
ME-ASP: A Multi-Engine Solver for Answer Set
Programming

Marco Maratea, Luca Pulina, and Francesco Ricca

1DIBRIS, Univ. degli Studi di Genova, Viale F.Causa 15, 16145 Genova, Italy
2POLCOMING, Univ. degli Studi di Sassari, Viale Mancini 5, 07100 Sassari, Italy

3Dipartimento di Matematica, Univ. della Calabria, Via P. Bucci, 87030 Rende, Italy
marco@dist.unige.it, lpulina@uniss.it, ricca@mat.unical.it

Abstract. In this paper we presentME-ASP, a new multi-engine solver for An-
swer Set Programming (ASP).ME-ASP relies on machine learning techniques for
inductively determining its algorithm selection strategy for choosing the ”most
promising” ASP solver among the ones available. We describe the architecture
of ME-ASP and the classification methods it supports. An experimental analysis,
performed on benchmarks from the 3rd ASP competition, shows howME-ASPper-
forms with the various methods, and outlines thatME-ASP can have very robust
performance.

1 Introduction

In order to improve the robustness, i.e., the ability to perform well across a wide set
of problem domains, and the efficiency, i.e., the quality of solving a high number of
instances, of solving methods for Answer Set Programming (ASP) [14, 24, 27, 23, 15,
3], the followed directions are(i) extending existing state-of-the-art techniques imple-
mented in ASP solvers, or(ii) designing from scratch a new ASP system with powerful
techniques and heuristics. An alternative to these trends is to build on top of state-of-the-
art solvers, leveraging on a number of ASP systems, e.g., [33, 20, 21, 11, 25, 19, 33], and
applying machine learning techniques for inductively choosing, among a set of available
ones, the “best” solver on the basis of the characteristics,called features, of the input
program. This approach falls in the framework of thealgorithm selection problem[32].
Related approaches, following a per-instance selection, have been exploited for solv-
ing propositional satisfiability (SAT), e.g., [36], and Quantified SAT (QSAT), e.g., [29]
problems. In ASP, an approach for selecting the “best”CLASP internal configuration
is followed in [10], while another approach that imposes learned heuristics ordering to
SMODELS is shown in [2].

In this paper we pursue the alternative direction, by presenting ME-ASP, a new multi-
engine solver for Answer Set Programming (ASP). We first define a set of cheap-to-
compute syntactic features that describe several characteristics of ASP programs, paying
particular attention to ASP peculiarities. We then computesuch features for the grounded
version of all problems submitted to the “System Track” of the 3rd ASP Competition [4]
falling in the “NP” and “Beyond NP” categories of the competition: this track is well
suited for our study given that(i) contains many ASP instances,(ii) the language spec-
ification, ASP-Core, is a common ASP fragment such that(iii) many ASP systems can
deal with it.

Then, we apply classification methods that, starting from the features of the instances
in a trainingset, and the solver performances on these instances, inductively learn gen-
eral algorithm selection strategies to be applied to atestset. We consider five well-known
multinomial classification methods, some of them considered in [29]. We perform a
number of analyses considering different training and testsets taken from the grounded
instances submitted to the System Track of the 3rd ASP competition. Our analysis shows
that ME-ASP has very robust performance, and can solve significantly more instances
than all the solvers that entered the 3rd ASP competition, DLV and CLASPFOLIO, the
latter being the implementation of the approach in [10].

The paper is structured as follow. Section 2 contains preliminaries about ASP and
Machine Learning. Section 3 then describes our benchmarks setting, in terms of dataset
and solvers employed. Section 4 defines how features and solvers have been selected, and
presents the classification methods employed. Section 5 shows the performance analysis,
while Section 6 ends the paper with conclusions.

2 Preliminaries

In this section we recall some preliminary notions concerning answer set programming
and machine learning techniques for algorithm selection.

2.1 Answer Set Programming

Answer Set Programming (ASP) [14, 24, 27, 23, 15, 3] is a declarative programming for-
malism proposed in the area of non-monotonic reasoning and logic programming. The
idea of ASP is to represent a given computational problem by alogic program whose
answer sets correspond to solutions, and then use a solver tofind those solutions [23].

In the following, we recall both the syntax and semantics of ASP. The presented
constructs are included in ASP-Core [5], which is the language specification that was
originally introduced in the 3rd ASP Competition [5] as wellas the one employed in
our experiments (see Section 3). Hereafter, we assume the reader is familiar with logic
programming conventions, and refer the reader to [15, 3, 13]for complementary intro-
ductory material on ASP, and to [4] for obtaining the full specification of ASP-Core.

