
On the Automated Selection of ASP Instantiators⋆

Marco Maratea1, Luca Pulina2, and Francesco Ricca3

1 DIBRIS, Univ. degli Studi di Genova, Viale F. Causa 15, 16145 Genova, Italy
marco@dist.unige.it

2 POLCOMING, Univ. degli Studi di Sassari, Viale Mancini 5, 07100 Sassari, Italy
lpulina@uniss.it

3 Dip. di Matematica ed Informatica, Univ. della Calabria, Via P. Bucci, 87030 Rende, Italy,
ricca@mat.unical.it

Abstract. Answer Set Programming (ASP) is a powerful language for knowl-
edge representation and reasoning. ASP is exploited in real-world applications
and is also attracting the interest of industry thanks to the availability of ef-
ficient implementations. ASP systems compute solutions relying on two mod-
ules: aninstantiator(or grounder) that produces, by removing variables from the
rules, a ground program equivalent to the input one; and amodel generator(or
solver) that computes the solutions of such propositional program. In this paper
we make a first step toward the exploitation of automated selection techniques
to the grounding module. We rely on two well-known ASP grounders, namely
the grounder of the DLV system and GRINGO, and we leverage on automated
classification algorithms to devise and implement an automatic procedure for se-
lecting the “best” grounder for each problem instance. An experimentalanalysis,
conducted on benchmarks and solvers from the 3rd ASP Competition, shows that
our approach improves the evaluation performance independently from the solver
associated with our grounder selector.

1 Introduction

In the last decade, Answer Set Programming (ASP) [?,?,?,?,?,?] is increasingly attract-
ing the interest of industry thanks to the availability of efficient implementations – see,
e.g., [?]. Thus, the ability of ASP systems to compute solutions in anefficient way is a
factor of paramount importance, especially when they deal with industrial level prob-
lems. Given a non-ground ASP program, ASP systems compute solutions relying on
two main modules: aninstantiator(or grounder) that produces a propositional ASP pro-
gram, and amodel generator(or solver) that takes as input a propositional program and
returns a solution.

Recently, the application of automated algorithm selection techniques to ASP solv-
ing [?,?,?,?,?] has noticeably improved the performance of ASP systems. The ap-
proaches cited above are often obtained by importing to ASP techniques already ap-
plied to Constraint Satisfaction problems, propositionalsatisfiability (SAT) or Quanti-
fied SAT (see [?,?,?] for details). The drawback about the adoption of such techniques

⋆ This paper is an early version of the work submitted at the 13rd Conference of the Italian
Association for Artificial Intelligence (AI*IA 2013).

is that they are confined to the model generator module, mainly because the research
fields mentioned deal with inherently ground problems.

In ASP it is well-established that limiting the choice to only one grounder could
avoid the exploitation of several optimization techniques, possibly applied to different
problem class (e.g., Polynomial (P) and NP problem classes as classified in the 3rd
ASP Competition [?]), implemented only in one grounder (e.g. Magic sets [?] in the
presence of queries).

In this paper we make a first step toward the exploitation of automated selection
techniques to the grounding module. We rely on two well-known ASP grounders, namely
the grounder of the DLV system [?] (DLV- G in the following) and GRINGO [?], and
we leverage on automated classification algorithms to automatically select the “best”
grounder. More in details, our starting point is an experimental analysis conducted on
the domains of benchmarks belonging to bothP andNP classes of the 3rd ASP Com-
petition, involving state-of-the-art ASP solvers and the aforementioned grounders. We
then applied classification methods by relying on characteristics of the various encod-
ing (features), with the aim of automatically select the most appropriategrounder. We
then implemented a system based on these ideas, and the results of our experimental
analysis show that the performance of the considered solvers are boosted by the usage
of the proposed system.

To sum up, the main contributions of this paper are:

• the application of automated selection techniques to the grounding module in ASP
computation, to complement a recent body of research only focused on solvers;

• the implementation of a system based on these techniques; and
• an experimental analysis of the new system, involving a large variety of bench-

marks, grounders and solvers, that shows the benefits of the approach.

