On the Automated Selection of ASP I nstantiator s*

Marco Marated, Luca Pulind, and Francesco Ricta

! DIBRIS, Univ. degli Studi di Genova, Viale F. Causa 15, 16145 Gantialy
marco@li st.unige.it
2 POLCOMING, Univ. degli Studi di Sassari, Viale Mancini 5, 07100 Sai Italy
| pul i na@niss.it
3 Dip. di Matematica ed Informatica, Univ. della Calabria, Via P. Bucci,B¥Bende, Italy,
ricca@mt.unical .it

Abstract. Answer Set Programming (ASP) is a powerful language for knowl-
edge representation and reasoning. ASP is exploited in real-world ajpica
and is also attracting the interest of industry thanks to the availability of ef-
ficient implementations. ASP systems compute solutions relying on two mod-
ules: aninstantiatoror groundey that produces, by removing variables from the
rules, a ground program equivalent to the input one; antbdel generatofor
solve) that computes the solutions of such propositional program. In thisrpape
we make a first step toward the exploitation of automated selection techniques
to the grounding module. We rely on two well-known ASP grounders, hame
the grounder of the DLV system andrR@IGO, and we leverage on automated
classification algorithms to devise and implement an automatic procedwse-fo
lecting the “best” grounder for each problem instance. An experimantdysis,
conducted on benchmarks and solvers from the 3rd ASP Competitimusghat

our approach improves the evaluation performance independentiytfi@solver
associated with our grounder selector.

1 Introduction

In the last decade, Answer Set Programming (ASP),P,?,?,7] is increasingly attract-
ing the interest of industry thanks to the availability digént implementations — see,
e.g., [?]. Thus, the ability of ASP systems to compute solutions irfficient way is a
factor of paramount importance, especially when they del ivdustrial level prob-
lems. Given a non-ground ASP program, ASP systems complugoss relying on
two main modules: amstantiatofor groundey that produces a propositional ASP pro-
gram, and anodel generatdor solve) that takes as input a propositional program and
returns a solution.

Recently, the application of automated algorithm seledzhniques to ASP solv-
ing [?,?,2,2,7] has noticeably improved the performance of ASP systems. dfh
proaches cited above are often obtained by importing to ASRniques already ap-
plied to Constraint Satisfaction problems, propositicsstisfiability (SAT) or Quanti-
fied SAT (see?,?,?] for details). The drawback about the adoption of such tegres

* This paper is an early version of the work submitted at the 13rd Corderefithe Italian
Association for Artificial Intelligence (AI*IA 2013).

is that they are confined to the model generator module, snamtause the research
fields mentioned deal with inherently ground problems.

In ASP it is well-established that limiting the choice to ymine grounder could
avoid the exploitation of several optimization techniquesssibly applied to different
problem class (e.g., PolynomidP) and NP problem classes as classified in the 3rd
ASP Competition 7)), implemented only in one grounder (e.g. Magic séfsifi the
presence of queries).

In this paper we make a first step toward the exploitation edbrmated selection
techniques to the grounding module. We rely on two well-kné&P grounders, namely
the grounder of the DLV systen?][(DLV- G in the following) and @INGO [?], and
we leverage on automated classification algorithms to aatically select the “best”
grounder. More in details, our starting point is an expentakanalysis conducted on
the domains of benchmarks belonging to bBtandNP classes of the 3rd ASP Com-
petition, involving state-of-the-art ASP solvers and tfer@mentioned grounders. We
then applied classification methods by relying on chargsttes of the various encod-
ing (featurey, with the aim of automatically select the most approprgtaunder. We
then implemented a system based on these ideas, and this i&fsolir experimental
analysis show that the performance of the considered sohrerboosted by the usage
of the proposed system.

To sum up, the main contributions of this paper are:

¢ the application of automated selection techniques to thergting module in ASP
computation, to complement a recent body of research oglysied on solvers;

e the implementation of a system based on these techniques; an

e an experimental analysis of the new system, involving aclargriety of bench-
marks, grounders and solvers, that shows the benefits opgireach.

The paper is structured as follows. Section 2 introducedertpreliminaries about
ASP. Section 3 shows the main answer set computation methaitisfocus on the
grounding module. Section 4 then describes the ideas we dqapiéed to reach the
above-mentioned goals. Section 5 presents implementdgitails of the system imple-
mented along the line reported in the previous section, @sneksults. The paper ends
with some conclusions in Section 6.

