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The Disjunctive Temporal Problem (DTP) involves
conjunction of DTP constraints, each DTP constraint
being a disjunction of difference constraints of the form
x − y ≤ c, where x and y range over a domain of in-
terpretation, and c is a numeric constant. The DTP
is recognized to be an expressive framework for con-
straints modeling and processing. The addition of pref-
erences, in the form of weights associated to difference
constraints for their satisfaction, needs methods for
aggregating preferences among and within DTP con-
straints to compute meaningful and high quality solu-
tions, while further enhancing DTP expressivity and
applicability.

In this paper we consider an utilitarian aggrega-
tion of DTP constraints weights, and a prominent
semantic for aggregating such weights from its dif-
ference constraints weights that considers the maxi-

mum among the weights associated to satisfied differ-
ence constraints in it. We present a novel approach
that reduces the problem to Maximum Satisfiability
of DTPs (Max-DTPs). In this way, we can employ
off-the-shelf Max-DTP solvers with different solution
methods, ranging from Satisfiability Modulo Theories
(SMT), to interval-based and Boolean optimization-
based solvers. We then compare the performance of
our approach with different back-end solvers on both
randomly generated and real-world benchmarks, in
comparison with Maxilitis, the best solver that can
deal with DTPs with preferences using the aggregation
methods considered. Results show that the Yices SMT
solver is the best, and that Yices and the TSAT#

*This paper is an extended and revised version

of [MPP11].
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solver based on Boolean optimization can be orders of
magnitude faster than Maxilitis.
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1. Introduction

The Disjunctive Temporal Problem (DTP), in-
troduced in [SK98], is defined as a finite conjunc-
tion of DTP constraints, each DTP constraint be-
ing a finite disjunction of difference constraints of
the form x − y ≤ c, where x and y are arithmetic
variables ranging over a domain of interpretation
(the set of real numbers R or the set of integers
Z), and c is a numeric constant. The goal is to
find an assignment to the variables of the prob-
lem such that all DTP constraints are satisfied.
The DTP is recognized to be a good compromise
between expressivity and efficiency, given that the
arithmetic consistency of a set of difference con-
straints can be checked in polynomial time, and
has found applications in many areas such as plan-
ning, scheduling, hardware and software verifica-
tion, see, e.g., [ORC10,BBC+05].

With the addiction of preferences [PP04,MP05,
NO06,Mof11,MPP11], e.g., in the form of weights
associated to difference constraints for their satis-
faction, methods for aggregating preferences among
and within DTP constraints have to be con-
sidered to compute meaningful and high qual-
ity solutions, at the same time enhancing tempo-
ral constraints expressivity and applicability, see,
e.g., [MVSO04,BGPYS07,BGPYS11]. In the con-
text of temporal preferences, the mainly consid-
ered aggregation methods of constraints prefer-
ences are the maximin aggregation [KMMV03],
which considers the minimum value among the
satisfied constraints, and the utilitarian aggre-
gation [MMK+04,Kum04,PP05,Mof11], where the
solution quality is computed by the sum of the
weights of satisfied constraints. While the maximin
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aggregation method can be proper in some situ-
ations [KMMV03], the second is often preferred
given that it considers the global level of satisfac-
tion of the whole problem.

In this paper we consider an utilitarian aggrega-
tion of DTP constraints weights, and a prominent
semantic for aggregating such weights from the
difference constraints weights: the max semantic.
Such semantic, employed in, e.g., [MP05,Mof11]
(where the whole problem is called DTPP) assigns
as DTP constraint weight the maximum among
the weights associated to satisfied difference con-
straints in it.

We present a novel approach that reduces the
problem of finding utilitarian optimal solutions of
DTPs under the max semantic to Maximum Satis-
fiability of DTPs (Max-DTPs), a problem already
studied in, e.g., [NO06], we dealt with in [MPP11].
Our reduction allows us to employ off-the-shelf
Max-DTP solvers with different solution methods,
ranging from one based on Boolean optimization
[MPP11] with the TSAT# solver, to Satisfiabil-
ity Modulo Theories (SMT), e.g., Yices [DdM06],
and interval-based (HySAT [FHT+07] ) solvers.

We finally evaluate the performance of our ap-
proach on both randomly generated DTPs, which
is the most widely analyzed domain of benchmarks
in the literature of DTP with preferences, using a
well-known generation method from [SK00], and
non-random benchmarks from the SMT-LIB1 that
include DTPs with real- and integer-valued vari-
ables (e.g., the QF IDL logic), both augmented
with randomly generated weights. The analysis
considers our approach with the back-end solvers
mentioned above and Maxilitis [MP05,MP06,
Mof11], the best solver that can deal with DTPs
with preferences2 using the aggregation methods
considered. Results show that Yices is the best
among the back-end solvers employed, followed by
TSAT#, and that their performances can be or-
ders of magnitude better than Maxilitis.

To sum up the main contributions of this paper:

• We define a new reduction from DTPs with
preferences, as defined in this paper, to Max-
DTPs;

1http:www.smtlib.org.
2Maxilitis can solve problems with more complex pref-

erences than the one we consider in this paper, restricted
to integer-valued variables, see e.g., [Mof11].

• We implement the reduction, allowing for the
use of various back-end systems with different
input formats;

• We run a wide experimental analysis involving
both random and non-random benchmarks,
our approach with different back-end solvers
and the state-of-the-art solver Maxilitis.

The rest of the paper is structured as follows.
Section 2 introduces needed preliminaries about
DTPs and DTPs augmented with weights such as
Max-DTPs. Section 3 presents the reduction from
our problem of interest to Max-DTP. Next, bench-
marks and solvers employed are outlined in Sec-
tion 4, while the experimental analysis is presented
in Section 5. The paper ends by providing a dis-
cussion about the related work in Section 6, and
some conclusions and topics for future research in
Section 7.

2. Formal Background

Problems involving disjunction of temporal con-
straints have been introduced in [SK98], as an ex-
tension of the Simple Temporal Problem (STP)
[DMP91], which consists of conjunction of differ-
ent constraints. The problem was referred for the
first time as Disjunctive Temporal Problem (DTP)
in [ACG99].

Syntax. Let V be a set of symbols, called vari-

ables. A difference constraint is an expression of
the form x − y ≤ c, where x, y ∈ V, and c is a nu-
meric constant. A DTP constraint, or simply con-

straint, is a disjunctively intended set of difference
constraints. A DTP formula, or simply formula, is
a conjunctively intended set of DTP constraints.
A DTP constraint can be either hard, i.e., its satis-
faction is mandatory, or soft, i.e., its satisfaction is
not necessary but preferred, and in case of satisfac-
tion it contributes to the generation of high qual-
ity solutions according to the aggregation method
employed and defined below. Finally, a constraint

literal, or simply literal, is either a difference con-
straint or its negation. If a is a difference con-
straint, then a abbreviates ¬a and ¬a stands for a.
A conjunctive DTP constraint is a conjunctively
intended set of constraint literals.
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Semantics. Let the set D (domain of interpreta-

tion) be either the set of the real numbers R or the
set of integers Z. An assignment is a total function
mapping variables to D. Let σ be an assignment
and φ be a formula composed by hard DTP con-
straints only. Then, σ |= φ (σ satisfies a formula

φ) is defined as follows

– σ |= x − y ≤ c if and only if σ(x) − σ(y) ≤ c;
– σ |= ¬φ if and only if it is not the case that

σ |= φ;
– σ |= (∧n

i=1φi) if and only if for each i ∈ [1, n],
σ |= φi; and

– σ |= (∨n
i=1φi) if and only if for some i ∈ [1, n],

σ |= φi.

If σ |= φ then σ is also called a model of φ. We
also say that a formula φ is satisfiable if and only
if there exists a model for φ.
The DTP is the problem of deciding whether a
formula φ is satisfiable or not in the given domain
of interpretation D. Notice that the satisfiability
of a formula depends on D, e.g., the formula

x − y > 0 ∧ x − y < 1

is satisfiable if D is R but unsatisfiable if D is
Z. However, the problems of checking satisfiabil-
ity in Z and R are closely related and will be
almost always treated uniformly. Therefore, from
now on, we will drop the distinction (and we will
re-introduce it only when needed).