The paper is structured as follows. Section 2 introduces needed preliminaries about
ASP. Section 3 shows the main answer set computation methods, with focus on the
grounding module. Section 4 then describes the ideas we haveapplied to reach the
above-mentioned goals. Section 5 presents implementationdetails of the system imple-
mented along the line reported in the previous section, and its results. The paper ends
with some conclusions in Section 6.

2 Answer Set Programming

In this section we recall Answer Set Programming syntax and semantics.

Syntax. A variable or a constant is aterm. An atomis p(t1, ..., tn), wherep is apred-
icateof arity n andt1, ..., tn are terms. Aliteral is either apositive literalp or anega-
tive literal not p, wherep is an atom. A(disjunctive) ruler has the following form:

a1 ∨ . . . ∨ an :– b1, . . . , bk, not bk+1, . . . , not bm. (1)

wherea1, . . . , an, b1, . . . , bm are atoms. The disjunctiona1 ∨ . . .∨ an is theheadof r,
while the conjunctionb1, . . . , bk, not bk+1, . . . , not bm is thebodyof r. A rule having

precisely one head literal (i.e.n = 1) is called anormal rule. If the body is empty (i.e.
k = m = 0), it is called afact, and the:– sign is usually omitted. A rule without head
literals (i.e.n = 0) is usually referred to as anintegrity constraint. A rule r is safeif
each variable appearing inr appears also in some positive body literal ofr.

An ASP programP is a finite set of safe rules. Anot -free (resp.,∨-free) program is
calledpositive(resp.,normal). A term, an atom, a literal, a rule, or a program isground
if no variables appear in it.

Hereafter, we denote byH(r) the set{a1, . . . , an} of the head atoms, and byB(r)
the set{b1, . . . , bk, not bk+1, . . . , not bm} of the body literals.B+(r) (resp.,B−(r))
denotes the set of atoms occurring positively (resp., negatively) in B(r). A predicatep
is referred to as anEDB predicate if, for each ruler having in the head an atom whose
name isp ∈ H(r), r is a fact; all others predicates are referred to asIDB predicates. The
set of facts in whichEDBpredicates occur, denoted byEDB(P), is calledExtensional
Database (EDB), the set of all other rules is theIntensional Database (IDB).

Semantics.Let P be an ASP program. TheHerbrand universeof P, denoted asUP ,
is the set of all constants appearing inP. In the case when no constant appears inP,
an arbitrary constant is added toUP . TheHerbrand baseof P, denoted asBP , is the
set of all ground atoms constructable from the predicate symbols appearing inP and
the constants ofUP . Given a ruler occurring in a programP, a ground instanceof
r is a rule obtained fromr by replacing every variableX in r by σ(X), whereσ is
a substitution mapping the variables occurring inr to constants inUP . We denote by
Ground(P) the set of all the ground instances of the rules occurring inP.

An interpretationfor P is a set of ground atoms, that is, an interpretation is a subset
I of BP . A ground positive literalA is true (resp., false) w.r.t.I if A ∈ I (resp.,A 6∈ I).
A ground negative literalnot A is true w.r.t.I if A is false w.r.t.I; otherwisenot A is
false w.r.t.I. Letr be a rule inGround(P). The head ofr is true w.r.t.I if H(r)∩I 6= ∅.
The body ofr is true w.r.t.I if all body literals ofr are true w.r.t.I (i.e., B+(r) ⊆ I

andB−(r) ∩ I = ∅) and otherwise the body ofr is false w.r.t.I. The ruler is satisfied
(or true) w.r.t.I if its head is true w.r.t.I or its body is false w.r.t.I. A modelfor P
is an interpretationM for P such that every ruler ∈ Ground(P) is true w.r.t.M . A
modelM for P is minimal if there is no modelN for P such thatN is a proper subset
of M . The set of all minimal models forP is denoted byMM(P). In the following, the
semantics of ground programs is first given, then the semantics of general programs is
given in terms of the answer sets of its instantiation. Givena groundprogramP and
an interpretationI, thereductof P w.r.t. I is the subsetPI of P obtained by deleting
from P the rules in which a body literal is false w.r.t.I.4 Let I be an interpretation for
a ground programP. I is ananswer set(or stable model) forP if I ∈ MM(PI) (i.e.,I
is a minimal model for the programPI) [?].

