
Multi-Level Algorithm Selection for ASP

Marco Maratea1, Luca Pulina2, and Francesco Ricca3

1 DIBRIS, Univ. degli Studi di Genova, Viale F. Causa 15, 16145 Genova, Italy
marco@dist.unige.it

2 POLCOMING, Univ. degli Studi di Sassari, Viale Mancini 5, 07100 Sassari, Italy
lpulina@uniss.it

3 Dip. di Matematica ed Informatica, Univ. della Calabria, Via P. Bucci, 87030 Rende, Italy,
ricca@mat.unical.it

Abstract. Automated algorithm selection techniques have been applied success-
fully to Answer Set Programming (ASP) solvers. ASP computation includes two
levels of computation: variable substitution, called grounding, and propositional
answer set search, called solving. In this paper we present ME-ASPML, an ex-
tended ASP system applying algorithm selection techniques to both levels of
computation in order to choose the most promising solving strategy. Experiments
conducted on benchmarks and solvers of the Fifth ASP Competition shows that
ME-ASPML is able to solve more instances than state-of-the-art systems.

1 Introduction

Answer Set Programming (ASP) [8, 12, 13] is a declarative programming paradigm de-
veloped in the area of logic programming and non-monotonic reasoning. The evalua-
tion of ASP programs usually includes two levels of computation, called grounding and
solving. In the first level, a propositional program is obtained from a non-ground spec-
ification by applying intelligent techniques that eliminate variables; then, in the second
level, the propositional program is fed to an ASP solver to produce answer sets.

Automated algorithm selection techniques have been applied in ASP to obtain effi-
cient evaluation of programs. The idea is to select automatically the “best” computation
strategy on the basis of features computed on a training set on instances. In the liter-
ature there are several different proposals, and among them we mention the portfolio
solver CLASPFOLIO ver. 1 [10], which then evolved in a framework combining different
approaches in CLASPFOLIO ver. 2 [15], the multi-engine approach implemented in ME-
ASP [19], the techniques for learning heuristics orders presented in [3], and the work
in [21, 14] that employ parameters tuning and/or design a solvers schedule. However, to
the best of our knowledge, the application of automated selection techniques is typically
limited to the evaluation of propositional programs, thus the choice of algorithms has
been limited to the solving level. A preliminary contribution that exploits the features
of non-ground programs was presented in [18], but also in this case the application was
limited to only one level, namely the choice of the most promising grounding tool.

In this paper we present ME-ASPML, an extension of the multi-engine ASP system
ME-ASP, that applies algorithm selection techniques to both levels of computation of

answer sets, with the goal of selecting the most promising computation strategy. ME-
ASPML supports the new standard ASPCore 2.0 [5] and selects among the systems that
participated to the Fifth ASP Competition [6].

The new architecture of ME-ASPML takes advantage from the extraction of syntactic
features of non-ground programs in the first level, so to identify a number of classes of
non-ground programs. Then, ME-ASPML (possibly) applies to each class identified in
the first level an additional phase of algorithm selection, which exploits the features of
ground programs measured after running the grounder GRINGO [11]. A key-enabler
in achieving good performance in ME-ASPML is the extraction of cheap-to-compute
features. These can be obtained at the price of a minimum overhead also in case of
large input programs. The features employed in the first level are able to characterize
a program w.r.t. the complexity class, and can even identify a class of programs where
a specific grounder is the most promising (as done in [18]). The algorithm selection
approach of ME-ASP [19] is then applied in the second level to the classes of programs
identified in the first level, allowing for a more accurate selection of the solver to be
employed, given that different classes of programs are usually characterized by different
sets of meaningful features. Notably, the set of features used in the second level of ME-
ASPML is a strict superset of the ones employed in ME-ASP [19], extended to deal with
ASPCore 2.0 [5] programs.

An experimental analysis conducted on benchmarks and solvers of the Fifth ASP
Competition shows that ME-ASPML is able to solve more instances than: (i) any solver
that participated to the competition, (ii) the mere update of the (single-level) ME-
ASP [19] system, and (iii) the state-of-the-art system CLASPFOLIO ver. 2.2. The results
hold also considering separately each track of the competition. Such analysis, thus, sug-
gests that the application of a multi-level algorithm selection strategy, also exploiting
the features of non-ground programs, can lead to a performance that cannot be matched
by any system applying algorithm selection only to propositional programs.