Example 1. The following formula, where D is Z

(x − y ≤ 7 ∨ z − x ≤ −20) ∧ z − y ≤ 10

is satisfiable and a model σ1 for it assigns x = 8,
y = 2 and z = 10.

2.1. Max-DTP

Consider now a DTP formula φ consisting of
both hard and soft DTP constraints, as an exten-
sion of the formula defined earlier. Intuitively, in
this case the goal is to find an assignment that
satisfies all hard DTP constraints and maximizes
the sum of weights associated to satisfied soft DTP
constraints.

The problem is called maximum satisfiability
of DTP, i.e., “Max-DTP” (resp. Weighted Max-
DTP) in case all DTP constraints are soft and
their weights are uniform (resp. non-uniform). The
same distinction holds for “Partial Max-DTP” and

“Partial Weighted Max-DTP” in case the formula

contains both hard and soft DTP constraints.3

We now formally define the more general type

of DTP formula we have described. A Partial

Weighted Max-DTP is a pair 〈φ,w〉, where

1. φ is a DTP formula consisting of both hard

and soft DTP constraints, and

2. w is a function that maps DTP constraints

to positive integer numbers.

The goal is to find an assignment σ′ for φ that

satisfies all hard DTP constraints and maximizes

the following linear objective function f

∑

d∈φ,σ′|=d

w(d) (1)

where d is a soft DTP constraint. We also refer to

σ′ as an optimal solution for φ.

Example 2. For simplicity, we herewith consider

arithmetic operators other than ≤. We remind

that all arithmetic operators can be easily recasted

in ≤.

The following formula φ, where D is Z

d1 : (x − y ≤ 7 ∨ z − x ≤ −20) ∧

d2 : x − y ≥ 10 ∧

d3 : z − x ≥ 0

is not satisfiable.

Consider w(d1)=3, w(d2)=1 and w(d3)=1. σ1 is

an optimal solution for φ as well as, e.g., σ2 that

assigns x = 30, y = 2 and z = 10, given that for

both assignments the corresponding value of f is

4.

In the following, we will always use Max-DTP to

refer to the optimization problem at hand, while

it will be clear from the context which is the par-

ticular optimization problem being solved.

3The names of the problems are borrowed from the ter-

minology used in the Max-SAT Evaluations and Compe-
titions, see, e.g., [ALMP08]. In related works, e.g., [dM,
NO06] always Max-SMT (meaning, e.g., Max-DTP in case
the optimization is defined on a DTP) is used.
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2.2. DTP with preferences

In this paper we consider a more general prob-
lem than Max-DTP: the DTP with preferences is
a pair 〈φ,w〉, where

1. φ is a DTP formula consisting of both hard
and soft DTP constraints, and

2. w is a (possibly partial) function that maps
difference constraints to positive integer num-
bers.

We consider an utilitarian method for aggregat-
ing soft DTP constraints weights: our goal is thus
to find an assignment σ′ for φ that

1. satisfies all hard DTP constraints; and
2. maximizes the sum of weights associated to

satisfied soft DTP constraints, i.e., maxi-
mizes the linear objective function (1).

It is left to define how weights are aggregated
within soft DTP constraints to define their weights
w(d) in (1). In our work we consider a prominent
semantics for this purpose.

The max semantic [MP05,Mof11] defines the
weight w(d) of a satisfied soft DTP constraint d
as the maximum among the weights of satisfied
difference constraints in d, i.e.

w(d) := max{w(dc) : dc ∈ d, σ′ |= dc}

Example 3. For simplicity, we again consider
arithmetic operators other than ≤. Consider the
same formula φ as in Example 2.

With d11 and d12 we refer to the first and sec-
ond different constraints in d1, respectively. Simi-
larly for d2 and d3. Consider w(d11)=2, w(d12)=3,
w(d21)=1 and w(d31)=1. σ1 is not anymore an op-
timal solution for φ, while σ2 is still an optimal
solution.

Note that the considered problem generalizes
the one we dealt with in [MPP11] in which

(i) all DTP constraints are soft; and
(ii) the weights associated to difference con-

straints in a soft DTP constraint are the same,

i.e., the Weighted Max-DTP.

3. Reduction to Max-DTP

As we said before, our main idea is to reduce the

problem of solving DTPs with preferences to Max-

DTPs. Hard DTP constraints remain unchanged

in our reduction, while soft DTP constraints need

special treatment.

We remind that the aggregation of preferences

within DTP constraints consider the max seman-

tic: intuitively, our idea is to express a soft DTP

constraint d using soft conjunctive DTP con-

straints that force the highest weight associated to

satisfied difference constraints in d to be assigned

as weight for d.

Consider a soft DTP constraint

d := dc1 ∨ ... ∨ dck (2)

where {dc1, . . . , dck} is the set of difference con-

straints in d. Further consider an ordering on the

difference constraints {dc1, . . . , dck} induced by

their weights, i.e., an ordering ≺ is which:

dci ≺ dcj iff w(dci) ≥ w(dcj), 1 ≤ i, j ≤ k, i 6= j.

For simplicity, from now on we consider the dif-

ference constraints in d to be re-ordered according

to ≺, i.e., in Eq. (2) dc1 is the difference constraint

whose w(dc1) is maximum among the weights in

d, i.e.,

w(dc1) ≥ w(dci), 2 ≤ i ≤ k

while w(dck) is such that

w(dck) ≤ w(dci), 1 ≤ i ≤ k − 1.

Consider w to be also defined on conjunctive

DTP constraints. Then, d is expressed by the fol-

lowing k conjunctive DTP constraints: for each

z = 1 . . . k

cz := ∧z−1

i=1¬dci∧dcz, w(d) = w(cz) = w(dcz)(3)

The constraints are to be intended in disjunc-

tion, and are mutually exclusive: considering an

assignment, at most one of the constraints can be

satisfied, and the relative weight is assigned to d.
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Example 4. Consider the soft DTP constraint d:

x − y ≤ 5 ∨ x − z ≤ 7 ∨ q − x ≤ 15

where x, y, z, q ∈ Z, and with w(x − y ≤ 5) =
4, w(x − z ≤ 7) = 2, and w(q − x ≤ 15) = 9, d
is expressed with the following 3 conjunctive con-
straints and related weights:

c1 := q − x ≤ 15, w(c1) = 9

c2 := ¬(q − x ≤ 15) ∧ x − y ≤ 5, w(c2) = 4

c3 := ¬(q−x ≤ 15)∧¬(x−y ≤ 5)∧x−z ≤ 7, w(c3) = 2

This starting point for our reduction seems to
lead to a quite natural problem representation, but
we have to consider that it generates conjunctive
constraints: this is not a problem in general, but
given that our ultimate goal is to evaluate our re-
duction method by using off-the-shelf solvers, and
that most (if not all) systems can only deal with
conjunction of DTP constraints, this reduction can
not be directly applied to compute optimal solu-
tions.

The transformation of a set of conjunctive DTP
constraints as defined before in (3) to Conjunctive
Normal Form (CNF) leads to the following k soft
DTP constraints: for each z = 1 . . . k

c′z := ∨z
i=1dci (4)

The intuition is that each new constraint c′z is
the result of applying a plain CNF transformation
to the first z conjunctive constraints in (3), i.e., to
the set {ci : 1 ≤ i ≤ z}.