Queries.A programP can be coupled with aqueryin the formq?, whereq is a literal.
Let P be a program andq? be a query,q? is true iff for any answer setA of P it holds
thatq ∈ A. Basically, the semantics of queries corresponds to cautious reasoning, since
a query is true if the corresponding atom is true in all answersets ofP .

4 This definition, introduced in [?], is equivalent to the one of Gelfond and Lifschitz [?].

3 Answer Sets Computation

In this section we overview the evaluation of ASP programs, and recall the available
solutions mentioning the techniques underlying the state of the art implementations.

The evaluation of ASP programs is traditionally carried outin two phases: program
instantiation and model generation. As a consequence, an ASP system usually couples
two modules: thegrounderor instantiatorand theASP model generatoror solver. In the
following we provide a more detailed description of the instantiation, since the target
of this work is improving performance of this phase.

ASP Program Instantiation.In general, an ASP programP contains variables, and
the process ofinstantiation or groundingaims to eliminate these variables in order to
generate a propositional ASP program equivalent toP. Note that, the full theoretical
instantiationGround(P) introduced in previous section contains all the ground rules
that can be generated applying every possible substitutionof variables. A modern in-
stantiator module does not produce the full ground instantiation Ground(P) (which
is unnecessarily huge in size), but employees several techniques to produce one that
is both equivalent and usually much smaller thanGround(P). Notice that grounding
is an EXPTIME-hard task, indeed in general it may produce a program that is of ex-
ponential size w.r.t. the input program. Thus, having an instantiator able to produce a
comparatively small program in a reasonable time is crucialto achieve good (or even
acceptable) performance in evaluating ASP programs. For instance, DLV-G generates
a ground instantiation that has the same answer sets as the full one, but is much smaller
in general [?].

In order to generate a small ground program equivalent toP, a modern instantia-
tor usually exploits some structural information on the input program. The evaluation
proceeds bottom-up, starting from the information contained in the facts and evaluating
the rules according to the positive body-to-head dependencies. Such dependencies can
be identified by mean of theDependency Graph(DG) of P. The DG ofP is a directed
graphG(P) = 〈N,E〉, whereN is a set of nodes andE is a set of arcs.N contains a
node for each IDB predicate ofP, andE contains an arce = (p, q) if there is a ruler
in P such thatq occurs in the head ofr andp occurs in a positive literal of the body of
r. The graphG(P) induces a subdivision ofP into subprograms (also calledmodules)
allowing for a modular evaluation. We say that a ruler ∈ P definesa predicatep if p

appears in the head ofr. For each strongly connected component (SCC)C of G(P),
the set of rules defining all the predicates inC is calledmoduleof C and is denoted by
Pc.

The DG induces a partial ordering among its SCCs which is followed during the
evaluation. Basically, this order allows to perform a layered evaluation of the program;
one module at time in such a way that data needed for the instantiation of a module
Ci have been already generated by the instantiation of the modules precedingCi. This
way, ground instances of rules are generated using only atoms which can possibly be
derived fromP, and thus avoiding the combinatorial explosion that may occur in the
case of a full instantiation [?]. Modules containing recursive rules are evaluated accord-
ing to fix-point techniques originally introduced in the field of deductive databases [?].

In turn, each rule in a module is processed by applying a variable to constant match-
ing procedure, which is basically implemented as a backtracking algorithm. Actually,
modern instantiators implement a backjumping technique [?]. Note that the instantia-
tion of a rule is very similar to the evaluation of a conjunctive query, which is a process
exponential both in the size of the query (number of elementsin the body) and in the
number of variables. An additional aspect influencing the cost of evaluating a rule, is
the way variables are bound (trough joins or builtin operators), as it also happens for
conjunctive queries [?].

At the time of this writing, two are the most prominent instantiators for ASP pro-
grams, which are capable of parsing the core language employed in the 3rd ASP com-
petition, namely DLV-G and GRINGO. These two grounders are both based on the
above-mentioned techniques, but employ specific variants and heuristics which are de-
scribed in the related literature [?,?,?], and that will be outlined in Section 5 when the
results are analyzed.

Answer Set Solving.The subsequent computations, which constitute the non-deterministic
part of ASP programs evaluation, are then performed on the ground instantiation by an
ASP solver. ASP solvers employ algorithms very similar to SAT solvers,i.e., special-
ized variants of DPLL [?] search.