2 Architecture and Implementation

Architecture. Figure 1 presents the architecture of ME-ASPML (available for download
at www.mat.unical.it/ricca/downloads/measpml.tar.gz). Looking at
the figure, we can see that ME-ASPML is composed of six main modules. NGFE (Non-
Ground Feature Extractor) aims at computing features from the input (non-ground) pro-
gram that are “pragmatically” cheap-to-compute, such as the number of Head-Cycle
Free components, presence of queries, and stratification property. Such features are
passed to NON-GROUND MANAGER, that is devoted to identify the class of the input
ASP program. GROUNDER takes as input the non-ground ASP program and returns
the related grounded instance. The next module, namely GFE (Ground Feature Extrac-
tor), aims at computing the syntactic features of the input ground program. We used
the features detailed in [19], with the addition of some ASPCore 2.0 specific features
such as the number of choice rules, number of aggregates, and number of weak con-
straints. GROUND MANAGER is devoted to the prediction of the solver to run. It con-
tains the inductive models related to the considered classes. Its working process can
be divided in two steps, i.e., (i) given the input received by NON-GROUND MANAGER,

2

Fig. 1. The architecture of ME-ASPML. Solid boxes represent the modules, while arrows denote
functional connections between them.

it selects the proper inductive model; and (ii) given the features computed in GFE,
it outputs to SOLVER MANAGER the name of the predicted solver. Finally, SOLVER
MANAGER manages the interaction with the engines. At the end of the engine computa-
tion, SOLVER MANAGER returns as output the result given by the solver.

Implementation. In ME-ASPML, algorithm selection is implemented by means of multi-
nomial classification. In a few words, given a set of patterns, i.e., input vectors X =
{x1, . . . xk} with xi ∈ Rn, and a corresponding set of labels, i.e., output values Y ∈
{1, . . . ,m}, where Y is composed of values representing the m classes of the multino-
mial classification problem, in our modeling, the m classes are m ASP solvers. Given a
set of patterns X and a corresponding set of labels Y , the task of a multinomial classi-
fier c is to construct c from X and Y so that when we are given some x? ∈ X we should
ensure that c(x?) is equal to f(x?). This task is called training, and the pair (X,Y) is
called the training set. Concerning the training set, we selected instances and encod-
ings involved in the Fifth ASP Competition [6]. The considered pool of benchmarks
is composed of 26 domains organized into tracks, which are based on both complex-
ity issues and language constructs of ASPCore 2.0. Starting from a total amount of
8572 instances, we pragmatically randomly split the amount of instances in each do-
main, using 50% of the total amount for training purpose, and the remaining ones for
testing – the full list is available at www.mat.unical.it/ricca/downloads/
measpmlts.tar.gz. Concerning the NON-GROUND MANAGER (see Figure 1), we
used a list of if-then-else rules obtained running the PART decision list generator on
the training instances. About the labels, we considered five program classes, namely
the queries (Q) and ASP competition tracks names (in the following, for short, Ti,
i ∈ {1, . . . , 4}). Notice that this module does not select only the grounder as done
in [18], but in principle the approach of [18] can be implemented in our architecture.
Considering GROUNDER module, it is actually implemented using GRINGO ver. 4. Re-
garding GROUND MANAGER, in the current version of ME-ASPML is composed of four
different inductive models, i.e., models obtained training a classifier. Models are related
to the program classes T1, . . . , T4 and are computes using the training sets mentioned
above. The pattern comprised in the training set is composed of the values related to

3

Solver T1 T2 T3 T4 Q
CLASP [7] X X X X –
LP2BV2+BOOLECTOR [20] X – – –
LP2GRAPH [9] X – – –
LP2MAXSAT+CLASP [4] X – –
LP2NORMAL2+CLASP [4] X X X X –
LP2SAT3+GLUCOSE [16] – – –
LP2SAT3+LINGELING [16] – – –
WASP1 [1] X
WASP1.5 [1] X
WASP2 [1] X X – –

Table 1. Considered ASP solvers that entered the Single Processor category of the Fifth ASP Competition. The first column
contains the solvers, while the remaining four columns are related to the inductive models. A “X” indicates that the solver has
been selected as ME-ASPML engine. An empty cell means that the related solver has been evaluated but it is not comprised
in ME-ASPML. Finally, a “–” indicates that the related solver can not compete on the program class.