Syntax. A variable or a constant is aterm. An atomisp(t1, ..., tn), wherep is apredicate
of arityn andt1, ..., tn are terms. Aliteral is either apositive literalp or anegative literal
not p, wherep is an atom. A(disjunctive) ruler is of the form:

a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm.

wherea1, . . . , an, b1, . . . , bm are atoms. The disjunctiona1 ∨ . . . ∨ an is theheadof r,
while the conjunctionb1, . . . , bk, not bk+1, . . . , not bm is thebodyof r. We denote by
H(r) the set of atoms occurring in the head ofr, and we denote byB(r) the set of body
literals. A rule s.t.|H(r)| = 1 (i.e.,n = 1) is called anormal rule; if the body is empty
(i.e. k = m = 0) it is called afact (and the :– sign is omitted); if|H(r)| = 0 (i.e.,
n = 0) is called anintegrity constraint. A rule r is safeif each variable appearing inr
appears also in some positive body literal ofr.

An ASP programP is a finite set of safe rules. Anot-free (resp.,∨-free) program is
calledpositive(resp.,normal). A term, an atom, a literal, a rule, or a program isground
if no variable appears in it.

Semantics. Given a programP, theHerbrand UniverseUP is the set of all constants
appearing inP, and theHerbrand BaseBP is the set of all possible ground atoms which
can be constructed from the predicates appearing inP with the constants ofUP . Given a
ruler, Ground(r) denotes the set of rules obtained by applying all possible substitutions
from the variables inr to elements ofUP . Similarly, given a programP, the ground
instantiationof P is Ground(P) =

⋃
r∈P

Ground(r). An interpretationfor a program
P is a subsetI of BP . A ground positive literalA is true (resp., false) w.r.t.I if A ∈ I
(resp.,A 6∈ I). A ground negative literalnot A is true w.r.t.I if A is false w.r.t.I;
otherwisenot A is false w.r.t.I.

The answer sets of a programP are defined in two steps using its ground instantia-
tion: First the answer sets of positive disjunctive programs are defined; then the answer
sets of general programs are defined by a reduction to positive ones and a stability con-
dition.

Let r be a ground rule, the head ofr is true w.r.t.I if H(r)∩ I 6= ∅. The body ofr is
true w.r.t.I if all body literals ofr are true w.r.t.I, otherwise the body ofr is false w.r.t.
I. The ruler is satisfied(or true) w.r.t.I if its head is true w.r.t.I or its body is false
w.r.t. I. Given aground positiveprogramPg, ananswer setfor Pg is a subset-minimal
interpretationA for Pg such that every ruler ∈ Pg is true w.r.t.A (i.e., there is no other
interpretationI ⊂ A that satisfies all the rules ofPg). Given agroundprogramPg and an
interpretationI, the (Gelfond-Lifschitz)reduct[15] of Pg w.r.t. I is the positive program
P I

g , obtained fromPg by (i) deleting all rulesr ∈ Pg whose negative body is false w.r.t.
I, and (ii) deleting the negative body from the remaining rules ofPg.

An answer set (or stable model) of a general programP is an interpretationI of P
such thatI is an answer set ofGround(P)I .

2.2 Multinomial classification for Algorithm Selection

With regard to empirically hard problems, there is rarely a best algorithm to solve a
given combinatorial problem, while it is often the case thatdifferent algorithms perform
well on different problem instances. Among the approaches for solving this problem, in
this work we rely on a per-instance selection algorithm in which, given a set offeatures
– i.e., numeric values that represent particular characteristics of a given instance –, it is
possible to choose the best algorithm among a pool of them – inour case, tools to solve
ASP instances. In order to make such a selection in an automatic way, we model the
problem usingmultinomial classificationalgorithms, i.e., machine learning techniques
that allow automatic classification of a set of instances, given instance features.

In more detail, in multinomial classification we are given a set of patterns, i.e.,
input vectorsX = {x1, . . . xk} with xi ∈ R

n, and a corresponding set of labels,
i.e., output valuesY ∈ {1, . . . ,m}, whereY is composed of values representing the
m classes of the multinomial classification problem. In our modeling, them classes
are m ASP solvers. We think of the labels as generated by some unknown function
f : R

n → {1, . . . ,m} applied to the patterns, i.e.,f(xi) = yi for i ∈ {1, . . . , k} and
yi ∈ {1, . . . ,m}. Given a set of patternsX and a corresponding set of labelsY , the task

of a multinomial classifierc is to extrapolatef givenX andY , i.e., constructc from X
andY so that when we are given somex⋆ ∈ X we should ensure thatc(x⋆) is equal to
f(x⋆). This task is calledtraining, and the pair(X,Y) is called thetraining set.

3 Benchmark data and Settings

In this section we report some information concerning the benchmark settings employed
in this work, which is needed for properly introducing the techniques described in the
remainder of the paper. In particular, we report some data concerning: benchmark prob-
lems, instances and ASP solvers employed, as well as the hardware platform, and the
execution settings for reproducibility of experiments.