2 Answer Set Programming
In this section we recall Answer Set Programming syntax angesitics.

Syntax. A variable or a constant istarm An atomis p(t4, ..., t,), wherep is apred-
icateof arity n andtq, ..., t,, are terms. Aliteral is either apositive literalp or anega-
tive literal not p, wherep is an atom. A(disjunctive) ruler has the following form:

a1 V ...V a, —by,...,bg, not bgi1,..., not by,. (1)

whereaq,...,a,,b1,...,b, are atoms. The disjunctian Vv ...V a, is theheadof r,
while the conjunctiorby, ..., by, not bgi1, ... ,not b, is thebodyof r. A rule having

precisely one head literal (i.e.= 1) is called anormal rule If the body is empty (i.e.
k =m = 0), itis called afact, and the:— sign is usually omitted. A rule without head
literals (i.e.n = 0) is usually referred to as antegrity constraint A rule r is safeif
each variable appearing inappears also in some positive body literat-of

An ASP progranf is a finite set of safe rules. Aot -free (resp.\/-free) program is
calledpositive(resp.,normal). A term, an atom, a literal, a rule, or a prograngisund
if no variables appear in it.

Hereafter, we denote b¥/ (r) the set{ay, ..., a,} of the head atoms, and iy(r)
the set{by, ..., by, not by11,...,not by, } of the body literalsB*(r) (resp.,B~(r))
denotes the set of atoms occurring positively (resp., nedg} in B(r). A predicatep
is referred to as aBDB predicate if, for each rule having in the head an atom whose
nameisp € H(r), r is afact; all others predicates are referred tt# predicates. The
set of facts in whichEDB predicates occur, denoted ByD B(P), is calledExtensional
Database (EDB)the set of all other rules is tHatensional Database (IDB)

Semantics.Let P be an ASP program. Thiderbrand universef P, denoted ag/p,
is the set of all constants appearing/n In the case when no constant appear®jn
an arbitrary constant is added &&. The Herbrand baseof P, denoted a$3p, is the
set of all ground atoms constructable from the predicatebsysnappearing irP and
the constants of/». Given a ruler occurring in a progran®, a ground instanceof
r is a rule obtained from by replacing every variabl& in r by o(X), whereo is
a substitution mapping the variables occurring-ito constants irU/». We denote by
Ground(P) the set of all the ground instances of the rules occurrirg.in

An interpretationfor P is a set of ground atoms, that is, an interpretation is a $ubse
I of Bp. A ground positive literal is true (resp., false) w.ri.if A € I (resp.,A & I).
A ground negative literatot A is true w.r.t.I if A is false w.r.t.7; otherwisenot A is
false w.r.t.I. Letr be arule inGround(P). The head of is true w.r.t.I if H(r)NI # ().
The body ofr is true w.r.t.T if all body literals ofr are true w.r.t1 (i.e., Bt (r) C I
andB~ (r) N I = () and otherwise the body efis false w.r.t.I. The ruler is satisfied
(or true) w.r.t.1 if its head is true w.r.t/ or its body is false w.r.t/. A modelfor P
is an interpretation\/ for P such that every rule € Ground(P) is true w.r.t. M. A
model M for P is minimalif there is no modelV for P such thatV is a proper subset
of M. The set of all minimal models fd? is denoted byMM(P). In the following, the
semantics of ground programs is first given, then the segsafigeneral programs is
given in terms of the answer sets of its instantiation. Giaemound program? and
an interpretation!, thereductof P w.r.t. I is the subseP’ of P obtained by deleting
from P the rules in which a body literal is false w.rit* Let I be an interpretation for
a ground prograrf®. I is ananswer sefor stable model) foP if I € MM(P?) (i.e., I
is a minimal model for the prograf’) [?].

Queries. A program?P can be coupled with queryin the formgq?, wheregq is a literal.
Let P be a program ang? be a queryg? is true iff for any answer setd of P it holds
thatq € A. Basically, the semantics of queries corresponds to aaitigasoning, since
a query is true if the corresponding atom is true in all ansse¢s ofP.

4 This definition, introduced in], is equivalent to the one of Gelfond and Lifschif}.[

3 Answer Sets Computation

In this section we overview the evaluation of ASP programsl @ecall the available
solutions mentioning the techniques underlying the sthtieepart implementations.