The problem is now to define what are the
weights associated to each newly defined soft dif-
ference constraint, in order to reflect the seman-
tic of our problem. In the previous formulation (2)
the difference constraints occurred only once pos-
itively, but now there are possibly several positive
occurrences in the corresponding soft DTP con-
straints in (4) that influence constraints weights
adaptation and definition. Our solution starts from
the following fact: if the constraint c′k, i.e., the con-
straint that is equivalent to d in Eq. (2) is satis-
fied, we know that it contributes for at least the
weight of the difference constraint with minimal
weights, i.e., w(dck). Satisfying the constraint c′k−1

contributes for w(dck−1)−w(dck), and given that
a constraint c′z implies all constraints c′z′ , z′ > z,
these two soft constraints together contribute for

w(dck−1). This method is recursively applied up to
dc1, whose weight is w(dc1)−w(dc2) and, given it
implies all other introduced soft DTP constraints,
satisfying dc1 correctly corresponds to assign a
weight w(dc1) to d.

More formally, for each z = 1 . . . k

w(c′z) =

{

w(dck) z = k
w(dcz) − w(dcz+1) 1 ≤ z < k

(5)

and, given an assignment σ′

w(d) =
∑

z∈{1...k},σ′|=c′
z

w(c′z)

Example 5. The soft DTP constraints that ex-
press the constraint d with the associated weights
to its difference constraints from Example 4 are:

c′1 := q − x ≤ 15, w(c′1) = 5

c′2 := q − x ≤ 15 ∨ x − y ≤ 5, w(c′2) = 2

c′3 := q−x ≤ 15∨x− y ≤ 5∨x− z ≤ 7, w(c′3) = 2

Such reduction works correctly if we consider a
single soft DTP constraint. However, considering
a formula φ, given our reduction, it is possible to
have repeated soft DTP constraints in the reduced
formula φ′, e.g., if the same difference constraint
has highest weight in more than one constraint in
φ. In this case, intuitively, we want “each” single
occurrence in φ to count “separately”, given that
they take into account different contributions from
different soft constraints in φ. Thus, in this case,
a solution is to consider a single instance of the
resulting soft constraint in φ′ whose weight is the
sum of the weights of the various occurrences.

Moreover, the reduction is still correct assuming
that the difference constraints weights in a DTP
constraint induce a total order on these difference
constraints, i.e., if all weights are different as in
Example 4. Instead, our problem formulation al-
lows for repeated weights in a soft constraint, and
a further problem can arise with our reduction: if
there are at least two difference constraints with
the same weight in d, our reduction would con-
tain a DTP constraint with weight equals to 0, as
shown in Example 6, whose semantic is not clear
given the definition of a Maximum Satisfiability
problem.
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Example 6. Consider the soft DTP constraint d
in Example 4 but with w(x − z ≤ 7) = 4. The
soft DTP constraints that, given our encoding,
would express the constraint d with the associated
weights are:

c′1 := q − x ≤ 15, w(c′1) = 5

c′2 := q − x ≤ 15 ∨ x − y ≤ 5, w(c′2) = 0

c′3 := q−x ≤ 15∨x− y ≤ 5∨x− z ≤ 7, w(c′3) = 2

which contains a constraint (c′2) with weight 0.

In this case, the correct reduction works as fol-
lows. Consider Dc to be a set of difference con-
straints with the same weight. Thus, d can now be
expressed as

d := ∨dc∈Dc1
dc ∨ ... ∨ ∨dc∈Dc

k′
dc (6)

where dc is a difference constraint, and k′ ≤ k.
The reduced formula contains k′ soft DTP con-

straints: for each z = 1 . . . k′

c′z := ∨z
i=1 ∨dc∈Dci

dc

Further extending w to be defined on sets of dif-
ference constraints, given such a set Dc we define

w(Dc) = w(dc), dc ∈ Dc

The definition of w(c′z) is the same as (5) but
with Dc in place of dc, and k′ in place of k. Note
that the case where all difference constraints have
the same weight is mapped directly into a single
soft Max-DTP constraint.

Example 7. Consider the soft DTP constraint in
Example 4, but with the following weights: w(x−
y ≤ 5) = 4, w(x−z ≤ 7) = 4, and w(q−x ≤ 15) =
9. Thus, Dc1 = {q − x ≤ 15}, Dc2 = {x − y ≤
5, x − z ≤ 7}, w(Dc1) = 9 and w(Dc2) = 4.

d is expressed with the following 2 constraints
and related weights:

c′1 := q − x ≤ 15, w(c′1) = 5

c′2 := q−x ≤ 15∨x− y ≤ 5∨x− z ≤ 7, w(c′2) = 4

Satisfying x − y ≤ 5 or x − z ≤ 7 contributes
for a weight of 4, which is the weight of the whole
constraint if q − x ≤ 15 is not satisfied.

3.1. An alternative formulation

The formulation we have so far employed assigns
weights to soft DTP constraints of the reduced for-
mula. Given that not all systems can directly deal
with this formulation, we herewith present an al-
ternative formulation that can be useful at imple-
mentation level: the idea of this alternative is to

– add to each resulting soft DTP constraint a
“constraint selector” to take into account its
(un)satisfaction; and

– apply the weights over such selectors, instead
over soft constraints.

For simplicity we use Boolean variables as selec-
tors, but they can be simulated with dummy dif-
ference constraints: thus, there is no need to adapt
the syntax of our problem, and/or to extend the
definition of assignment and function w. Consider
first the simple setting in which (i) it is not the case
that the reduced formula contains the same DTP
constraint more than once, and (ii) all weights as-
sociated to difference constraints of the same soft
DTP constraints are different.

Each soft DTP constraint d is now expressed by
the following k constraints: for z = 1 . . . k

c′z := sz ∨ ∨z
i=1dci

and

w(sz) = w(c′z)

as in (5).
The goal is to find an assignment σ′ that mini-

mizes4 the following linear objective function:

∑

c′
z
∈φ′,σ′|=sz

w(sz) (7)

Intuitively, in case a soft constraint ∨z
i=1dci is

not satisfied, in order for c′z to be satisfied the re-
lated constraint selector must be true and the re-
lated weight is counted, otherwise is false.

4We can still maximize such function, by considering
“negated” constraint selectors in the formulation, but in
this case we have to update the definition of DTP con-
straints by allowing for constraint literals.
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Example 8. Consider the formula in Example 5.
The soft DTP constraints that express the con-
straint d with the associated weights to selectors
are:

c′1 := s1 ∨ q − x ≤ 15, w(s1) = 5

c′2 := s2 ∨ q − x ≤ 15 ∨ x − y ≤ 5, w(s2) = 2

c′3 := s3∨q−x ≤ 15∨x−y ≤ 5∨x−z ≤ 7, w(s3) = 2

The formulation can be (easily) extended to the
more general cases in which (i) and (ii) do not
hold as we have done in the first formulation.

4. Solvers and Benchmarks

In our experimental analysis, we consider a pool
of off-the-shelf solvers – some of them not tailored
to deal with DTPs with constant preferences as de-
fined in this paper. The reduction described in the
previous section allow us to use Max-DTP solvers
to cope with the reduced Max-DTPs problem. We
selected the following solvers:

HySAT [FHT+07] (ver. 0.86): it is an interval-
based solver. Its core algorithm is composed
by a tight integration between state-of-the-
art SAT solving techniques and Interval Con-
straints Propagation [Dav87]. HySAT also
features optimization, i.e., it can be used
to determine a solution which minimizes the
value of a given variable in the input formula,
which describes the whole optimization.

Maxilitis [MP05,MP06,Mof11]: it is an exten-
sion of the DTP solver Epilitis [TP03], and it
is able to directly deal with DTPs with prefer-
ences. It is based on a branch and bound algo-
rithm on top of which there are several prun-
ing techniques, e.g., forward checking, removal
of subsumed variables, and semantic branch-
ing.

TSAT# [MPP11]: it is an extension of the
TSAT++ solver [ACG+05] targeted to han-
dle preferences expressed as weights on DTP
constraints. In order to do that, it features
several systems in the generation phase of
candidate solutions able to solve Boolean op-
timization problems like Max-SAT, Pseudo-
Boolean (PB), and Answer Set Program-
ming (ASP) [GL88,GL91]. Such systems are
used as back-end instead of the SAT solver

simo [GMT03] of TSAT++. It also features
optimizations like IS2 pre-processing and
model reduction, see, e.g., [ACG+05,MPP11].
The employed Boolean Optimization solver in
the following analysis is the Max-SAT solver
IncWMaxSatz [LS07,LSL08].