3.1 Dataset

The benchmark problems considered for the experiments belong to the benchmark suite
of the third ASP Competition [5]. This is a large and heterogeneous suite of hard bench-
marks, which was already employed for evaluating the performance of state-of-the-art
ASP solvers, which are encoded in a common fragment of ASP called ASP-Core. That
suite includes planning domains, temporal and spatial scheduling problems, combinatory
puzzles, graph problems, and a number of applicative domains taken from the database,
information extraction and molecular biology field.In moredetail, we have employed the
encodings used in the system track of the competition, and all the instances made avail-
able from the contributors of the problem submission stage of the competition. Note
that this is a superset of the instances actually selected for running the competition it-
self. These benchmarks, along with their descriptions, areavailable from the competition
website [4].

The techniques presented in this paper are conceived for dealing with propositional
programs, thus we have grounded all the mentioned problem instances by usingGRINGO

(v.3.0.3) [12] to obtain a setup very close to the one of the competition.We considered
only computationally-hard problems, that is all problems belonging to the categories
NP andBeyond NPof the competition. The dataset is summarized in Table 1, which
also reports the complexity classification and the number ofavailable instances for each
problem.

3.2 Executables and Hardware Settings

We have run all the ASP solvers in our experiments that entered the system track of
the last ASP Competition [4] with the addition of DLV [20] (which did not partici-
pate in the competition since it is developed by the organizers of the event). In this way
we have covered –to the best of our knowledge– all the state-of-the-art solutions fitting
the benchmark settings. In detail, we have run:CLASP [11], CLASPD [8], CLASPFO-
LIO [10], IDP [35], CMODELS [21], SUP [22], SMODELS [33], and several solvers from
both theLP2SAT [18] andLP2DIFF [19] families, namely:LP2GMINISAT, LP2LMINISAT ,
LP2LGMINISAT , LP2MINISAT , LP2DIFFGZ3,LP2DIFFLGZ3,LP2DIFFLZ3, andLP2DIFFZ3.

Table 1.Benchmark problems and instances.

Problem Class #Instances

DisjunctiveScheduling NP 10
GraphColouring NP 60
HanoiTower NP 59
KnightTour NP 10
MazeGeneration NP 50
Labyrinth NP 261
MultiContextSystemQueryingNP 73
Numberlink NP 150
PackingProblem NP 50
SokobanDecision NP 50
Solitaire NP 25
WeightAssignmentTree NP 62
MinimalDiagnosis Beyond NP 551
StrategicCompanies Beyond NP 51

In more detail,CLASP is a native ASP solver relying on conflict-driven nogood learn-
ing; CLASPD is an extension ofCLASP that is able to deal with disjunctive logic pro-
grams, whileCLASPFOLIOexploits machine-learning techniques in order to choose the
best-suited execution options ofCLASP; IDP is a finite model generator for extended
first-order logic theories, which is based onMiniSatID [25]; SMODELS is one of the first
robust native ASP solvers that have been made available to the community; DLV [20] is
one of the first systems able to cope with disjunctive programs; CMODELS that exploits
an SAT solver as a search engine for enumerating models, and also verifying model
minimality whenever needed;SUPexploits nonclausal constraints, and can be seen as a
combination of the computational ideas behindCMODELS and SMODELS; the LP2SAT

family employs several variants (indicated by the trailingG, L andLG) of a translation
strategy to SAT and resorts on MINI SAT [9] for actually computing the answer sets; the
LP2DIFF family translates programs in difference logic over integers [34] and exploit
Z3 [7] as underlying solver (again,G, L andLG indicate different translation strategies).

Concerning the hardware employed and the execution settings, all the experiments
were carried out on CyberSAR [26], a cluster comprised of 50 Intel Xeon E5420 blades
equipped with 64 bit GNU Scientific Linux 5.5. Unless otherwise specified, the resources
granted to the solvers are 600s of CPU time and 2GB of memory. Time measurements
were carried out using thetime command shipped with GNU Scientific Linux 5.5.

4 Designing a Multi-Engine ASP Solver

The design of a multi-engine solver based on multinomial classification (see Section 2.2)
involves several steps:(i) design of (syntactic) features that are both significant forclas-
sifying the instances and cheap-to-compute (so that the classifier can be fast and accu-
rate);(ii) selection of solvers that are representative of the state ofthe art (to be able to
obtain the best possible performance in any considered instance); and(iii) selection of

Table 2.Results of a pool of ASP solvers on the NP benchmark suite of the third ASPCompetition.
The table is organized as follows: Column “Solver” reports the solver name, column “Solved”
reports the total amount of instances solved with a time limit of 600 CPU second, and, finally, in
column “Unique” we report the total amount of instances solved uniquelyby the related solver.

Solver Solved Unique Solver Solved Unique

CLASP 445 26 LP2DIFFZ3 307 –
CMODELS 333 6 LP2SAT2GMINISAT 328 –
DLV 241 37 LP2SAT2LGMINISAT 322 –
IDP 419 15 LP2SAT2LMINISAT 324 –
LP2DIFFGZ3 254 – LP2SAT2MINISAT 336 –
LP2DIFFLGZ3 242 – SMODELS 134 –
LP2DIFFLZ3 248 – SUP 311 1

the classification algorithm, and fair design of training and test sets, to obtain a robust
and unbiased classifier.