The evaluation of ASP programs is traditionally carriediautvo phases: program
instantiation and model generation. As a consequence, &hs&§&tem usually couples
two modules: thgrounderor instantiatorand theASP model generatar solver. In the
following we provide a more detailed description of the amiation, since the target
of this work is improving performance of this phase.

ASP Program Instantiation.n general, an ASP prograrR contains variables, and
the process oinstantiation or groundingaims to eliminate these variables in order to
generate a propositional ASP program equivaleriPtdNote that, the full theoretical
instantiationGround(P) introduced in previous section contains all the groundsrule
that can be generated applying every possible substitofimariables. A modern in-
stantiator module does not produce the full ground insti#iots Ground(P) (which

is unnecessarily huge in size), but employees several iobs to produce one that
is both equivalent and usually much smaller tii@round(P). Notice that grounding
is an EXPTIME-hard task, indeed in general it may producecgam that is of ex-
ponential size w.r.t. the input program. Thus, having ateim$ator able to produce a
comparatively small program in a reasonable time is cruoi@chieve good (or even
acceptable) performance in evaluating ASP programs. Btarice, DLV6 generates
a ground instantiation that has the same answer sets adltbrdubut is much smaller
in general P].

In order to generate a small ground program equivaleri®,ta modern instantia-
tor usually exploits some structural information on theuinprogram. The evaluation
proceeds bottom-up, starting from the information corgdiim the facts and evaluating
the rules according to the positive body-to-head dependenBuch dependencies can
be identified by mean of thBependency GraptDG) of P. The DG ofP is a directed
graphG(P) = (N, E), whereN is a set of nodes an# is a set of arcsN contains a
node for each IDB predicate @, andE contains an are = (p, q) if there is a ruler
in P such that; occurs in the head of andp occurs in a positive literal of the body of
r. The graphG(P) induces a subdivision d? into subprograms (also calledodule$
allowing for a modular evaluation. We say that a rule P definesa predicatep if p
appears in the head of For each strongly connected component (SCQ)f G(P),
the set of rules defining all the predicate<ins calledmoduleof C' and is denoted by
Pe.

The DG induces a partial ordering among its SCCs which i®fedd during the
evaluation. Basically, this order allows to perform a lageevaluation of the program;
one module at time in such a way that data needed for the iratian of a module
C; have been already generated by the instantiation of the le®g@uecedind’;. This
way, ground instances of rules are generated using onlysatamth can possibly be
derived fromP, and thus avoiding the combinatorial explosion that mayuoat the
case of a full instantiatior?]. Modules containing recursive rules are evaluated accord
ing to fix-point techniques originally introduced in the flaf deductive database®][

In turn, each rule in a module is processed by applying a birig constant match-
ing procedure, which is basically implemented as a backitngcalgorithm. Actually,
modern instantiators implement a backjumping techniqlieNote that the instantia-
tion of a rule is very similar to the evaluation of a conjuretguery, which is a process
exponential both in the size of the query (number of elemintse body) and in the
number of variables. An additional aspect influencing th&t ob evaluating a rule, is
the way variables are bound (trough joins or builtin opestaas it also happens for
conjunctive queries?.

At the time of this writing, two are the most prominent ingtators for ASP pro-
grams, which are capable of parsing the core language esglaythe 3rd ASP com-
petition, namely DLVe and GRINGO. These two grounders are both based on the
above-mentioned techniques, but employ specific variardshauristics which are de-
scribed in the related literatur®,p,?], and that will be outlined in Section 5 when the
results are analyzed.

Answer Set Solvinglhe subsequent computations, which constitute the nceruétistic
part of ASP programs evaluation, are then performed on thengt instantiation by an
ASP solverASP solvers employ algorithms very similar to SAT solvess.,, special-
ized variants of DPLL P] search.