Yices [DM06]: it is a SMT solver integrating a
Davis-Putnam-Logemann-Loveland (DPLL)-
based SAT solver with several specialized
first-order theories solvers. It also natively in-
cludes the feature to solve weighted MAX-
SMT formulas.

The HySAT solver relies on the alternative for-
mulation of Section 3.1.

We evaluated the solvers listed above using
both randomly generated benchmarks and non-
random ones from SMT-LIB. Random benchmarks
are the mostly widely used domain in the litera-
ture of DTPs with preferences (see, e.g., [MP05,
SPSP05,MP06,NK08,Mof11]). We used the well-
established generation method from [SK98,SK00]
extended with randomly generated weights. Thus,
DTPs with preferences are randomly generated by
fixing

– the number k of disjuncts per constraint;
– the number n of arithmetic variables;
– the number m of DTP constraints;
– a positive integer L such that all constants are

taken in [−L,L]; and
– a positive integer w such that the different

constraints weights are taken in [1, v].

In our experiments, we set k = {2, 3}, L = 100,
v = 100, n = {5, 10, 15}. For k = 2,5 we generated
benchmarks having the ratio m/n varying from 2
to 14, while considering k = 3, m/n ranges from 2
to 20. A weight w is generated and associated to
each difference constraint in a soft DTP constraint
(unless the difference constraint has been already
generated in other soft DTP constraints, in this
case it already has an associated weight).

For each tuple of values of the parameters, 10 in-
stances are generated. The range of m/n has been
used to obtain both satisfiable and unsatisfiable
DTPs. For each instance, 4 mutations are gener-
ated in which the first 0%, 25%, 50% and 75% of

5Note that while 2-CNF is a polynomial class of SAT, it
is not the case for DTPs with n = 2.



8 M. Maratea and L. Pulina / Solving DTPs with Preferences using Maximum Satisfiability

the DTP constraints are hard, and the remaining
are soft.

Considering the non-random benchmarks from
SMT-LIB, first we investigated formulas in QF IDL,
in order to select formulas that could be solved by
all the considered systems: we remind that Max-

ilitis does not support real-valued variables, and
parses only ≤ as arithmetic operator. The second
constraint in our choice is that we select bench-
marks for which only simple syntactic transforma-
tions are needed to satisfy our first constraint. The
main goal of the non-random benchmarks is to
test Maxilitis and our back-end solvers on struc-
tured benchmarks. In conclusion, we mainly fo-
cus on two families from SMT-LIB, namely dia-

monds [SSB02], and jobshop – 120 formulas re-
lated to the basic formulation6 of the Job Shop
Scheduling Problem in [PS82]. Also for these prob-
lems, for each instance the previously mentioned 4
mutations are generated.

5. Experimental Analysis

The analysis is presented in two parts. The first
subsection contains the results for problems with
soft constraints only, which is the most common
setting in the literature of DTPs with preferences.
The second subsection reports the results obtained
on problems with both hard and soft constraints.

5.1. Benchmarks with soft constraints only

The experiments here presented ran on PCs
equipped with a processor Intel Core 2 Duo run-
ning at 2.13 GHz, with 2 GB of RAM, and running
GNU Linux Ubuntu 2.6.32. The timeout for each
instance has been set to 900s. To prevent memory
swapping, we also set a memory limit at 2GB.

As first experiment, we evaluated the solvers on
random benchmarks having k = 2, and the results
are shown in Figure 1, in which the median of the
CPU times among the 10 generated instances is
plotted against m/n. Looking at the figure, and
considering the results related to the benchmarks
with integer-valued variables (left-most plots), we
can see that Yices is the only solver that never
reaches the time limit. In particular, considering
n = 5 (top-left plot in Figure 1), we can see

6Personal communications with Hyondeuk Kim.

that HySAT is not able to solve formulas beyond
m/n = 6, while performance of the remaining
solvers are in the same ballpark. From m/n = 10
to m/n = 14, both Maxilitis and Yices are
about one order of magnitude faster that TSAT#.
Considering now the results related to n = 10
(middle-left plot), we can see that benchmarks
with m/n > 4 are too hard for HySAT. We also
can see that again only Yices solves all bench-
marks without to exhaust its time resources: Max-

ilitis stops to m/n = 10, while TSAT# reaches
the time limit for m/n = 13. We also report that
the relationship between the performance of Max-

ilitis and Yices change substantially: while for
n = 5 they perform similarly, in this case, for
m/n > 4 Yices is at least one order of magnitude
faster. Also the relationship between Maxilitis

and TSAT# performances changes in this setting.
Finally, notice that Yices is not always the best
solver in this case: for m/n = 9 TSAT# is faster
by a factor of 3. Looking now at the results re-
lated to n = 15 (bottom-left plot), we can see that
the benchmarks turn to be very difficult for the
considered solvers. In particular, HySAT stops to
m/n = 3 and Maxilitis to m/n = 6. Despite the
fact that TSAT++ stops to m/n = 8, we can see
that it is the best solver for m/n = {5, 6, 7}, while
Yices is the best on higher values of m/n.

Considering now the results related to bench-
marks with real-valued variables, looking at Fig-
ure 1 (right-most plots), we can see that no results
are reported for Maxilitis because we remind
it can only solve benchmarks with integer-valued
variables. Considering n = 5 (top-right plot), we
can see that HySAT stops now at m/n = 10, while
considering both TSAT# and Yices, the picture
is similar as the related case for integer-valued vari-
ables. Considering n = 10, we can report anal-
ogous conclusions as the integer-valued variables
case. On the other hand, for n = 15 (bottom-
right plot), we can see that no solver is able to
solve benchmarks related to all values of the ratio
m/n: HySAT stops to m/n = 3, TSAT# stops
to m/n = 9, while Yices fails to solve benchmarks
for m/n = {11, 13, 14}. Notice that both HySAT

and TSAT# show slightly better performances
with respect to the integer-valued variables case,
while it is the converse for Yices.

Detailed results for these benchmarks contain-
ing, for each solver and ratio, the number of solved
instances, and the sum of their solving CPU times,
are reported in Table 1.



M. Maratea and L. Pulina / Solving DTPs with Preferences using Maximum Satisfiability 9

5 integer-valued variables 5 real-valued variables

2 3 4 5 6 7 8 9 10 11 12 13 14
0.001

0.01

0.1

1

10

100

1000

HySAT

Maxilitis

TSAT#

Yices

2 3 4 5 6 7 8 9 10 11 12 13 14
0.001

0.01

0.1

1

10

100

1000

HySAT

TSAT#

Yices

10 integer-valued variables 10 real-valued variables

2 3 4 5 6 7 8 9 10 11 12 13 14
0.001

0.01

0.1

1

10

100

1000

HySAT

Maxilitis

TSAT#

Yices

2 3 4 5 6 7 8 9 10 11 12 13 14
0.001

0.01

0.1

1

10

100

1000

HySAT

TSAT#

Yices

15 integer-valued variables 15 real-valued variables

2 3 4 5 6 7 8 9 10 11 12 13 14
0.001

0.01

0.1

1

10

100

1000

HySAT

Maxilitis

TSAT#

Yices

2 3 4 5 6 7 8 9 10 11 12 13 14
0.001

0.01

0.1

1

10

100

1000

HySAT

TSAT#

Yices

Fig. 1. Results of the evaluated solvers on random DTPs with preferences with k = 2. For each plot, in the x axis is shown
the m/n ratio, while in the y axis (in logarithmic scale) the related median CPU time (in seconds). HySAT performance is
depicted by blue diamonds, Maxilitis by using black boxes, while TSAT# and Yices results are denoted by red triangles
and green circles, respectively. Plots in the left-most column are related to random DTPs with preferences encoded with

integer-valued variables, while plots in the right-most column are related to random DTPs with preferences encoded with
real-valued variables. Plots in the same row are related to random DTPs with preferences having the same value of n, i.e.,
plots in the top-most row reports the results for n = 5, while plots in second and third row report the results related to

n = 10 and n = 15, respectively.



