
The Design of the
Sixth Answer Set Programming Competition

– Report –

Martin Gebser1?, Marco Maratea2, and Francesco Ricca3

1 Helsinki Institute for Information Technology HIIT, Aalto University, Finland
2 DIBRIS, Università di Genova, Italy

3 Dipartimento di Matematica e Informatica, Università della Calabria, Italy

Abstract. Answer Set Programming (ASP) is a well-known paradigm of declar-
ative programming with roots in logic programming and non-monotonic rea-
soning. Similar to other closely-related problem-solving technologies, such as
SAT/SMT, QBF, Planning and Scheduling, advances in ASP solving are as-
sessed in competition events. In this paper, we report about the design of the
Sixth ASP Competition, which is jointly organized by the University of Cal-
abria (Italy), Aalto University (Finland), and the University of Genova (Italy),
in affiliation with the 13th International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR 2015). This edition maintains some of the
design decisions introduced in the last event, e.g., the design of tracks, the scor-
ing scheme, and the adherence to a fixed modeling language in order to push the
adoption of the ASP-Core-2 standard. On the other hand, it features also some
novelties, like a benchmarks selection stage to classify instances according to
their expected hardness, and a “marathon” track where the best performing sys-
tems are given more time for solving hard benchmarks.

1 Introduction

Answer Set Programming [7, 13–15, 28, 29, 35, 41, 44] is a well-known declarative pro-
gramming approach to knowledge representation and reasoning, with roots in the areas
of logic programming and non-monotonic reasoning as well as close relationships to
other formalisms such as SAT, SAT Modulo Theories, Constraint Programming, PDDL,
and many others. With the exception of the fifth event,4 which was held in 2014 in order
to join the FLoC Olympic Games at the Vienna Summer of Logic,5 ASP Competitions
are biennial events organized in odd years. The goal of the Answer Set Programming
(ASP) Competition series is to access the state of the art in ASP solving (see, e.g., [1,
10, 12, 23, 25, 30, 31, 33, 36, 37, 42, 45] on challenging benchmarks.

In this paper, we report about the design of the Sixth ASP Competition,6 jointly or-
ganized by the University of Calabria (Italy), Aalto University (Finland), and the Uni-
versity of Genova (Italy), in affiliation with the 13th International Conference on Logic
? Also affiliated with the University of Potsdam, Germany.
4 https://www.mat.unical.it/aspcomp2014/
5 http://vsl2014.at/
6 https://aspcomp2015.dibris.unige.it/



Programming and Non-Monotonic Reasoning (LPNMR 2015).7 This edition maintains
some of the design decisions introduced in the last event, e.g., (i) the design of tracks,
based on the “complexity” of the encoded problems (as in past events), but also con-
sidering the language features involved in encodings (e.g., choice rules, aggregates,
presence of queries), (ii) the scoring scheme, which had been significantly simplified,
and (iii) the adherence to a fixed modeling language in order to push the adoption of the
ASP-Core-2 standard.8 On the other hand, we also introduce novelties, some of them
borrowed from past editions of the SAT and QBF Competitions, i.e., (i) a benchmarks
selection stage to classify instances according to their expected hardness, in order to
select instances from a broad range of difficulty, and (ii) a “marathon” track where the
best performing systems are given more time for solving hard benchmarks, in order to
check whether they are able to complete difficult instances in the long run.

The present report is structured as follows. First, Section 2 introduces the setting of
the Sixth ASP Competition. Then, Section 3 and 4 present the problem domains and the
instance selection process, respectively. Section 5 surveys the participants and systems
registered for the competition. The report is concluded by final remarks in Section 6.

2 Format of the Sixth ASP Competition

In this section, we discuss the format of the competition event, describe categories and
tracks, and recapitulate the scoring scheme along with general rules. Furthermore, we
provide some information about the competition infrastructure.

