policy languages, and then a system for specifying and enforcing security and private policy,

5See, e.g., http://wiki.daimi.au.dk/cpntools/cpntools.wiki.
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called P [55]. However the focus of these works is on policies languages and enforcement from a run-time
point of view, usually in the context of the Semantic Web, i.e., they evaluate the existing languages and propose a
system for specifying and cooperatively enforcing security and privacy policies in open environments such as the
Web, where parties may get in touch without being previously known to each other. On the contrary our work focuses
on security policies in the context of business processes and thus wrt the execution of tasks within a workflow and on
a security analysis to be performed prior to the deployment of the system.

8. Conclusions

The design and verification of business processes under authorization constraints is a time consuming and error-
prone activity. Moreover, due to the complexity that business processes subject to a security policy may reach, it
can be difficult to verify even basic properties such as the executability of the process wrt the available resources by
manual inspection only, or by simulation.

In this paper we have presented an action-based approach to the formal specification and automatic analysis of
business processes under authorization constraints. With our approach we have been able to both greatly simplify the
specification activity, and allow for the separate specification of the workflow and of the associated security policy,
while retaining the ability to perform a fully automatic analysis of the specifications by using the Causal Calculator
CC. The experiments we have presented indicate that our approach can be profitably used to execute a number
of reasoning tasks particularly important from the application viewpoint, such as verify the process executability,
synthesize a permission assignment and identify resource allocation plans complying with the security policy.
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L. Peñalver, O. A. Dini, J. Mulholland, O. Nieto-Taladriz (Eds.), Proc. of First International Conference on Emerging Security Informa-
tion, Systems and Technologies, (SECURWARE 2007), 201–210, 2007.

[8] C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving, Cambridge University Press, 2003.
[9] M. Gelfond, V. Lifschitz, Representing Action and Change by Logic Programs, Journal of Logic Programming 17 (2/3&4) (1993) 301–321.

[10] T. Eiter, W. Faber, N. Leone, G. Pfeifer, A. Polleres, A logic programming approach to knowledge-state planning: Semantics and complexity,
ACM Transaction on Computational Logic 5 (2) (2004) 206–263.

[11] M. Gelfond, V. Lifschitz, Action Languages, Electronic Transaction on Artificial Intelligence 2 (1998) 193–210.
[12] P. Doherty, J. Gustafsson, L. Karlsson, J. Kvarnström, TAL: Temporal Action Logics Language Specification and Tutorial, Electronic Trans-

action on Artificiail Intelligence 2 (1998) 273–306.
[13] T. Eiter, W. Faber, N. Leone, G. Pfeifer, A. Polleres, A logic programming approach to knowledge-state planning: Semantics and complexity,

ACM Transactions on Computational Logic 5 (2) (2004) 206–263.
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