10 M. Maratea and L. Pulina / Solving DTPs with Preferences using Maximum Satisfiability
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Fig. 2. Results of the evaluated solvers on random DTPs with preferences with k = 3. Plots are organized as in Figure 1.

In our next experiment we evaluated the solvers

on random benchmarks having k = 3, and the

results are depicted in Figure 2. Looking at the

figure, and considering the results related to the

benchmarks with integer-valued variables (left-

most plots), we can see that Yices is confirmed

to be the best solver. Considering n = 5 (top-

left plot in Figure 2), we can see that it is faster

than all other solvers along all the values of the

m/n ratio. HySAT reaches the CPU time limit
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# m HySAT Maxilitis TSAT# Yices

vars int-valued real-valued int-valued int-valued real-valued int-valued real-valued

# Time # Time # Time # Time # Time # Time # Time

10 10 1.36 10 1.80 10 0.11 10 0.16 10 0.20 10 0.18 10 0.18

15 10 10.35 10 21.88 10 0.09 10 0.26 10 0.23 10 0.16 10 0.18

20 10 45.44 10 75.85 10 0.10 10 0.20 10 0.21 10 0.18 10 0.24

25 10 65.73 10 85.64 10 0.12 10 0.41 10 0.44 10 0.21 10 0.18

30 10 1453.72 10 1793.20 10 0.13 10 0.76 10 0.76 10 0.26 10 0.24

35 6 131.54 6 267.56 10 0.23 10 1.02 10 1.05 10 0.31 10 0.26

5 40 5 1815.10 6 2125.40 10 0.30 10 1.41 10 1.40 10 0.33 10 0.31

45 2 164.94 2 396.88 10 0.50 10 2.83 10 2.74 10 0.40 10 0.50

50 1 35.46 1 60.20 10 0.62 10 3.15 10 3.29 10 0.52 10 0.49

55 – – – – 10 1.38 10 5.80 10 5.76 10 0.75 10 0.75

60 – – – – 10 1.75 10 12.56 10 11.72 10 0.96 10 1.09

65 – – – – 10 2.48 10 16.87 10 17.40 10 1.57 10 1.72

70 – – – – 10 3.37 10 17.75 10 17.52 10 2.00 10 2.15

20 10 13.99 10 42.14 10 0.15 10 0.21 10 0.20 10 0.18 10 0.19

30 10 483.39 10 545.82 10 0.24 10 0.75 10 0.79 10 0.26 10 0.25

40 6 1239.34 5 753.75 10 1.42 10 1.53 10 1.38 10 0.36 10 0.38

50 2 1744.84 1 598.71 10 11.79 10 3.22 10 3.26 10 1.35 10 1.31

60 – – – – 10 73.24 10 6.15 10 6.26 10 4.68 10 4.84

70 – – – – 10 311.00 10 22.07 10 21.84 10 14.30 10 15.88

10 80 – – – – 10 1438.54 10 109.17 10 111.80 10 64.77 10 57.85

90 – – – – 6 1310.63 10 416.96 10 409.45 10 244.56 10 227.56

100 – – – – 2 671.17 9 353.62 9 370.92 10 600.00 10 520.23

110 – – – – 4 2932.86 10 1630.88 10 1646.45 10 1509.33 10 1408.65

120 – – – – – – 7 1471.99 7 1459.08 10 2513.06 10 2482.44

130 – – – – – – 4 1350.77 4 1284.93 10 2324.59 10 2493.96

140 – – – – – – 4 2251.60 4 2131.79 10 4136.29 9 3403.79

30 10 32.73 10 34.37 10 0.16 10 0.26 10 0.26 10 0.23 10 0.19

45 6 202.63 7 1210.79 10 6.07 10 1.16 10 1.19 10 0.49 10 0.61

60 – – – – 10 200.91 10 5.98 10 6.21 10 2.76 10 2.84

75 1 83.37 1 105.69 7 920.17 10 31.27 10 29.95 10 49.35 10 33.06

90 – – – – 3 1045.34 10 399.24 10 402.08 10 920.89 10 624.74

105 – – – – 1 489.08 9 553.22 9 566.27 10 1140.13 10 1213.47

15 120 – – – – – – 7 1951.63 7 1949.68 9 2458.48 10 3428.45

135 – – – – – – 2 475.80 2 465.05 10 3761.93 10 3629.82

150 – – – – – – – – – – 9 4344.51 8 2322.13

165 – – – – – – 1 248.94 1 249.05 6 1931.01 7 3291.59

180 – – – – – – – – – – 7 3146.96 7 2412.29

195 – – – – – – – – – – 6 2129.40 5 2405.48

210 – – – – – – – – – – 8 4759.54 8 4002.70

Table 1

Performance of the selected solvers on random DTPs with preferences with k = 2. The first columns reports the total
number of variables for each group of DTPs (column “# vars”), while the second one reports the number of constraints m.

It is followed by four groups of columns, and the label is the solver name. Each group is composed by four columns – with
the noticeable exception of the group related to Maxilitis – reporting the number of instances solved within the time limit
(“#”) and the total CPU time (“Time”) spent on the solved formulas, both in the case of integer- and real-valued variables

(groups “int-valued” and “real-valued”, respectively). In case a solver does not solve any instance, “–” is reported.
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at m/n = 7, while performance of Maxilitis and
TSAT# are comparable, with the noticeable ex-
ception of m/n = {10, 11, 12}, for which we report
that Maxilitis performance is significantly bet-
ter. Looking now at the results related to n = 10
(middle-left plot), HySAT stops at m/n = 3,
Maxilitis at m/n = 8, while TSAT++ stops at
m/n = 12. Notice that, with increasing values of
the ratio, such benchmarks are hard for Yices too:
it exhausts its CPU time for four values of m/n,
namely 15, 16, 18, and 20. We also report that
Yices is not the best solver along all benchmarks:
for m/n = 8, TSAT# is the best one.

Looking now at the results related to bench-
marks with real-valued variables (Figure 2 right-
most plots), first we can see that the picture is al-
most the same as the one described in the case of
integer-valued variable, with the noticeable excep-
tion that HySAT performance stops at m/n = 9
instead to 8. Also for values of n equal to both 10
and 15 we can draw analogous conclusions to the
integer-valued variables case.

Detailed results for the random benchmarks
having k = 3 are reported in Table 2, which is
organized similarly to Table 1.

Concerning non-random benchmarks, in our
next experiment we first tested the solvers on
the 40 smallest jobshop benchmarks in the pool
picked-up from the QF IDL logic of SMT-LIB and
we translated them – with minimal syntactical
modifications – to the related solvers format. Ta-
ble 3 shows the results of such analysis. Looking
at the table, we can see that the picture obtained
by the previous experiments is confirmed. Yices is
the most efficient tool to solve Max-DTPs among
the ones considered, followed by TSAT#. From
the table, we can also see that Maxilitis is con-
firmed to have good performances in the small-
est instances: its performance is comparable with
the ones obtained by both TSAT# and Yices.
About the diamonds benchmarks, we report that
the instances available having integer-valued vari-
ables (augmented with random weights to each dif-
ference constraints) are quite easy for all the tested
systems – i.e., all of them are solved very easily.
Thus, their results are not shown in detail.

5.2. Benchmarks with both hard and soft

constraints

Problems with only soft DTP constraints is
largely the most evaluated case in the literature of

DTPs with preferences. However, it is also of inter-
est to evaluate DTPs with both hard and soft con-
straints, generated as described in Section 4. The
analysis is performed with Yices, given it clearly
showed best performance considering the results
in the previous subsection.

All the experiments here presented ran on PCs
equipped with a processor Intel Core 2 Duo run-
ning at 2.20 GHz, with 2 GB of RAM, and running
GNU Linux Ubuntu 3.0.0. Time and memory lim-
its are the same used in the experiments described
in Section 5.1.