As outlined in Section 1, the Sixth ASP competition maintains choices made in the
last event, but also adds some novelties. First, the scoring scheme, which was signifi-
cantly simplified in the last edition (cf. [11]), remains unchanged. In order to encourage
new teams and research groups to join the event, we also maintain the division into
tracks, primarily based on language features rather than inherent computational com-
plexity, as in the last edition. Given this, preliminary or otherwise confined systems
may take part in some tracks only, i.e., the ones featuring the subset of the language
they support. Furthermore, the tracks draw a clearer and more detailed picture about
what (combinations of) techniques work well for particular language features, which,
in our opinion, is more interesting than merely reporting overall winners.

Competition format. The competition is open to any general-purpose solving system,
provided it is able to parse the ASP-Core-2 input format. However, following the posi-
tive experience of 2014, we also plan to organize an on-site modeling event at LPNMR
2015, in the spirit of the Prolog contest. Regarding benchmarks, this year featured a
call to submit new domains (see Section 3) that, together with the domains employed
in the last event, are part of the benchmark collection of this edition. For the latter, the
Fifth ASP Competition proposed and evaluated a new set of encodings: this year we
fix the encodings to those that led to better performance in 2014. For new domains, we
consider the encodings provided by benchmark contributors. The whole benchmark set
undergoes a benchmark selection phase in order the classify instances based on their

7 http://lpnmr2015.mat.unical.it/
8 https://www.mat.unical.it/aspcomp2013/ASPStandardization/



expected hardness, and then to pick instances of varying difficulty to be run in the com-
petition (see Section 4 for details).

Competition categories. The competition consists of two categories, depending on the
computational resources made available to each running system:

• SP: One processor allowed;
• MP: Multiple processors allowed.

While the SP category aims at sequential solving systems, parallelism can be exploited
in the MP category.

Competition tracks. Both categories of the competition are structured into four tracks,
which are described next:

• Track #1: Basic Decision. Encodings: normal logic programs, simple arithmetic
and comparison operators.

• Track #2: Advanced Decision. Encodings: full language, with queries, excepting
optimization statements and non-HCF disjunction.

• Track #3: Optimization. Encodings: full language with optimization statements,
excepting non-HCF disjunction.

• Track #4: Unrestricted. Encodings: full language.

We also plan to introduce a Marathon track this year, thus analyzing participant
systems along a different dimension. The idea, borrowed from past QBF Competitions,
is to grant more time to the best solvers on a limited set of instances that proved to be
difficult in regular tracks.

Scoring scheme. The scoring scheme adopted is the same as in the Fifth ASP Compe-
tition. In particular, it considers the following factors:

– Problems are always weighted equally.
– If a system outputs an incorrect answer to some instance of a problem, this invali-

dates its score for the problem, even if other instances are correctly solved.
– In case of Optimization problems, scoring is mainly based on solution quality.

In general, 100 points can be earned for each benchmark problem. The final score of a
solving system consists of the sum of scores over all problems.

Scoring details. For Decision and Query problems, the score of a solver S on a problem
P featuring N instances is computed as

S(P ) =
NS ∗ 100

N

where NS is the number of instances solved within the allotted time and memory limits.
For Optimization problems, solvers are ranked by solution quality, in the spirit of

the MANCOOSI International Solver Competition.9 Given M participant systems, the
9 http://www.mancoosi.org/misc/



score of a solver S for an instance I of a problem P featuring N instances is computed
as

S(P, I) =
MS(I) ∗ 100

M ∗N
where MS(I) is

– 0, if S did neither provide a solution, nor report unsatisfiability, or
– the number of participant systems that did not provide any strictly better solution

than S, where a confirmed optimum solution is considered strictly better than an
unconfirmed one, otherwise.

The score S(P ) of a solver S for problem P consists of the sum of scores S(P, I) over
all N instances I featured by P . Note that, as with Decision and Query problems, S(P )
can range from 0 to 100.

Global ranking. The global ranking for each track, and the overall ranking, is obtained
by awarding each participant system the sum of its scores over all problems; systems
are ranked by their sums, in decreasing order. In case of a draw in terms of sums of
scores, sums of runtimes are taken into account.