There are several different approaches to ASP solving &éimater from native solvers
(i.e., implementing ASP-specific techniques), to rewgtlmased solutions (e.g., rewrit-
ing programs into SAT and calling a SAT solver). Among thestieat participated to
the 3rd ASP Competition, we recall the native ASP solvewsdSELS [?], DLV [7]
and CLASP [?]. SMODELS is one the first ASP systems made available; and DLV is
one of the first robust implementations able to cope withudisjive programs. Both
feature look-ahead based techniques and ASP-specificthsgaaice pruning operators.
CLASP s a native ASP solver relying on conflict-driven nogood téag. Among the
rewriting-based ASP solvers we mentioMODELS [?], IDP [?], and theLP2SAT [?]
family that resort on a translation to SAT. There are alsppsals, like the P2DIFF [?]
family, rewriting ASP in difference logic and calling a Sdiability Modulo Theories
solver to compute answer sets.

4 Automated selection of grounding algorithm

In our previous workP,?], our aim was to build an efficient ASP solver on top of state-
of-the-art systems, leveraging on machine learning teghes to automatically choose
the “best” available solver on a per-instance basis. Outysisafocused orground
instances, and, to do that, we ran each non-ground instaiticéSRINGO — the same
setting used in the 3rd ASP Competition —, letting our systeFrASP to choose the
best solver to fire. In order to extemtk-ASP to cope with non-ground instances, and
considering that inf] we report thatve-AsP was not able to cope with a number of
instances due to NGO failures during the grounding stage, to obtain a more efficie
system we investigate the application of algorithm sebaxctiechniques to the grounding
phase, by relying on DL\G and GRINGO.

Considering the grounders described above, it is not cldachvone represents
the choice that allows to reach the best possible performancthe context of the

Problem | Class [| Problem | Class |

DisjunctiveScheduling | NP HydraulicLeaking P
HydraulicPlanning P GrammarBasedIE P
GraphColouring NP HanoiTower NP
KnightTour NP MazeGeneration NP
Labyrinth NP MCSQuerying NP
Numberlink NP PackingProblem NP
PartnerUnitsPolynomial P Reachability P
SokobanDecision NP Solitaire NP
StableMarriage P WeightAssignmentTree NP

Table 1. Pool of ASP problems involved in the reported experiments. Notice thedrt@ar-
BasedIE” and “MCSQuerying” are shorthands for the problems daf@@gammarBasedInfor-
mationExtraction” and “MultiContextSystemQuerying”, respectively.

3rd ASP Competition, &INGO has been used as grounder for all participant solvers,
mainly because it features an easy numeric format (i.e.leeobLPARSE[?]), that all
participant solvers can read and employ.

In order to investigate this point, we design an experiméned to highlight the
performance of a pool of state-of-the-art ASP solvers ona pbproblem instances.
Concerning the solvers, we selected the pool compriseddmithlti-engine solver
ME-ASP, namelyCLASP, CMODELS, DLV and IDP. As reported in P]°, these solvers
are representative of the state-of-the-art solver (SOIT&), considering a problem in-
stance, the oracle that always fares the best among aeaflablers.

The benchmarks considered for the experiment belong touite af the 3rd ASP
Competition. This is a large and heterogeneous suite offtmearks encoded in ASP-
Core, which was already employed for evaluating the perémre of state-of-the-art
ASP solvers. That suite includes planning domains, tenh@ord spatial scheduling
problems, combinatorial puzzles, graph problems, and abeurof application do-
mains, i.e., database, information extraction and moschiology field®. In more
detail, we have employed the encodings used in the Systeck &fahe competition
of all evaluated problems belonging to the categoReend NP, and all the problem
instances evaluated at the competifiddotice that withinstancewe refer to the com-
plete input program (i.e., encoding+facts) to be fed to aesdior each instance of the
problem to be solved. In Table 1 we report the problems ire@lw our experiment.
We evaluated 10 instances per problem — the same ones @dihtahe System Track
of the 3rd ASP Competition —, for a total amount of 180 inseamnc

In Table 2 we report the results of the experiment descrilbedea All the exper-
iments ran on a cluster of Intel Xeon E31245 PCs at 3.30 GHippgd with 64 bit
Ubuntu 12.04, granting 600 seconds of CPU time for the whodegss (grounding +
solving) and 2GB of memory to each system. We present Tabtet®a parts — top

5 A preliminary version is available for download &
8 An exhaustive description of the benchmark problems can be fourfLin [
" Both encodings and problem instances are available at the competitioitenj@bs

CLASP CMODELS
DLV-G GRINGO DLV-G GRINGO
Time # Time # Time # Time
DisjunctiveScheduling || 10 | 425.20| 5 75.45 9| 977.82| 4| 947.17