Here we present only the results obtained with
random DTPs having 15 integer-valued variables:
all plots and tables related to the remaining con-
figurations can be found in the web appendix
available at http://www.star.dist.unige.it/

~marco/Tsat/appendix-aicom-tsat.pdf.
In Figure 3 we can see the results related to the

performance of Yices on random DTPs with 15
integer-valued variables with both hard and soft
constraints. In general, we can see that increasing
the percentage of hard constraints in the formu-
las leads to easier formulas: this seems to be due,
at least partly, to the fact that as the percent-
age increases, “easy” unsatisfiable formulas are in-
troduced. Looking more in details at the figure,
and considering the results related to the bench-
marks with k = 2 (left-most plot), we can see
that the performance of Yices on benchmarks
with no hard constraints is always at least one or-
der of magnitude slower with respect to the per-
formance reported on the same benchmarks with
hard constraints – with the noticeable exception
of benchmarks with 25% of hard constraints for
m/n = {6, 10, 13, 14}.

Considering now the results related to k = 3 –
right-most plot on Figure 3 – we can see a slightly
different picture. Yices is able to solve all bench-
marks only in the case they have 75% of hard con-
straints, which is again the simplest setting. We
can also note that random DTPs with soft con-
straints only are not anymore the most difficult
ones. The results of our experiments show that,
in this case, random DTPs with 25% of hard con-
straints are not solved for m/n ≥ 10, while Yices

does not solve random DTPs with 50% of hard
constraints for m/n ≥ 12 – with the noticeable ex-
ception of m/n = 15 and m/n = 20. One differ-
ence wrt the case with k = 2 is that here there is
not anymore a relevant number of “easy” unsat-
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# m HySAT Maxilitis TSAT# Yices

vars int-valued real-valued int-valued int-valued real-valued int-valued real-valued

# Time # Time # Time # Time # Time # Time # Time

10 10 1.55 10 0.81 10 0.16 10 0.16 10 0.14 10 0.10 10 0.09

15 10 19.58 10 14.39 10 0.17 10 0.28 10 0.26 10 0.10 10 0.11

20 10 44.45 10 44.47 10 0.21 10 0.36 10 0.33 10 0.10 10 0.13

25 10 745.05 10 757.07 10 0.25 10 0.78 10 0.75 10 0.13 10 0.14

30 9 1371.35 9 906.93 10 0.39 10 1.02 10 0.96 10 0.16 10 0.17

35 8 1267.36 8 1254.11 10 0.56 10 1.73 10 1.56 10 0.18 10 0.17

40 3 269.49 3 205.75 10 1.64 10 3.72 10 3.21 10 0.24 10 0.24

45 – – 1 678.14 10 2.87 10 7.64 10 6.32 10 0.40 10 0.41

50 – – – – 10 4.58 10 12.46 10 10.24 10 0.49 10 0.49

5 55 – – – – 10 7.76 10 22.51 10 18.06 10 1.90 10 2.08

60 – – – – 10 11.26 10 33.35 10 27.93 10 1.52 10 1.63

65 – – – – 10 16.24 10 137.86 10 116.57 10 3.10 10 2.92

70 – – – – 10 23.23 10 114.07 10 99.11 10 2.28 10 2.38

75 – – – – 10 42.13 10 208.16 10 194.15 10 4.63 10 4.88

80 – – – – 10 37.08 10 157.06 10 147.05 10 3.80 10 4.03

85 – – – – 10 65.19 10 426.42 10 439.18 10 5.74 10 6.00

90 – – – – 10 67.53 10 188.84 10 236.76 10 5.09 10 5.10

95 – – – – 10 105.58 10 377.46 10 475.11 10 9.10 10 8.14

100 – – – – 10 127.78 10 1343.67 10 1398.79 10 9.67 10 9.73

20 10 17.68 10 7.36 10 0.14 10 0.32 10 0.30 10 0.21 10 0.14

30 10 454.36 10 197.49 10 0.38 10 0.80 10 0.62 10 0.26 10 0.17

40 6 2335.41 6 1624.25 10 6.24 10 2.66 10 2.16 10 0.56 10 0.27

50 2 426.78 3 1092.40 10 29.47 10 7.25 10 6.60 10 1.43 10 0.57

60 – – 1 894.44 10 228.32 10 14.98 10 13.59 10 3.48 10 1.47

70 – – – – 10 1221.70 10 80.84 10 68.60 10 18.41 10 10.13

80 – – – – 6 1924.68 10 578.70 10 578.82 10 128.38 10 78.01

90 – – – – 2 1070.29 10 2023.55 10 2018.22 10 213.21 10 152.49

100 – – – – 2 1061.79 9 1052.45 9 1073.69 10 359.95 10 495.64

10 110 – – – – – – 7 1902.56 7 1917.36 10 1811.45 10 1400.65

120 – – – – – – 6 1436.90 6 1457.58 10 2420.55 10 2914.64

130 – – – – – – – – – – 9 4347.10 9 3932.29

140 – – – – – – – – – – 8 3580.30 10 5573.39

150 – – – – – – – – – – 8 3366.58 9 4881.64

160 – – – – – – – – – – 7 3626.04 7 3789.90

170 – – – – – – – – – – 8 3767.18 10 5272.14

180 – – – – – – 1 0.02 1 0.03 7 3418.81 4 1822.88

190 – – – – – – – – – – 4 1880.34 4 2374.17

200 – – – – – – – – – – 4 1788.35 5 2112.90

30 10 52.84 10 32.87 10 0.16 10 0.30 10 0.31 10 0.16 10 0.20

45 9 2042.86 8 1841.60 10 8.75 10 1.18 10 1.29 10 0.24 10 0.28

60 1 145.27 1 127.76 10 526.96 10 11.56 10 13.76 10 3.00 10 2.72

75 – – – – 6 1078.61 10 70.34 10 89.63 10 12.17 10 10.16

90 – – – – 2 1394.12 10 823.85 10 868.09 10 220.44 10 194.18

105 – – – – – – 5 1442.68 8 2872.92 10 1235.27 10 1347.94

120 – – – – – – 2 864.75 4 2191.27 10 1993.83 10 1966.26

135 – – – – – – 1 647.31 1 354.63 10 1756.30 10 1737.47

150 – – – – – – – – – – 7 1274.67 7 2290.38

15 165 – – – – – – – – – – 8 1832.83 8 2471.95

180 – – – – – – – – – – 10 2085.46 10 2018.39

195 – – – – – – – – – – 9 3825.19 5 2251.18

210 – – – – – – – – – – 8 3222.01 8 2347.85

225 – – – – – – – – – – 7 2945.63 9 3358.87

240 – – – – – – – – – – 9 3086.62 9 3053.98

255 – – – – – – – – – – 5 1968.85 6 2554.17

270 – – – – – – – – – – 7 2592.21 8 3064.55

285 – – – – – – – – – – 8 2355.08 7 2440.89

300 – – – – – – – – – – 8 2484.74 8 2064.53

Table 2

Performance of the selected solvers on random DTPs with preferences with k = 3. The table is organized as Table 1.

isfiable formulas generated, and the very few gen-

erated (see, e.g., the very last number in the last

row of Table 5) are not that easy.