In the following we describe the choices we have made for designingME-ASP, which
is our multi-engine solver for ground ASP programs.

4.1 Features

We consider syntactic features that are cheap-to-compute,i.e., computable in linear time
in the size of the input, given that in previous work (e.g., [29]) syntactic features have
been profitably used for characterizing (inherently) ground instances. The features that
we compute for each ground program are divided into four groups: problems size, bal-
ance, “proximity to horn” and ASP-based peculiar features.This categorization is bor-
rowed from [28]. The problem size features are: number of rulesr, number of atoms
a, ratiosr/a, (r/a)

2, (r/a)3 and ratios reciprocala/r, (a/r)
2 and(a/r)

3. The balance
features are: fraction of unary, binary and ternary rules. The “proximity to horn” features
are: fraction of horn rules and number of occurrences in a horn rule for each atom. We
have added a number of ASP peculiar features, namely: numberof true and disjunctive
facts, fraction of normal rules and constraintsc. Also some combinations, e.g.,c/r, are
considered for a total of 52 features.

We were able to ground withGRINGO 1425 programs out of a total of 1462 in less
than 600s.1 Our system for extracting features from ground programs canthen compute
all features (in less than 600s) for 1371 programs: to have anidea of its performance, it
can compute all features of a ground program of approximately 20MB in about 4s.

4.2 Solvers selection

The target of our selection is to collect a pool of solvers that is representative of the state
of the art (SOTA) solver, i.e., considering a problem instance, the oracle that always fares
the best among available solvers. In order to do that – concerning NP instances –, we

1 The exceptions are 10 and 27 instances of the DisjunctiveScheduling andPackingProblem do-
mains, respectively.

ran preliminary experiments, and we report the results in Table 2. Looking at the table,
first we notice that we do not report results related to bothCLASPD andCLASPFOLIO.
Concerning the results ofCLASPD, we report that – considering NP benchmarks – its
performance is subsumed by the performance ofCLASP. Considering the performance
of CLASPFOLIO, we exclude such system from our analysis because we consider it as
a “rival” system, i.e., we will compare its performance against the performance ofME-
ASP.

Looking at Table 2, we can see that only 4 solvers out of 16 are able to solve a
noticeable amount of instancesuniquely, namelyCLASP, CMODELS, DLV, and IDP.
ConcerningBeyond NPinstances, we report that only three solvers are able to copewith
such class of problems, nameCLASPD, CMODELS, and DLV. Considering that both
CMODELS and DLV are involved in the previous selection, the pool of engines used in
ME-ASP will be composed of 5 solvers, namelyCLASP, CLASPD, CMODELS, DLV, and
IDP.

4.3 Classification algorithms and training

In the following, we briefly review the classifiers that we usein our empirical analysis.
Considering the wide range of multinomial classifiers described in the scientific litera-
ture, we test a subset of algorithms built on different inductive biases in the computation
of their classification hypotheses:

• Aggregation Pheromone density based pattern Classification (APC): It is a pat-
tern classification algorithm modeled on the ants colony behavior and distributed
adaptive organization in nature. Each data pattern is considered as an ant, and the
training patterns (ants) form several groups or colonies depending on the number of
classes present in the data set. A new test pattern (ant) willmove along the direc-
tion where average aggregation pheromone density (at the location of the new ant)
formed due to each colony of ants is higher and hence eventually it will join that
colony. We direct the reader to [16] for further details.

• Decision rules(FURIA): A classifier providing a set of “if-then-elsif” constructs,
wherein the “if” part contains a test on some attributes and the “then” part contains
a label; we useFURIA [17] to induce decision rules.

• Decision trees(J48): A classifier arranged in a tree structure, wherein each inner
node contains a test on some attributes, and each leaf node contains a label; we use
J48, an optimized implementation ofC4.5 [31], to induce decision trees.

• Nearest-neighbor(NN): It is a classifier yielding the label of the training instance
which is closer to the given test instance, whereby closeness is evaluated using some
proximity measure, e.g., Euclidean distance; we use the method described in [1] to
store the training instances for fast look-up.

• Support Vector Machine (SVM): It is a supervised learning algorithm used for both
classification and regression tasks. Roughly speaking, thebasic training principle of
SVMs is finding an optimal linear hyperplane such that the expected classification
error for (unseen) test patterns is minimized. We address the reader to [6] for further
details.

Fig. 1. Two-dimensional space projection of the whole dataset (top),TS1, andTS2 (bottom-left
and bottom-right, respectively).

Table 3.Accuracy of the trained models ofME-ASPusing cross-validation. The table is structured
as follows. In the first column (“Classifier”), we report the classifier, and it is followed by a group
of columns (“Accuracy”). The group is composed of two columns, reporting the accuracy – in
percentage – related toMOD1 andMOD2 (columns “MOD1” and “MOD2”, respectively).