There are several different approaches to ASP solving that range from native solvers
(i.e., implementing ASP-specific techniques), to rewriting-based solutions (e.g., rewrit-
ing programs into SAT and calling a SAT solver). Among the ones that participated to
the 3rd ASP Competition, we recall the native ASP solvers SMODELS [?], DLV [?]
and CLASP [?]. SMODELS is one the first ASP systems made available; and DLV is
one of the first robust implementations able to cope with disjunctive programs. Both
feature look-ahead based techniques and ASP-specific search space pruning operators.
CLASP is a native ASP solver relying on conflict-driven nogood learning. Among the
rewriting-based ASP solvers we mentionCMODELS [?], IDP [?], and theLP2SAT [?]
family that resort on a translation to SAT. There are also proposals, like theLP2DIFF [?]
family, rewriting ASP in difference logic and calling a Satisfiability Modulo Theories
solver to compute answer sets.

4 Automated selection of grounding algorithm

In our previous work [?,?], our aim was to build an efficient ASP solver on top of state-
of-the-art systems, leveraging on machine learning techniques to automatically choose
the “best” available solver on a per-instance basis. Our analysis focused onground
instances, and, to do that, we ran each non-ground instance with GRINGO – the same
setting used in the 3rd ASP Competition –, letting our systemME-ASP to choose the
best solver to fire. In order to extendME-ASP to cope with non-ground instances, and
considering that in [?] we report thatME-ASP was not able to cope with a number of
instances due to GRINGO failures during the grounding stage, to obtain a more efficient
system we investigate the application of algorithm selection techniques to the grounding
phase, by relying on DLV-G and GRINGO.

Considering the grounders described above, it is not clear which one represents
the choice that allows to reach the best possible performance. In the context of the

Problem Class Problem Class

DisjunctiveScheduling NP HydraulicLeaking P
HydraulicPlanning P GrammarBasedIE P
GraphColouring NP HanoiTower NP
KnightTour NP MazeGeneration NP
Labyrinth NP MCSQuerying NP
Numberlink NP PackingProblem NP
PartnerUnitsPolynomial P Reachability P
SokobanDecision NP Solitaire NP
StableMarriage P WeightAssignmentTree NP

Table 1. Pool of ASP problems involved in the reported experiments. Notice that “Grammar-
BasedIE” and “MCSQuerying” are shorthands for the problems named “GrammarBasedInfor-
mationExtraction” and “MultiContextSystemQuerying”, respectively.

3rd ASP Competition, GRINGO has been used as grounder for all participant solvers,
mainly because it features an easy numeric format (i.e. the one ofLPARSE [?]), that all
participant solvers can read and employ.

In order to investigate this point, we design an experiment aimed to highlight the
performance of a pool of state-of-the-art ASP solvers on a pool of problem instances.
Concerning the solvers, we selected the pool comprised in the multi-engine solver
ME-ASP, namelyCLASP, CMODELS, DLV and IDP. As reported in [?]5, these solvers
are representative of the state-of-the-art solver (SOTA),i.e., considering a problem in-
stance, the oracle that always fares the best among available solvers.

The benchmarks considered for the experiment belong to the suite of the 3rd ASP
Competition. This is a large and heterogeneous suite of benchmarks encoded in ASP-
Core, which was already employed for evaluating the performance of state-of-the-art
ASP solvers. That suite includes planning domains, temporal and spatial scheduling
problems, combinatorial puzzles, graph problems, and a number of application do-
mains, i.e., database, information extraction and molecular biology field 6. In more
detail, we have employed the encodings used in the System Track of the competition
of all evaluated problems belonging to the categoriesP andNP, and all the problem
instances evaluated at the competition7. Notice that withinstancewe refer to the com-
plete input program (i.e., encoding+facts) to be fed to a solver for each instance of the
problem to be solved. In Table 1 we report the problems involved in our experiment.
We evaluated 10 instances per problem – the same ones evaluated at the System Track
of the 3rd ASP Competition –, for a total amount of 180 instances.