Detailed results for random benchmarks with 15

integer-valued variables having both hard and soft

constraints are reported in Tables 4 and 5. For

each setting, the number of solved instances (out

of 10) with Yices and the sum of their CPU times
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Instance N HySAT Maxilitis TSAT# Yices

# Time # Time # Time # Time

jobshop2* 4 4 0.17 4 0.03 4 0.05 4 0.04

jobshop4* 4 4 604.70 4 0.13 4 0.25 4 0.07

jobshop6* 4 1 704.94 3 618.15 4 5.76 4 0.20

jobshop8* 4 – – – – 4 597.19 4 41.55

jobshop10* 4 – – – – 3 1262.99 4 722.02

jobshop12* 4 – – – – – – 4 989.49

jobshop14* 4 – – – – – – 4 1047.87

jobshop16* 4 – – – – – – 4 1292.09

jobshop18* 4 – – – – – – 4 1623.10

jobshop20* 4 – – – – – – 4 1910.31

Table 3

Performance of the selected solvers on a pool of jobshop benchmarks. The table consists of ten columns: the first one reports

the group of benchmarks (column “Instances”), while the second one reports the total number of formulas within the group
(column “N”). It is followed by four groups of columns, and the label is the solver name. Each group is composed by two
columns, reporting the number of instances solved within the time limit (“#”) and the total CPU time (“Time”) spent on
the solved formulas. In case a solver reaches the time limit on all instances, “–” is reported.

is reported. Moreover, a separate analysis taking
account unsatisfiable formulas is also shown.

Our last experiment concerns the jobshop

benchmarks presented in Section 4. In Table 6 we
report the results of the experiment. Looking at
the table, we notice that the general pattern iden-
tified for random benchmarks is maintained, with
some exceptions on the bigger instances.

6. Related Work

Maxilitis [MP05,Mof11], WeightWatcher

[MP06] and ARIO [SPSP05] implement different
approaches for solving DTP with preferences as
defined in [PP04]. Maxilitis is a direct exten-
sion of the DTP solver Epilitis [TP03], while
WeightWatcher uses an approach based on
Weighted Constraints Satisfaction problems, even
if the two methods are similar (as mentioned in,
e.g., [MP06]). ARIO, instead, relies on an ap-
proach based on Mixed Logical Linear Program-
ming (MLLP) problems. Such systems deal with
more complex preferences than the one we deal
with in this paper. In our analysis we have used
Maxilitis because the results in, e.g., [Mof11]
clearly indicates its superior performance. As we
already said, the extension for DTPs defined
in [PP04] is different wrt the one in this paper:
in [PP04] preferences are not limited to be con-
stants. Moreover, in this paper we have tested

the version of Maxilitis that uses a branch and
bound approach for reaching the optimal solu-
tion, called Maxilitis-BB in [Mof11], and that
on our benchmarks is consistently better than
Maxilitis-IW, a further version of Maxilitis

(IW staying for Iterative Weakening) that searches
for solutions with a progressively increasing num-
ber of violated constraints. formulation is that we
can

About the relation of our approach wrt Max-

ilitis and WeightWatcher, we would like to
notice first that we do not deal with a subset
of the problems they can deal with given that,
e.g., we can solve problems with real-world vari-
ables. Moreover, our approach has a number of ad-
vantages: first, it can be easily extended to deal
with generic Boolean combination of difference
constraints, where a DTP constraints is a set of
constraint literals ( all our back-end solvers can
deal with these problems), while the solvers de-
fined above are tailored for conjunction of disjunc-
tions of difference constraints. Then, we can take
easily advantage from the availability of (more) ef-
ficient solvers that can solve Max-DTPs, by adding
to our back-end a new solver, or updating an al-
ready existing solver with a new version. Last, our
framework seems to be more flexible to include
same further extensions, e.g., to allow for both
hard and soft difference constraints in DTP con-
straints, with the related update in the definition.
Maxilitis, however, allows for soft difference con-
straints only.
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Fig. 3. Results of Yices on random DTPs – 15 integer-valued variables – with both hard and soft constraints. For each plot,
in the x axis is shown the m/n ratio, while in the y axis (in logarithmic scale) the related median CPU time (in seconds).

Yices performance on benchmarks without hard constraints (“0–100”) is depicted by blue diamonds. Performance of Yices

on benchmarks having 25% of hard constraints is depicted by using black boxes (“25–75”), while performance on benchmarks
having an equal portion of hard and soft constraint is denoted by red triangles (“50–50”). Finally, green circles denotes
performance of Yices on benchmarks having 75% of hard constraints (“75–25”). The left-most plot shows the results on

benchmarks with k = 2, while in the right-most plot we report the results related to k = 3.

m 0–100 25–75 50–50 75–25

total opt unsat total opt unsat total opt unsat

# Time # Time # Time # Time # Time # Time # Time # Time # Time # Time

30 10 0.04 10 0.04 10 0.04 – – 10 0.10 10 0.10 0 0.00 10 0.08 10 0.08 – –

45 10 0.21 10 0.17 10 0.17 – – 10 0.05 10 0.05 0 0.00 10 0.12 10 0.12 – –

60 10 1.27 10 0.38 10 0.38 – – 10 0.22 10 0.22 0 0.00 10 0.15 10 0.15 – –

75 10 26.65 10 2.40 10 2.40 – – 10 0.76 10 0.76 0 0.00 10 0.50 10 0.50 – –

90 10 666.66 10 22.45 10 22.45 – – 10 1.48 10 1.48 0 0.00 10 0.91 7 0.41 3 0.50

105 10 757.33 10 51.23 10 51.23 – – 10 5.57 10 5.57 0 0.00 10 1.64 6 0.59 4 1.04

120 10 2385.65 10 494.38 10 494.38 – – 10 5.18 9 5.06 1 0.11 10 1.66 4 0.83 6 0.83

135 10 2224.69 10 1461.37 10 1461.37 – – 10 7.99 8 5.87 2 2.12 10 3.02 1 0.12 9 2.89

150 10 3368.71 10 1486.14 10 1486.14 – – 10 7.87 9 7.79 1 0.08 10 1.46 – – 10 1.46

165 9 3345.03 9 1885.58 9 1885.58 – – 10 7.53 7 6.76 3 0.77 10 1.46 – – 10 1.46

180 10 3847.37 8 1627.48 8 1627.48 – – 10 9.72 4 5.84 6 3.87 10 1.88 – – 10 1.88

195 7 2046.42 8 735.21 8 735.21 – – 10 3.30 3 1.12 7 2.18 10 1.98 – – 10 1.98

210 9 3373.26 8 1128.82 8 1128.82 – – 10 8.90 1 0.43 9 8.47 10 1.22 – – 10 1.22

Table 4

Results of Yices on random DTPs with both hard and soft constraints, having k = 2 and 15 integer-valued variables. The first
column reports the number of constraints m, and it is followed by four group of columns. The first one reports the performance
of Yices on benchmarks without hard constraints (“0–100”), while the second one (“25–75”) reports performance of Yices

on benchmarks having 25% of hard constraints. Last two groups report performance of Yices on benchmarks having an equal

portion of hard and soft constraint, and on benchmarks having 75% of hard constraints (“75–25”), respectively. Considering
last three groups, for each one we report the global performance (group “total”), and we detail the performance of Yices

both when an optimum has been found (group “opt”) and when the instance is unsatisfiable (group “unsat”). As in Tables 1

and 2, columns “#” and “Time” report the number of instances solved within the time limit and the total CPU time,
respectively. In case a solver reaches the time limit on all instances, “–” is reported.