Classifier Accuracy
MOD1 MOD2

APC 96.58% 89.83%
FURIA 94.09% 83.39%
J48 93.12% 79.46%
NN 92.81% 80.71%
SVM 94.38% 82.32%

As mentioned in Section 2.2, in order to train the classifier,we have to select a pool
of instances for training purpose, i.e., the training set. Concerning such selection, our
aim is twofold. On the one hand, we want to compose a training set in order to train a
robust model, while, on the other hand, we want to test the generalization performance
of ME-ASPalso on instances comprised in benchmarks not comprised in the training set.

As result of the considerations above, we compute two training sets. The first one –
TS1 in the following – is composed of the 320 instances solved uniquely – without taking
into account the instances involved in the 3rd ASP Competition – by the pool of engines
selected in Section 4.2. The rational of this choice is to tryto “mask” noisy informa-
tion during model training. The second one –TS2 in the following – is a subset ofTS1,
and it is composed of the 77 instances uniquely solved considering only the benchmarks
GraphColouring,Labyrinth,Numberlink, andStrategicCompanies. The
rationale of this choice is to draw some considerations about the trained models consid-
ering unknown parts of the instances space.

In order to depict both the differences ofTS1 andTS2 and the coverage of our train-
ing set with respect to the whole available dataset, in Figure 1 we considered each in-
stance as a point in the multidimensional feature space. In the plots, we consider a two-
dimensional projection obtained by means of a principal components analysis (PCA),
and considering only the first two principal components (PC). Thex-axis and they-axis
in the plots are the first and the second PCs, respectively. Each point in the plots is la-
beled by the best solver on the related instance. In the top-most plot, we add a label
denoting the benchmark name of the depicted instances, in order to give a hint about the
“location” of each benchmark.

Considering the classification algorithms listed above, our next experiment is de-
voted to training the classifiers, and to assessing their accuracy. Referring to the notation
introduced in Section 2.2, even assuming that a training setis sufficient to learnf , it is
still the case that different sets may yield a differentf . The problem is that the resulting
trained classifier may underfit the unknown pattern – i.e., its prediction is wrong – or
overfit – i.e., be very accurate only when the input pattern isin the training set. Both un-
derfitting and overfitting lead to poorgeneralizationperformance, i.e.,c fails to predict
f(x∗) whenx∗ 6= x. However, statistical techniques can provide reasonable estimates of
the generalization error. In order to test the generalization performance, we use a tech-

nique known asstratified 10-times 10-fold cross validationto estimate the generalization
in terms ofaccuracy, i.e., the total amount of correct predictions with respectto the to-
tal amount of patterns. Given a training set(X,Y), we partitionX in subsetsXi with
i ∈ {1, . . . 10} such thatX =

⋃10
i=1 Xi andXi ∩Xj = ∅ wheneveri 6= j; we then train

c(i) on the patternsX(i) = X \Xi and corresponding labelsY(i). We repeat the process
10 times, to yield 10 differentc and we obtain the global accuracy estimate.

In Table 3 we report the accuracy results related to the experiment described above.
Looking at the table, we denote asMOD1 andMOD2 the inductive models computed
training the classifiers onTS1 andTS2, respectively. Notice that, in this stage, we also
explore for each algorithm its parameter space, in order to tune it. Looking at Table 3,
we report a 90% greater accuracy for each classification algorithm trained onTS1. Con-
cerningMOD2, we report a lower accuracy with respect toMOD1. The main motivation
for this result is thatTS2 is composed of a smaller number of instances with respect to
TS1, so the classification algorithms are not able to generalize with the same accuracy.
This result is not surprising, also considering the plots inFigure 1 and, as we will see in
the experimental section, this will influence the performance ofME-ASP.

5 Performance analysis

In this section we present the results of the analysis we haveperformed. We consider
three different combinations of training and test sets, where the training sets are theTS1
andTS2 sets introduced in Section 4, composed of uniquely solved instances, and the test
set ranges over the 3rd ASP competition ground instances. Inparticular, the first (resp.
second) experiment hasTS1 as training set, and as test set the successfully grounded in-
stances evaluated (resp. submitted) to the 3rd ASP Competition: the goal of this analysis
is to test theefficiencyof our approach on all the evaluated (resp. submitted) instances
when the model is trained on the whole space of the uniquely solved instances. The third
experiment considersTS2 as a training set, composed of uniquely solved instances of
some domains, and all the successfully grounded instances submitted to the competition
as test set: in this case, given that the model is not trained on all the space of the uniquely
solved instances, but on a portion, and that the test set contains “unseen” instances, the
goal is to test, in particular, therobustnessof our approach.