In Table 2 we report the results of the experiment described above. All the exper-
iments ran on a cluster of Intel Xeon E31245 PCs at 3.30 GHz equipped with 64 bit
Ubuntu 12.04, granting 600 seconds of CPU time for the whole process (grounding +
solving) and 2GB of memory to each system. We present Table 2 in two parts – top

5 A preliminary version is available for download at [?].
6 An exhaustive description of the benchmark problems can be found in [?].
7 Both encodings and problem instances are available at the competition website [?].

CLASP CMODELS

DLV- G GRINGO DLV- G GRINGO

Time # Time # Time # Time
DisjunctiveScheduling 10 425.20 5 75.45 9 977.82 4 947.17
GrammarBasedIE 10 2323.72 10 254.33 10 2344.88 10 266.69
GraphColouring 3 20.90 3 144.55 4 423.54 4 357.90
HanoiTower 6 751.65 7 1058.87 7 314.03 7 137.11
HydraulicLeaking 10 2095.85 7 2819.15 10 2087.08 7 2850.30
HydraulicPlanning 10 883.17 10 154.30 10 878.80 10 164.57
KnightTour 7 148.76 7 82.52 6 71.19 6 18.50
Labyrinth 9 720.53 10 237.50 8 399.77 9 580.40
MazeGeneration 10 35.54 10 4.94 10 120.03 10 5.94
MCSQuerying 10 136.38 10 130.82 10 155.84 10 133.55
Numberlink 8 254.06 7 9.64 4 161.19 4 353.41
PackingProblem 9 2285.40 – – 9 2247.19 – –
PartnerUnitsPolynomial 8 263.70 2 63.94 8 262.93 – –
Reachability 9 528.69 6 110.50 8 427.97 5 439.69
SokobanDecision 10 425.09 10 512.59 10 814.07 10 893.03
Solitaire 3 206.73 2 81.51 4 303.09 3 488.84
StableMarriage 1 61.47 – – – – – –
WeightAssignmentTree 8 416.69 1 15.62 5 1100.25 – –

DLV IDP

DLV- G GRINGO DLV- G GRINGO

Time # Time # Time # Time
DisjunctiveScheduling 1 35.09 1 44.60 10 415.90 5 69.36
GrammarBasedIE 10 2020.14 10 280.51 10 2285.07 10 280.53
GraphColouring – – – – 3 510.15 3 531.83
HanoiTower – – – – 8 408.31 9 474.39
HydraulicLeaking 10 1936.64 7 2830.51 10 2130.24 7 2843.08
HydraulicPlanning 10 837.25 10 164.01 10 889.13 10 173.13
KnightTour 5 711.54 5 15.81 9 1002.47 10 1092.94
Labyrinth 3 71.48 3 71.36 5 49.66 6 21.92
MazeGeneration 8 629.47 8 472.77 10 37.24 10 7.16
MCSQuerying 10 31.08 10 160.17 10 138.18 6 56.58
Numberlink 4 5.50 4 10.08 8 130.06 8 80.31
PackingProblem 8 1910.86 – – 9 2215.05 – –
PartnerUnitsPolynomial 1 443.06 – – 8 264.21 – –
Reachability 10 58.89 4 69.51 5 302.53 5 1201.39
SokobanDecision 6 182.42 6 280.80 10 1306.88 9 926.54
Solitaire 4 85.50 – – 5 216.67 5 109.06
StableMarriage – – – – – – – –
WeightAssignmentTree 10 549.09 – – 5 113.23 1 12.07

Table 2. Results of a pool of solvers using different grounders on the instances evaluated at the 3rd ASP Competition. No-
tice that “GrammarBasedIE” and “MCSQuerying” are shorthands for the problems named “GrammarBasedInformationEx-
traction” and “MultiContextSystemQuerying”, respectively.

and bottom – organized as follows. The first column reports the problem name, and it
is followed by two group of columns. Each group is labeled with the considered solver
name, and it is composed of two sub-groups, denoting the grounder (groups “DLV-G”
and “GRINGO”). Finally, each sub-group is composed of two columns, in which we
report the total amount of solved instances and the total CPUtime (in seconds) spent to
solve them (columns “#” and “Time”, respectively).