GrammarBasedIE 10 | 2323.72| 10 | 254.33| 10 | 2344.88| 10 | 266.69
GraphColouring 3 20.90| 3| 14455| 4| 42354 4| 357.90
HanoiTower 6| 751.65| 7| 1058.87| 7| 314.03| 7| 137.11
HydraulicLeaking 10 | 2095.85| 7 | 2819.15| 10 | 2087.08| 7 | 2850.30
HydraulicPlanning 10 | 883.17| 10| 154.30| 10 | 878.80| 10| 164.57
KnightTour 7 148.76 | 7 82.52 6 71.19| 6 18.50
Labyrinth 9| 72053| 10| 237.50| 8| 399.77| 9| 580.40
MazeGeneration 10 35.54| 10 494 | 10 120.03| 10 5.94
MCSQuerying 10 | 136.38| 10| 130.82| 10 | 155.84| 10| 133.55
Numberlink 8| 254.06| 7 964 | 4| 161.19| 4| 35341
PackingProblem 9 | 2285.40| - - 9| 2247.19| - -
PartnerUnitsPolynomial| 8 | 263.70| 2 63.94 8| 262.93| - -
Reachability 9| 52869 6| 110.50| 8 | 42797| 5| 439.69
SokobanDecision 10 | 425.09| 10| 512.59| 10| 814.07| 10| 893.03
Solitaire 3| 206.73| 2 8151 4| 303.09| 3| 488.84
StableMarriage 1 61.47| - - - - = -
WeightAssignmentTree|| 8 | 416.69| 1 15.62 5| 1100.25| - -
DLV IDP
DLV-G GRINGO DLV-G GRINGO

Time # Time # Time # Time
DisjunctiveScheduling 1 35.09| 1 4460 | 10 | 41590| 5 69.36

GrammarBasedIE 10 | 2020.14| 10 | 280.51| 10 | 2285.07| 10 | 280.53
GraphColouring - - - - 3| 510.15| 3| 531.83
HanoiTower - -| - - 8| 408.31| 9| 474.39
HydraulicLeaking 10 | 1936.64| 7 | 2830.51| 10 | 2130.24| 7 | 2843.08
HydraulicPlanning 10 | 837.25| 10| 164.01| 10| 889.13| 10| 173.13
KnightTour 5| 71154| 5 1581 || 9 | 1002.47| 10 | 1092.94
Labyrinth 3 7148 | 3 7136 5 49.66| 6 21.92
MazeGeneration 8 629.47| 8 472.77 | 10 37.24| 10 7.16
MCSQuerying 10 31.08| 10 | 160.17| 10| 138.18| 6 56.58
Numberlink 4 550 | 4 10.08| 8| 130.06| 8 80.31
PackingProblem 8 | 1910.86| - - 9 | 2215.05| - -
PartnerUnitsPolynomial| 1 | 443.06| - - 8| 264.21| - -
Reachability 10 58.89| 4 69.51| 5| 30253| 5| 1201.39
SokobanDecision 6| 18242 6| 280.80| 10 | 1306.88| 9 | 926.54
Solitaire 4 8550 | - - 51| 216.67| 5| 109.06
StableMarriage - - - - - - - -
WeightAssignmentTree|| 10 | 549.09| - - 5 113.23| 1 12.07

Table 2. Results of a pool of solvers using different grounders on the instancesimakt the 3rd ASP Competition. No-
tice that “GrammarBasedIE” and “MCSQuerying” are shorthands for the problems namedrf@rBasedInformationEx-
traction” and “MultiContextSystemQuerying”, respectively.

and bottom — organized as follows. The first column reporspitoblem name, and it
is followed by two group of columns. Each group is labelechwiite considered solver
name, and it is composed of two sub-groups, denoting thengeru(groups “DLV&”
and “GRINGO"). Finally, each sub-group is composed of two columns, iriclvhwe
report the total amount of solved instances and the total @R&(in seconds) spent to
solve them (columns “#” and “Time”, respectively).