We devoted one subsection to each of our experiments. For each experiment the re-
sults are reported in a table structured as follows: the firstcolumn reports the name of a
solver, the second, third and fourth columns report the results of each solver onNP, and
Beyond NP, respectively, in terms of the number of solved instances within the time limit
and sum of their solving times (a sub-column is devoted to each of these numbers). We
report the results obtained by running:ME-ASP with the five classification methods in-
troduced in Section 4.3, in particularME-ASP(X) indicatesME-ASP employing the clas-
sification method X∈ {APC, FURIA, J48, NN, SVM }, the component engines employed
by ME-ASPon each class as explained in Section 4.2, and as referenceCLASPFOLIOand
SOTA, the latter being the ideal (State-Of-The-Art) multi-engine solver (considering the
engines employed).

We remind the reader that, forME-ASP, the number of instances on whichME-ASP is
run is further limited to the ones for which we were able to compute all features, and its

Table 4. Results of the various solvers on the grounded instances evaluated at the3rd ASP com-
petition.ME-ASP has been trained on theTS1 training set.

Solver NP Beyond NP Total
#Solved Time #Solved Time #Solved Time

CLASP 60 5132.45 – – – –
CLASPD – – 13 2344.00 – –
CMODELS 56 5092.43 9 2079.79 65 7172.22
DLV 37 1682.76 15 1359.71 52 3042.47
IDP 61 5010.79 – – – –
ME-ASP (APC) 63 5531.68 15 3286.28 78 8817.96
ME-ASP (FURIA) 63 5244.73 15 3187.73 78 8432.46
ME-ASP (J48) 68 5873.25 15 3187.73 83 9060.98
ME-ASP (NN) 66 4854.78 15 3187.31 81 8042.09
ME-ASP (SVM) 60 4830.70 15 2308.60 75 7139.30
CLASPFOLIO 62 4824.06 – – – –
SOTA 71 5403.54 15 1221.01 86 6624.55

timings include both the time spent for extracting the features from the ground instances,
and the time spent by the classifier.

5.1 Efficiency ofME-ASP on instances evaluated at the Competition

In the first experiment, we considerTS1 introduced in Section 4 as training set, and
as test set all the instances evaluated at the 3rd ASP Competition (a total of 88 in-
stances). Results are shown in Table 4. We can see that, on programs of theNP class,
ME-ASP(FURIA) solves the highest number of instances, 6 more thanCLASPFOLIOand,
moreover, 4 out of 5 classification methods leadME-ASP to have better performance
than each of its engines, and ofCLASPFOLIO. On theBeyond NPprograms, instead, all
versions ofME-ASP and DLV solve 15 instances (DLV having best mean CPU time),
followed byCLASPD andCMODELS, which solve 13 and 9 instances, respectively. Sum-
marizing,ME-ASP(FURIA) is the solver that solves the highest number of instances: here
it is very interesting to note that its performance is very close to theSOTA solver which,
we remind, has the ideal performance that we could expect in these instances with these
engines.

5.2 Efficiency ofME-ASP on instances submitted to the Competition

In the second experiment we consider the same training set asfor the previous experi-
ment, while the test set is composed of all successfully grounded instances submitted to
the 3rd ASP competition.

The results are now shown in Table 5. It is immediately noticeable here that in both
NP andBeyond NPinstances, allME-ASP versions solve more instances (or in shorter
time in one case) than their engines andCLASPFOLIO: in particular, in theNP instances,
ME-ASP(APC) solves the highest number of instances, 52 more thanCLASP, which is

Table 5.Results of the various solvers on the grounded instances submitted to the 3rd ASP com-
petition.ME-ASP has been trained on theTS1 training set.

Solver NP Beyond NP Total
#Solved Time #Solved Time #Solved Time

CLASP 445 47096.14 – – – –
CLASPD – – 433 52029.74 – –
CMODELS 333 40357.30 270 38654.29 603 79011.59
DLV 241 21678.46 364 9150.47 605 30828.93
IDP 419 37582.47 – – – –
ME-ASP (APC) 497 55334.15 516 60537.67 1013115871.82
ME-ASP (FURIA) 480 48563.26 518 60009.23 998 108572.49
ME-ASP (J48) 490 49564.19 510 59922.86 1000109487.05
ME-ASP (NN) 490 46780.31 518 55043.39 1008101823.70
ME-ASP (SVM) 445 40917.70 518 52553.84 963 93471.54
CLASPFOLIO 431 41874.53 – – – –
SOTA 516 39857.76 520 24300.82 1036 64158.58

the best engine in this class, and 66 more thanCLASPFOLIO, while in theBeyond NPin-
stances threeME-ASPversions solve 518 instances, i.e., 85 more instances thanCLASPD
which is the engine that solves more instances. As far as the comparison with theSOTA

solver is concerned, the bestME-ASP version solves only 25, out of 1036, instances less
than theSOTA solve, mostly from theNPclass.