Looking at Table 2, concerning the results ofCLASP, we report that it was able to
solve 141 (out of 180) instances using the DLV-G grounder, while it tops to 107 using
GRINGO. In particular, looking at the table, we can see thatCLASP mainly benefits
from the usage of DLV-G – in terms of total amount of solved instances – in Disjunc-
tiveScheduling, PackingProblem, PartnerUnitsPolynomial, and WeightAssignmentTree
problems. Looking at the performance ofCMODELS, we can see a very similar picture;
notice that DLV-G +CMODELS solves 132 instances, while GRINGO +CMODELS stops
at 99. While we can find the same picture looking atIDP performance (it solves 135 for-
mulas if coupled with DLV-G, while 104 if coupled with GRINGO), the picture changes
in a noticeable way if we look at the performance of DLV, because – as expected – it
performs better using its native grounder (in terms of totalamount of solved instances)
instead of GRINGO – it solves 100 instances instead of 68. Looking at results inwhich
a solver solves the same number of instances with both grounders, we report that in
most cases the usage of GRINGO leads to lower CPU times.

To investigate this phenomenon and possibly getting advantage on this picture, we
computed some problem characteristics calledfeatures. This is the first proposal ofnon-
groundASP features in ASP solving: our choice is to compute “simple” but meaningful
features, that are cheap-to-compute, and that can help to discriminate among problems
and/or classes, in order to employ the “best” grounder on each instance considered.

Most of the features we extract are related to peculiaritiesof ASP that can lead to
select the most appropriate grounders, e.g. if the program contains a query we want
to choose DLV-G given it implements specialized techniques to deal with ASPpro-
grams with queries [?]. Such features are: fraction of non-ground rules, either normal
or disjunctive, presence of queries, ground and partially grounded queries; maximum
Strongly Connected Components (SCC) size, number of Head-Cycle Free (HCF) and
non-HCF components, degree of support for non-HCF components; features indicating
if the program is recursive, tight and stratified; and numberof builtins. This set of ASP
peculiar features is complemented with features that take into account other charac-
teristics such as problem size, balancing measures and proximity to horn, and are the
following: number of predicates, maximum body size, ratio of positive and negative
literals in each body of non-ground rules, and its reciprocal, fraction of unary, binary
and ternary non-ground rules, and fraction of horn rules.

In order to highlight the differences between DLV-G and GRINGO, we extract the
features described above on the instancessubmittedat the 3rd ASP Competition, i.e.,
a pool of more than one thousand instances related to the problems listed in Table 1,
from which we discarded the instances involved in the experiment of Table 2. In Fig-
ure 1 we report the boxplots related to the distribution of two features. The differences
between DLV-G and GRINGO herewith reported motivates the work presented in the
next section.

DISJ MAXBODY

Fig. 1. Distributions of the features: number of disjunctive rules (DISJ) (left) and maximum body
size (MAXBODY) (right) considering problemssubmittedto the 3rd ASP Competition for which
DLV- G allows a better performance with respect to GRINGO (distribution on the left of each
plot) and vice-versa (distribution of the right of each plot). For each distribution, we show a box-
and-whiskers diagram representing the median (bold line), the first andthird quartile (bottom and
top edges of the box), the minimum and maximum (whiskers at the top and thebottom) of a
distribution.

5 Implementation and Experiments

In this section we show the implementation of our automated grounder selector, rep-
resenting a first attempt towards the exploitation of automated selection techniques to
predict both grounder and solver, given an ASP non-ground instance. Our current im-
plementation is composed of two main elements, namely a feature extractor able to
analyze non-ground ASP programs, and a decision making module. In particular, the
latter has been implemented as an if-then-else decision list, computed with the support
of the PART decision list generator [?], a classifier that returns a human readable model
based on if-then-else rules.

The resulting model highlights some specific cases in which there is a clear differ-
ence in performance between two grounders. DLV-G is always chosen when one has
to deal with queries. GRINGO is usually preferable for instantiating non-disjunctive
and recursive encodings with many components, and is preferable, in particular, when
most of the rules of the encoding feature a short body. DLV-G is usually the right
choice also when the encoding contains rules having large bodies (say, bodies with 4
or more literals) and the program has a simple structure (fewcomponents). The rea-
sons behind this result can be found both in the techniques implemented in the two
grounders and in some more specific implementation choices.For instance queries are
processed far better by DLV-G, which exploits specific techniques like magic sets [?],