About the random benchmarks set, note that the DTP is already a “difficult” problem, and the
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m 0–100 25–75 50–50 75–25

total opt unsat total opt unsat total opt unsat

# Time # Time # Time # Time # Time # Time # Time # Time # Time # Time

30 10 0.08 10 0.04 10 0.04 – – 10 0.04 10 0.04 – – 10 0.04 10 0.04 – –

45 10 0.17 10 0.09 10 0.09 – – 10 0.07 10 0.07 – – 10 0.06 10 0.06 – –

60 10 3.33 10 0.56 10 0.56 – – 10 0.11 10 0.11 – – 10 0.10 10 0.10 – –

75 10 24.90 10 0.94 10 0.94 – – 10 0.19 10 0.19 – – 10 0.11 10 0.11 – –

90 10 240.53 10 3.92 10 3.92 – – 10 0.45 10 0.45 – – 10 0.15 10 0.15 – –

105 10 1246.08 10 95.22 10 95.22 – – 10 1.85 10 1.85 – – 10 0.23 10 0.23 – –

120 10 2165.72 10 986.05 10 986.05 – – 10 7.59 10 7.59 – – 10 0.31 10 0.31 – –

135 10 1977.29 8 2603.17 8 2603.17 – – 10 125.10 10 125.10 – – 10 1.50 10 1.50 – –

150 7 1366.11 3 945.66 3 945.66 – – 10 933.56 10 933.56 – – 10 1.53 10 1.53 – –

165 8 1982.32 3 1919.72 3 1919.72 – – 9 2167.42 9 2167.42 – – 10 11.63 10 11.63 – –

180 10 2299.02 3 1653.00 3 1653.00 – – 7 2392.98 7 2392.98 – – 10 23.06 10 23.06 – –

195 9 4117.52 1 626.02 1 626.02 – – 3 1191.33 3 1191.33 – – 10 43.57 10 43.57 – –

210 8 3368.95 1 600.03 1 600.03 – – – – – – – – 10 105.56 10 105.56 – –

225 7 3090.40 2 1526.14 2 1526.14 – – 4 1692.46 4 1692.46 – – 10 165.96 10 165.96 – –

240 9 3537.82 1 731.47 1 731.47 – – 3 1324.35 3 1324.35 – – 10 176.86 10 176.86 – –

255 5 2099.09 – – – – – – 4 1274.11 4 1274.11 – – 10 236.21 10 236.21 – –

270 7 2694.83 – – – – – – 5 1868.65 5 1868.65 – – 10 280.25 10 280.25 – –

285 8 2461.61 – – – – – – 8 2006.49 8 2006.49 – – 10 152.43 10 152.43 – –

300 8 2609.72 – – – – – – 6 1669.38 6 1669.38 – – 10 506.92 8 197.07 2 309.85

Table 5

Results of Yices on random DTPs with both hard and soft constraints, having k = 3 and 15 integer-valued variables. The

table is organized as Table 4.

Instance 0–100 25–75 50–50 75–25

# Time # Time # Time # Time

jobshop2* 4 0.01 4 0.01 4 0.00 4 0.00

jobshop4* 4 0.04 4 0.02 4 0.02 4 0.03

jobshop6* 4 0.16 4 0.16 4 0.08 4 0.27

jobshop8* 4 0.23 4 0.37 4 0.20 4 4.22

jobshop10* 4 324.69 4 596.45 4 5.94 4 0.51

jobshop12* 4 1480.24 4 1865.46 4 576.43 4 22.17

jobshop14* 4 962.49 4 1512.17 4 1752.04 4 5.46

jobshop16* 3 897.51 4 1407.23 4 1249.45 3 1.68

jobshop18* 4 1445.48 4 1339.54 1 346.75 4 691.39

jobshop20* 4 1620.85 4 1506.04 3 1453.52 3 30.75

Table 6

Results of Yices on a pool of jobshop benchmarks with both hard and soft constraints. The table consists of nine columns:
the first one reports the group of benchmarks (column “Instance”), and it is followed by four groups of columns, organized

similarly to Table 4.

analysis in literature on DTPs has been performed

on problems with few tens of variables for the set-

ting used in this paper: adding preferences further

increase the difficulty. An exception to this trend

is [NK08], where the CircuitTSAT solver is pre-

sented. CircuitTSAT is based on a circuit-based

representation of the problem in CNF, and on solv-

ing with SAT solvers. In [NK08] DTPs with many

variables n are used, but the analysis in focused on

problems with k > 2 having ratios m/n such that
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the majority of the instances are satisfiable. On
these instances, CircuitTSAT performs faster
than competing solvers (i.e., TSAT# and Yices

without optimizations). CircuitTSAT does not
deal with preferences, and relies on approximation
when dealing with real-valued variables.

In the following, we describe in more details the
back-end solvers we evaluated in this paper.

TSAT# [MPP11] is an extension of the DTP
solver TSAT++ to deal with Max-DTPs. It
implements a classical generate and test ap-
proach, but the generation of candidate solu-
tions is performed with Boolean optimization
(i.e., Max-SAT, PB and ASP) solvers, instead
of SAT solvers, to take into account constraints
weights. An advantage of TSAT# is that it can
fruitfully relying on continuous improvements in
the performance of its back-end solvers, thanks
to Max-SAT, PB, and ASP competitions7 (see,
e.g., [ALMP08,CIR+11] for recent reports). The
solvers we tested in our analysis are: minisat+

ver. 1.14 [ES06], MiniMaxSat ver. 1.0 [HLO08],
IncWMaxSatz [LS07,LSL08], PBclasp ver. 1.0
and akmaxsat [Kug10], the version submitted
to the last Max-SAT 2010 Competition.8 min-

isat+ solves the problem by compilation to a
SAT problem, and iteratively calling the SAT
solver minisat [ES03] with improved solution
until an unsatisfiable formula is found. Mini-

MaxSat is built on top of minisat+ ver 1.13, with
theory specific pre-processing techniques. IncW-

MaxSatz extends the WMaxSatz [LMMP09]
and the MaxSatz [LS07] Max-SAT solvers. ak-

maxsat is based on an algorithm with improved
detection of disjoint inconsistent sub-formulas,
while PBclasp compiles a PB problem into an
ASP problem and calls the ASP solver clasp

[GKNS07] ver. 1.3.6 .
The HySAT solver [FHT+07] core algorithm

is composed by a tight integration between the
DPLL algorithm [DP60,DLL62] and Interval Con-

7See, e.g., http://www.maxsat.udl.cat/, http:

//www.cril.univ-artois.fr/PB10/ and https:

//www.mat.unical.it/aspcomp2011/ for references to
related Evaluations and Competitions.

8See http://www.lsi.upc.edu/~fheras/docs/m.

tar.gz, http://minisat.se/MiniSat+.html,http:
//www.uni-ulm.de/fileadmin/website_uni_ulm/

iui.inst.190/Mitarbeiter/kuegel/testdata.tgz,
http://www.cs.sysu.edu.cn/~lh/IncWMaxSatz.zip

and http://potassco.svn.sourceforge.net/viewvc/

potassco/trunk/pbclasp.tar.gz.

straints Propagation [Dav87] in order to mainly
deal with non-linear arithmetic constraints, also
involving transcendental functions. It can also be
seen as an SMT solver mainly designed for prob-
lems falling in the QF NRA logic of SMT compe-
titions (SMT-COMP)9 involving non-linear con-
straints.

About SMT solvers, Barcelogic [NO06,NOT06],
Yices [DdM06] and Z3 [dMB08] can solve prob-
lems involving Boolean combinations of difference
constraints, in conjunction with maximum satis-
fiability. They all feature the lazy SAT-based ap-
proach [Seb07]. We have only used Yices in our
analysis because Z3 is limited to solve Partial
Max-DTPs, and the version of Barcelogic that
deals with Max-DTPs is currently not available.10

7. Conclusions and Future Work

In this paper we have presented a new approach
for solving DTPs with constant preferences ex-
pressed on different constraints whose aggrega-
tion among DTP constraints considers an utili-
tarian method, and the aggregation within DTP
constraints follows the max semantic. Our ap-
proach solves the problem by reducing it to a
weighted maximum satisfiability of DTPs, we dealt
with in [MPP11]. The reduction has been imple-
mented, allowing for a wide set of off-the-shelf sys-
tems that can deal with Max-DTPs to be used
as back-end. Our experimental analysis, conducted
on both randomly generated and real-world prob-
lems, shows that the Yices SMT solver is the best
back-end solver among those analyzed, followed by
TSAT#, and that with both systems benchmarks
can be solved orders of magnitude faster than with
Maxilitis, the state-of-the-art systems for solving
DTPs with preferences.

The future work includes extending our ap-
proach to deal with more complex forms of pref-
erences, e.g., the one outlined in the previous sec-
tion about DTP constraints having both hard and
soft difference constraints, and/or the one defined
in [PP04].

9http://www.smtcomp.org/ and see, e.g. [BDOS08].
10Personal communications with Albert Oliveras.
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