5.3 Robustness ofME-ASP on instances submitted to the Competition

In this experiment, we use theTS2 training set as introduced in Section 4, and the same
test set as that of previous experiment. The rationale of this last experiment is to test our
approach on “unseen” instances, i.e., in a situation where the test set contains instances
that come from program domains whose instances have not beenused to train the model.
We can thus expect this experiment to be particularly challenging for our multi-engine
approach. Results are presented in Table 6. By looking at theresults, it is clear thatME-
ASP(APC) performs much better that the other alternatives, and solves 46 instances more
thanCLASP in theNPclass, 60 instances more thenCLASPFOLIO in the same class, and
11 more instances thanCLASPD in theBeyond NPclass,CLASP andCLASPD being the
best engines in the two classes. However, even if with a multi-engine approach we can
solve also in this case far more instances than all the engines and rival solvers, we report
that in this case the performance of our best configuration are not that close to theSOTA

solver, which solves in total 101 more instances, the majority coming from theBeyond
NPclass in this case.

5.4 Discussion

Summing up the three experiments, the first comment is that itis clear thatME-ASP has
a very robust and efficient performance: it often can solve (many) more instances than
its engines andCLASPFOLIO, even considering the singleNP andBeyond NPclasses.

Table 6.Results of the various solvers on the grounded instances submitted to the 3rd ASP com-
petition.ME-ASP has been trained on theTS2 training set.

Solver NP Beyond NP Total
#Solved Time #Solved Time #Solved Time

CLASP 445 47096.14 – – – –
CLASPD – – 433 52029.74 – –
CMODELS 333 40357.30 270 38654.29 603 79011.59
DLV 241 21678.46 364 9150.47 605 30828.93
IDP 419 37582.47 – – – –
ME-ASP (APC) 491 53875.41 444 57555.34 935 111430.75
ME-ASP (FURIA) 450 50495.50 365 10483.81 815 61429.31
ME-ASP (J48) 450 53272.70 366 10486.43 816 63759.13
ME-ASP (NN) 484 52191.49 364 10550.01 848 62741.50
ME-ASP (SVM) 383 36786.04 364 10543.00 747 47329.04
CLASPFOLIO 431 41874.53 – – – –
SOTA 516 39857.76 520 24300.82 1036 64158.58

Further, we also runCLASPD on NP instances: it solves, as expected, less instances
than CLASP, i.e., 52 instances in the first experiment, and 402 in the second and third
experiments. Considering the column “Total”, allME-ASPversions solve more instances
than CLASPD on each experiment, but forME-ASP(SVM) in the last. Moreover, it is
interesting to note that even considering the performance,in terms of solved instances,
of CLASP on NP benchmarks andCLASPD on Beyond NPbenchmarks together, there
is always at least one version ofME-ASP that solves more instances in each of the three
experiments. We also report that all versions ofME-ASP return reasonable performance,
so – from a machine learning point of view – we can conclude that, on one hand, we
computed a representative pool of features, and, on the other hand, the robustness of our
inductive models let us conclude that we made a good selection of the instances used for
classifier training purpose.

A final consideration is about experiment 3: we have seen thatthis is the only ex-
periment where the difference in performance betweenME-ASP andSOTA is significant.
One option to try to reduce the gap is to introduce adaptations of the learned selection
policies when the approach fails to give a good prediction: in, e.g., [30], this proved to
be effective on QSAT problems.

6 Conclusion

In this paper we have applied machine learning techniques toASP solving with the goal
of developing a fast and robust multi-engine ASP system. To this end, we have:(i)
specified a number of cheap-to-compute syntactic features that allow for accurate clas-
sification of ground ASP programs;(ii) applied five multinomial classification meth-
ods to learning algorithm selection strategies;(iii) implemented these techniques in our
multi-engine solverME-ASP, which is available for download athttp://www.mat.
unical.it/ricca/downloads/measp20120323.zip . The performance of

ME-ASP was assessed on three experiments, which were conceived forchecking effi-
ciency and robustness of our approach, involving differenttraining and test sets of in-
stances taken from the ones submitted to the System Track of the 3rd ASP competition.
Our analysis shows thatME-ASP is very robust and efficient, and outperforms both its
component engines and rival solvers.

References

1. D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms.Machine learning,
6(1):37–66, 1991.

2. M. Balduccini. Learning and using domain-specific heuristics in ASP solvers. AI Communi-
cations, 24(2):147–164, 2011.

3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. CUP,
2003.

4. F. Calimeri, G. Ianni, and F. Ricca. The third answer set programming system competition,
since 2011.https://www.mat.unical.it/aspcomp2011/.

5. F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A. Bria, G. Catalano, S. Cozza, W. Faber, O. Feb-
braro, N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri, K. Reale, M. C. Santoro, M. Siri-
anni, G. Terracina, and P. Veltri. The Third Answer Set Programming Competition: Prelim-
inary Report of the System Competition Track. InProc. of LPNMR11, LNCS, pp. 388–403,
Vancouver, Canada, 2011.