Looking at Table 2, concerning the resultsmfasp, we report that it was able to
solve 141 (out of 180) instances using the DE\grounder, while it tops to 107 using
GRINGO. In particular, looking at the table, we can see tbansp mainly benefits
from the usage of DL\s — in terms of total amount of solved instances — in Disjunc-
tiveScheduling, PackingProblem, PartnerUnitsPolyngraiad WeightAssignmentTree
problems. Looking at the performance@fODELS, we can see a very similar picture;
notice that DLV-G +CMODELS solves 132 instances, whileRBNGO +CMODELS stops
at 99. While we can find the same picture lookingcet performance (it solves 135 for-
mulas if coupled with DLVe, while 104 if coupled with @INGO), the picture changes
in a noticeable way if we look at the performance of DLV, bessay as expected — it
performs better using its native grounder (in terms of tatabunt of solved instances)
instead of RINGO — it solves 100 instances instead of 68. Looking at resulighich
a solver solves the same number of instances with both gesande report that in
most cases the usage oRGIGO leads to lower CPU times.

To investigate this phenomenon and possibly getting adganbn this picture, we
computed some problem characteristics caléeturesThis is the first proposal afon-
groundASP features in ASP solving: our choice is to compute “sirhplg meaningful
features, that are cheap-to-compute, and that can helgddrdinate among problems
and/or classes, in order to employ the “best” grounder oh @etance considered.

Most of the features we extract are related to peculiardfe&SP that can lead to
select the most appropriate grounders, e.g. if the progm@mats a query we want
to choose DLVe given it implements specialized techniques to deal with A%
grams with queries?. Such features are: fraction of non-ground rules, eitleenmal
or disjunctive, presence of queries, ground and partialbpugded queries; maximum
Strongly Connected Components (SCC) size, number of HgateEree (HCF) and
non-HCF components, degree of support for non-HCF compenfatures indicating
if the program is recursive, tight and stratified; and nundféauiltins. This set of ASP
peculiar features is complemented with features that tateaccount other charac-
teristics such as problem size, balancing measures andrptpto horn, and are the
following: number of predicates, maximum body size, ratigpositive and negative
literals in each body of non-ground rules, and its recipkdcaction of unary, binary
and ternary non-ground rules, and fraction of horn rules.

In order to highlight the differences between Did/and GRINGO, we extract the
features described above on the instarmdsmittedat the 3rd ASP Competition, i.e.,
a pool of more than one thousand instances related to théepmebisted in Table 1,
from which we discarded the instances involved in the expeni of Table 2. In Fig-
ure 1 we report the boxplots related to the distribution af features. The differences
between DLVe& and QRINGO herewith reported motivates the work presented in the
next section.

DISJ MAXBODY

I :

T
DLV GRINGO DLV-G GRINGO

Fig. 1. Distributions of the features: number of disjunctive ruless() (left) and maximum body
size (MAXBODY)) (right) considering problemsubmittedo the 3rd ASP Competition for which
DLV-G allows a better performance with respect tei8Go (distribution on the left of each
plot) and vice-versa (distribution of the right of each plot). For eachildigton, we show a box-
and-whiskers diagram representing the median (bold line), the firshaddjuartile (bottom and
top edges of the box), the minimum and maximum (whiskers at the top arfbtt@m) of a
distribution.

5 Implementation and Experiments

In this section we show the implementation of our automatedigder selector, rep-
resenting a first attempt towards the exploitation of autexhaelection techniques to
predict both grounder and solver, given an ASP non-groustiirte. Our current im-
plementation is composed of two main elements, namely arfeaxtractor able to
analyze non-ground ASP programs, and a decision making Ieolktuparticular, the
latter has been implemented as an if-then-else decisiprdimputed with the support
of the PART decision list generatd?|[a classifier that returns a human readable model
based on if-then-else rules.

The resulting model highlights some specific cases in whiehetis a clear differ-
ence in performance between two grounders. Bd & always chosen when one has
to deal with queries. INGO is usually preferable for instantiating non-disjunctive
and recursive encodings with many components, and is jpiaégrin particular, when
most of the rules of the encoding feature a short body. [\ usually the right
choice also when the encoding contains rules having largebdsay, bodies with 4
or more literals) and the program has a simple structure {femponents). The rea-
sons behind this result can be found both in the techniquetemented in the two
grounders and in some more specific implementation choia@snstance queries are
processed far better by DL®; which exploits specific techniques like magic séfs [

Solver Grounder P NP Total
Time # Time # Time

DLV-G 48 | 128.26 || 93 | 62.65 141 | 84.99
CLASP GRINGO 35 97.21 72 32.69 107 | 53.80
SELECTOR 48 70.94 95 | 59.64 143 | 63.43
DLV-G 46 | 130.47 || 86 | 82.42 132 | 99.16