Solver Track 1 Track 2 Track 3 Track 4
Time # Time # Time # Time

CLASP 362 12318 1241 41049 154 4578 503 8078
LP2BV2+BOOLECTOR 205 19396 822 43124 – – – –
LP2GRAPH 324 23592 1030 50341 – – – –
LP2MAXSAT+CLASP 264 18537 1066 60185 74 5548 – –
LP2NORMAL2+CLASP 342 18263 1252 60031 119 9379 496 12921
LP2SAT3+GLUCOSE 278 25149 1027 50170 – – – –
LP2SAT3+LINGELING 256 23682 1108 80465 – – – –
WASP1 268 15155 719 52260 88 3558 238 18951
WASP1.5 242 3782 1042 32159 23 754 238 19285
WASP2 317 13622 1146 41140 24 750 – –

ME-ASPML 376 15391 1341 46143 231 5632 532 8960

Table 2. Results of the experiments. The first column contains the various solvers considered,
plus ME-ASPML. The remaining four columns contain the results for Track 1 to Track 4. Each
of these columns is then divided into two subcolumns, containing the number of solved instances
within the time limit, and the sum of their CPU times in seconds, respectively. If, for a track, both
sub-columns contain “–”, this means that the related solver can not compete on the track.

the same features computed in GFE, while the label corresponds to the best solver – in
terms of CPU time – on the given instance. In Table 1 we show the solvers that could be
used as engine of ME-ASPML.4 Considering that using all the eleven solvers altogether
rises the chance of getting a bad prediction because of aliasing, for each Ti we chosen
different subsets of them as follows. First, we computed the total amount of training
instances solved by the state-of-the-art solver (SOTA) i.e., given an instance, the oracle
that always fares the best among all the solvers. Second, we calculated the minimum
number of solvers such that the total amount of instances solved by the pool is at least
90% of the SOTA solver on the training instances.

Looking at Table 1, we can see the results of this process, as well as the involved
solver considering each Ti. Notice that in the case of Q we had only one “label”, namely

4 We have not considered LP2MIP2 given that we did not receive the license of CPLEX on time.

4

Fig. 2. Results of the solvers in Table 2, plus ME-ASP and CLASPFOLIO ver. 2.2, showed with a
cactus plot. In the x-axis it is shown the total amount of solved instances, while y-axis reports the
CPU time in seconds.

WASP1.5, which internally calls DLV with magic sets. Finally, the multinomial classi-
fication algorithm employed was k-Nearest Neighbors.

3 Experiments and Conclusion

We assessed the performance of ME-ASPML on the Fifth ASP Competition benchmarks.
All the experiments run on a cluster of Intel Xeon E31245 PCs at 3.30 GHz equipped
with 64 bit Ubuntu 12.04, granting 600 seconds of CPU time and 2GB of memory to
each solver.

The results of the analysis are presented in Table 2. We first note that ME-ASPML

can solve more instances than all its engines in all tracks, followed by CLASP in Tracks
1, 3 and 4, and by LP2NORMAL+CLASP in Track 2. In sum, ME-ASPML solves 2480 in-
stances, while the second overall best, which is CLASP, solves a total of 2260 instances.