6. C. Cortes and V. Vapnik. Support-vector networks.Machine learning, 20(3):273–297, 1995.
7. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. InTACAS,

pp. 337–340, 2008.
8. C. Drescher, M. Gebser, T. Schaub. Conflict-Driven DisjunctiveAnswer Set Solving. InKR

2008, pp. 422–432, AAAI Press. Sydney, Australia, 2008.
9. N. Éen and N. S̈orensson. An Extensible SAT-solver. InTheory and Applications of Satisfia-

bility Testing, 6th International Conference, SAT 2003., pp. 502–518. LNCS 2003.
10. M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. T. Schneider, and S. Ziller. A portfolio

solver for answer set programming: Preliminary report. InProc. of the 11th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), LNCS 6645,
pp. 352–357, Vancouver, Canada, 2011.

11. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In IJCAI 2007, pp. 386–392, Hyderabad, India, 2007.

12. M. Gebser, T. Schaub, and S. Thiele. GrinGo : A New Grounder for Answer Set Program-
ming. In Logic Programming and Nonmonotonic Reasoning, 9th International Conference,
LPNMR 2007, 15-17, 2007, Proceedings, LNCS 4483, pp. 266–271, Tempe, Arizona, 2007.

13. M. Gelfond and N. Leone. Logic Programming and Knowledge Representation – the A-
Prolog perspective .AI, 138(1–2):3–38, 2002.

14. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
ICLP/SLP 1988, pp. 1070–1080, Cambridge, Mass., 1988. MIT Press.

15. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases.NGC, 9:365–385, 1991.

16. A. Halder, A. Ghosh, and S. Ghosh. Aggregation pheromone density based pattern classifica-
tion. FI, 92(4):345–362, 2009.

17. J. Ḧuhn and E. Ḧullermeier. Furia: an algorithm for unordered fuzzy rule induction.Data
Mining and Knowledge Discovery, 19(3):293–319, 2009.

18. T. Janhunen. Some (in)translatability results for normal logic programs and propositional
theories.Journal of Applied Non-Classical Logics, 16:35–86, 2006.

19. T. Janhunen, I. Niemelä, and Mark Sevalnev. Computing stable models via reductions to
difference logic. InProceedings of the 10th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), LNCS, pp. 142–154, Postdam, Germany, 2009.

20. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, andF. Scarcello. The DLV
System for Knowledge Representation and Reasoning.ACM TOCL, 7(3):499–562, 2006.

21. Y. Lierler. Disjunctive Answer Set Programming via Satisfiability. InLPNMR’05, LNCS
3662, pp. 447–451. 2005.

22. Y. Lierler. Abstract Answer Set Solvers. InLogic Programming, 24th International Confer-
ence (ICLP 2008), LNCS 5366, pp. 377–391. 2008.

23. V. Lifschitz. Answer Set Planning. InICLP’99, pp. 23–37.
24. V. W. Marek and M. Truszczýnski. Stable models and an alternative logic programming

paradigm.CoRR, cs.LO/9809032, 1998.
25. M. Marïen, J. Wittocx, M. Denecker, and M. Bruynooghe. SAT(ID): Satisfiability of proposi-

tional logic extended with inductive definitions. InProc. of the 11th International Conference
on Theory and Applications of Satisfiability Testing (SAT), LNCS, pp. 211–224, Guangzhou,
China, 2008.

26. A. Masoni, M. Carpinelli, G. Fenu, A. Bosin, D. Mura, I. Porceddu, and G. Zanetti. Cyber-
sar: A lambda grid computing infrastructure for advanced applications.In Nuclear Science
Symposium Conference Record (NSS/MIC), 2009 IEEE, pp. 481–483. IEEE, 2009.

27. I. Niemel̈a. Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm. InProceedings of the Workshop on Computational Aspects of Nonmonotonic Rea-
soning, pp. 72–79, Trento, Italy, 1998.

28. E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham. Understanding
random SAT: Beyond the clauses-to-variables ratio. InProc. of the 10th International Con-
ference on Principles and Practice of Constraint Programming (CP), pp. 438–452, Toronto,
Canada, 2004.

29. L. Pulina and A. Tacchella. A multi-engine solver for quantified boolean formulas. InProc.
of the 13th International Conference on Principles and Practice of Constraint Programming
(CP), pp. 574–589, Providence, Rhode Island, 2007.

30. L. Pulina and A. Tacchella. A self-adaptive multi-engine solver for quantified boolean formu-
las. Constraints, 14(1):80–116, 2009.

31. J.R. Quinlan.C4.5: programs for machine learning. Morgan kaufmann, 1993.
32. J. R. Rice. The algorithm selection problem.Advances in Computers, 15:65–118, 1976.
33. P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model Se-

mantics.AI, 138:181–234, 2002.
34. smt-lib-web. The Satisfiability Modulo Theories Library, 2011.http://www.smtlib.

org/.
35. J. Wittocx, M. Marïen, and M. Denecker. The IDP system: a model expansion system foran

extension of classical logic. InLogic and Search, Computation of Structures from Declarative
Descriptions (LaSh 2008), pp. 153–165, Leuven, Belgium, 2008.

36. Lin Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based algorithm
selection for SAT.JAIR, 32:565–606, 2008.