CMODELS GRINGO 32 116.29 67 58.44 99 77.14
SELECTOR 46 70.60 87 80.72 133 | 77.22

DLV-G 41 | 129.17 || 59 | 71.39 || 100 | 95.08
DLV GRINGO 31 | 107.89 || 37 | 28.53 68 | 64.71
SELECTOR || 41 71.26 || 59 | 69.50 || 100 | 70.22
DLV-G 43 | 13654 || 92 | 71.13 || 135 | 91.96
IDP GRINGO 32 | 14057 | 72 | 46.97 | 104 | 75.77

SELECTOR || 43 74.16 || 94 | 70.19 || 137 | 71.43

Table 3. Performance of a pool of ASP solvers combined with DEMSRINGO, andSELECTOR

while this is a feature that is not well supported iRIBG0.2 GRINGO is a newer
implementation which (we argue) was initially optimizeddkeal with non-disjunctive
encodings, since also_AsP (the solver developed by the same team) does not support
disjunction. Finally, we argue that DL performs better with rules having compar-
atively long bodies because it features both a more sophisti indexing technique
(w.r.t. GRINGO) and effective join ordering heuristic®][indeed, these techniques
are expected to pay off especially in these cases. The geowatector presented in
this paper is available for download latt p: / / www. mat . uni cal . it/ricca/
downl oads/ GR- SELECTOR- Al | A. zi p.

Aim of our next experiment is to test the performance of thel s solvers in-
troduced in Section 4 using the proposed tool as grounddedcaeLECTORIN the
following). Table 3 shows the results of the experiment dbed above on the bench-
mark instances evaluated at the 3rd ASP Competition. THe talstructured as fol-
lows: “Solver” and “Grounder” report the solver and the grdar name, respectively;
for each grounder+solver S, “P”, “NP” report the number aftémce solved by S (“#”)
and the average CPU time (in seconds) spent on such instéicas”) related to the
benchmark instances comprised in the clagsaadNP, respectively.

Looking at Table 3, we can see that all the considered sobersfit from the usage
of SELECTORas grounder. Looking at the performancecafAsp, we can see thaE-
LECTOR+CLASPIt is able to solve 2 instances more DI&/+CLASP, and 36 instances
more that RINGO +CLASP. The increase of performance is noticeable concerNiAg
instances, while if we look at the performancefbfnstance, we report thaELEC
TOR+CLASPIs able to solve the same instances of DEM-CLASP, also if in this case

8 In the competition, as well as in our experiment, only ground queriessaband when calling
GRINGO a straight technique is employed to handle propositional querfeis: replaced by
the constraint—not ¢, concluding they is cautiously true when the resulting program has no
answer set.

the average CPU time per solved instance relatesEteECTORFCLASP is 55% of the
one related to DLMs +CLASP.

Looking now at the performance aMODELS, we can see that the picture is very
similar to the one related toOLASP. SELECTORFCMODELS solves 34 instances more
that GRINGO +CMODELS, while the gap with DLV& +CMODELS stops to 1. Similar
considerations can be reported in the cas®of Finally, considering the performance
of DLV, we can see that the picture slightly changes. In tliseGSELECTORFDLV
is never superior to DL\ +DLV—in terms of total amount of solved instances — but
we report better performance in terms of average CPU timespleed instance, i.e.,
SELECTORFDLYV is about 25% faster than DL\&+DLV.

6 Conclusions

ASP systems are obtained combining a grounder, which ditesvariables, and a
solver, that computes the answer sets. It is well known tb#t bomponents play a
central role in the performance of the system. Algorithnmestidn techniques, up to
now, have been applied only on the second component. Indpisrpve make a first step
toward the exploitation of automated selection technidadise grounding component.

In particular, we implemented a new system able to autoigtiselect the most
appropriate grounder for solving the instance at hand ottvofstate-of-the-art ASP
instantiators. An experimental analysis, conducted orclmarks and solvers from
the 3rd ASP Competition, shows that our grounder selectpromes the evaluation
performance independently from the solver associated.

As far as future work is concerned we are exploring the pdagibo implement
a selector that is able to predict the best grounder+soligramong a set of possible
combinations.