An aggregate picture of the performance of competing systems is presented in the
cactus plot of Figure 2. This plot also includes ME-ASP and CLASPFOLIO ver. 2.2 5

for a direct comparison with approaches of algorithm selection that only exploit ground
features. From the figure we can see that ME-ASPML solves more instances also in com-
parison with its previous version ME-ASP and the state-of-the-art system CLASPFOLIO
ver. 2.2, other than all its engines. In particular, CLASPFOLIO solves 358, 1148, 118 e
471 instances on the four tracks, respectively. We can note that, consistently with the
information provided in the CLASPFOLIO web page, CLASPFOLIO performance are not
optimized on Track 3: indeed, this is the track where it shows the biggest performance
gap (as percentage of solved instances) w.r.t. ME-ASPML.

To sum up, the extended approach implemented in ME-ASPML, which applies algo-
rithm selection to both levels of computation, performs very well, being able to solve
more instances than (i) its engines, (ii) its previous version ME-ASP, and (iii) CLASP-
FOLIO ver. 2.2, in all tracks of the Fifth ASP Competition.

5 CLASPFOLIO has been run with its default setting, and with CLASP ver. 3 as a back-end solver.
This improved version has been provided by Marius Lindauer, who is thanked.

5

References
1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP solver based

on constraint learning. In: Cabalar, P., Son, T. (eds.) Proc. of LPNMR 2013. LNCS, vol.
8148, pp. 54–66. Verlag (2013)

2. Alviano, M., Faber, W., Greco, G., Leone, N.: Magic sets for disjunctive datalog programs.
Artificial Intellegence 187, 156–192 (2012)

3. Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers. AI Commu-
nications 24(2), 147–164 (2011)

4. Bomanson, J., Janhunen, T.: Normalizing cardinality rules using merging and sorting con-
structions. In Proc. of LPNMR 2013. LNCS, vol. 8148, pp. 187–199. Springer (2013)

5. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Ricca, F., Schaub, T.: Asp-core-2 input language format (since 2013), https://www.
mat.unical.it/aspcomp2013/ASPStandardization

6. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: The design of the fifth answer set program-
ming competition. ICLP 2014 TC abs/1405.3710 (2014), http://arxiv.org/abs/
1405.3710

7. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-Driven Disjunctive Answer Set Solving. In Proc. of KR 2008. pp. 422–432. AAAI
Press (2008)

8. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364–418 (Sep
1997)

9. Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as sat modulo acyclicity. In
Proc. of ECAI 2014. FAIA vol. 263, pp. 351–356. IOS Press (2014)

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.: A portfolio
solver for answer set programming: Preliminary report. In Proc. of LPNMR 2011. LNCS,
vol. 6645, pp. 352–357 (2011)

11. Gebser, M., Schaub, T., Thiele, S.: GrinGo : A New Grounder for Answer Set Programming.
In Proc. of LPNMR 2007. vol. 4483, pp. 266–271 (2007)

12. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Logic
Programming: Proceedings Fifth Intl Conference and Symposium. pp. 1070–1080. MIT
Press, Cambridge, Mass. (1988)

13. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
NGC 9, 365–385 (1991)

14. Hoos, H., Kaminski, R., Schaub, T., Schneider, M.T.: ASPeed: Asp-based solver scheduling.
In Proc. of ICLP 2012. LIPIcs, vol. 17, pp. 176–187.

15. Hoos, H., Lindauer, M.T., Schaub, T.: claspfolio 2: Advances in algorithm selection for an-
swer set programming. TPLP 14(4-5), 569–585 (2014)

16. Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16, 35–86 (2006)

17. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV Sys-
tem for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (Jul 2006)

18. Maratea, M., Pulina, L., Ricca, F.: Automated selection of grounding algorithm in answer set
programming. In Proc. of AI*IA 2013. LNCS vol. 8249, pp. 73–84. (2013)

19. Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set pro-
gramming. TPLP 14(6), 841–868 (2014), http://dx.doi.org/10.1017/
S1471068413000094

20. Nguyen, M., Janhunen, T., Niemelä, I.: Translating answer-set programs into bit-vector logic.
In Proc. of INAP/WLP 2011 Revised Selected Papers. LNCS, vol. 7773, pp. 105–116. (2011)

21. Silverthorn, B., Lierler, Y., Schneider, M.: Surviving solver sensitivity: An asp practitioner’s
guide. In ICLP 2012. LIPIcs, vol. 17, pp. 164–175.

6