Solver Grounder P NP Total
Time # Time # Time

DLV- G 48 128.26 93 62.65 141 84.99
CLASP GRINGO 35 97.21 72 32.69 107 53.80

SELECTOR 48 70.94 95 59.64 143 63.43

DLV- G 46 130.47 86 82.42 132 99.16
CMODELS GRINGO 32 116.29 67 58.44 99 77.14

SELECTOR 46 70.60 87 80.72 133 77.22

DLV- G 41 129.17 59 71.39 100 95.08
DLV GRINGO 31 107.89 37 28.53 68 64.71

SELECTOR 41 71.26 59 69.50 100 70.22

DLV- G 43 136.54 92 71.13 135 91.96
IDP GRINGO 32 140.57 72 46.97 104 75.77

SELECTOR 43 74.16 94 70.19 137 71.43

Table 3. Performance of a pool of ASP solvers combined with DLV-G, GRINGO, andSELECTOR.

while this is a feature that is not well supported in GRINGO.8 GRINGO is a newer
implementation which (we argue) was initially optimized dodeal with non-disjunctive
encodings, since alsoCLASP (the solver developed by the same team) does not support
disjunction. Finally, we argue that DLV-G performs better with rules having compar-
atively long bodies because it features both a more sophisticated indexing technique
(w.r.t. GRINGO) and effective join ordering heuristics [?]; indeed, these techniques
are expected to pay off especially in these cases. The grounder selector presented in
this paper is available for download athttp://www.mat.unical.it/ricca/
downloads/GR-SELECTOR-AIIA.zip.

Aim of our next experiment is to test the performance of the pool of solvers in-
troduced in Section 4 using the proposed tool as grounder (called SELECTOR in the
following). Table 3 shows the results of the experiment described above on the bench-
mark instances evaluated at the 3rd ASP Competition. The table is structured as fol-
lows: “Solver” and “Grounder” report the solver and the grounder name, respectively;
for each grounder+solver S, “P”, “NP” report the number of instance solved by S (“#”)
and the average CPU time (in seconds) spent on such instances(“Time”) related to the
benchmark instances comprised in the classesP andNP, respectively.

Looking at Table 3, we can see that all the considered solversbenefit from the usage
of SELECTORas grounder. Looking at the performance ofCLASP, we can see thatSE-
LECTOR+CLASP it is able to solve 2 instances more DLV-G +CLASP, and 36 instances
more that GRINGO +CLASP. The increase of performance is noticeable concerningNP
instances, while if we look at the performance ofP instance, we report thatSELEC-
TOR+CLASP is able to solve the same instances of DLV-G +CLASP, also if in this case

8 In the competition, as well as in our experiment, only ground queries are used and when calling
GRINGO a straight technique is employed to handle propositional queries:q? is replaced by
the constraint:–not q, concluding theq is cautiously true when the resulting program has no
answer set.

the average CPU time per solved instance related toSELECTOR+CLASP is 55% of the
one related to DLV-G +CLASP.

Looking now at the performance ofCMODELS, we can see that the picture is very
similar to the one related toCLASP. SELECTOR+CMODELS solves 34 instances more
that GRINGO +CMODELS, while the gap with DLV-G +CMODELS stops to 1. Similar
considerations can be reported in the case ofIDP. Finally, considering the performance
of DLV, we can see that the picture slightly changes. In this case,SELECTOR+DLV
is never superior to DLV-G +DLV– in terms of total amount of solved instances – but
we report better performance in terms of average CPU time persolved instance, i.e.,
SELECTOR+DLV is about 25% faster than DLV-G +DLV.

6 Conclusions

ASP systems are obtained combining a grounder, which eliminates variables, and a
solver, that computes the answer sets. It is well known that both components play a
central role in the performance of the system. Algorithm selection techniques, up to
now, have been applied only on the second component. In this paper we make a first step
toward the exploitation of automated selection techniquesto the grounding component.

In particular, we implemented a new system able to automatically select the most
appropriate grounder for solving the instance at hand out oftwo state-of-the-art ASP
instantiators. An experimental analysis, conducted on benchmarks and solvers from
the 3rd ASP Competition, shows that our grounder selector improves the evaluation
performance independently from the solver associated.

As far as future work is concerned we are exploring the possibility to implement
a selector that is able to predict the best grounder+solver pair among a set of possible
combinations.