Competition environment. The competition is run on a Debian Linux server (64bit ker-
nel), featuring 2.30GHz Intel Xeon E5-4610 v2 Processors with 16MB of cache and
128GB of RAM. Time and memory for each run are limited to 20 minutes and 12GB,
respectively. Participant systems can exploit up to 8 cores (i.e., up to 16 virtual CPUs
since Intel Hyperthreading technology is enabled) in the MP category, whereas the ex-
ecution is constrained to one core in the SP category. The execution environment is
composed of a number of scripts, and performance is measured using the pyrunlim
tool.10

3 Benchmark Suite

The benchmark domains considered in the Sixth ASP Competition include those from
the previous edition, summarized first. Moreover, encodings and instances were pro-
vided for six new domains, introduced afterwards.

Previous domains. The Fifth ASP Competition featured 26 benchmark domains that
had been submitted to earlier editions already, mainly in 2013 when the ASP-Core-2
standard input format was specified. In some domains, however, “unoptimized” encod-
ings submitted by benchmark authors incurred grounding bottlenecks that made partic-
ipant systems fail on the majority of instances. In view of this and in order to enrich
the available benchmark collection, alternative encodings were devised and empirically
compared last year for all but two domains dealing with Query answering, which were
modeled by rather straightforward positive programs.

The first part of assembling the benchmark suite for the Sixth ASP Competition
consisted in the choice of encodings for previously used domains. Table 1 gives an
10 https://github.com/alviano/python/



overview of these domains, outlining application-oriented problems, respective com-
putational tasks, i.e., Decision, Optimization, or Query answering, and tracks. Most
importantly, the fourth column indicates whether the encoding made available in 2013
or the alternative one provided last year has been picked for this edition of the ASP
Competition. The selection was based on the results from 2014, favoring the encoding
variant that exhibited better performance of participant systems in a benchmark domain.

For Decision problems in the Hanoi Tower, Knight Tour with Holes, Stable Mar-
riage, Incremental Scheduling, Partner Units, Solitaire, Weighted-Sequence Problem,
and Minimal Diagnosis domains, all systems benefited from the usage of alternative
2014 encodings. Although the results were not completely uniform, improvements of
more systems or greater extent were obtained in Graph Colouring, Visit-all, Nomystery,
Permutation Pattern Matching, and Qualitative Spatial Reasoning. On two remaining
Decision problems, Sokoban and Complex Optimization, no significant performance
gaps were observed, and 2014 encodings were picked as they simplify the original
submissions, i.e., aggregates are omitted in Sokoban and redundant preconditions of
rules dropped in Complex Optimization. In fact, due to similar simplifications, the Ba-
sic Decision track (#1) consists of six domains, while it previously included Labyrinth
and Stable Marriage only. On the other hand, the encodings from 2013 were kept for
domains where alternative variants did not lead to improvements or even deteriorated
performance, as it was the case in Graceful Graphs.

In view of the relative scoring of systems on Optimization problems, the selection
of encoding variants could not be based on (uniform) improvements in terms of score
here. Rather than that, we investigated timeouts, runtimes, and solution quality of the
top-performing systems from last year, thus concentrating on the feasibility of good
but not necessarily optimal solutions. In this regard, the alternative 2014 encodings
turned out to be advantageous in Crossing Minimization and Maximal Clique, while the
original submissions led to better results in Connected Still Life and Valves Location, or
essentially similar performance in Abstract Dialectical Frameworks.

Notably, this edition of the ASP Competition utilizes a revised formulation of Con-
nected Still Life (thus marked by ‘∗’ in Table 1), where instances specify grid cells that
must be “dead” or “alive” according to the Game of Life version considered in this
domain. Respective conditions are addressed by side constraints added to the previ-
ously available encodings and enable a diversification of instances of same size, while
size had been the only parameter for obtaining different instances before. In addition,
benchmark authors provided new instance sets for the Knight Tour with Holes, Stable
Marriage, Ricochet Robots, and Maximal Clique domains. For Knight Tour with Holes,
the instances from last year were too hard for most participant systems, and too easy in
the other three domains. Finally, recall that the 2013 encodings for Query problems in
the Reachability and Strategic Companies domains are reused.

Six of the 26 benchmark domains stemming from earlier editions of the ASP com-
petition are based on particular applications. In more detail, Incremental Scheduling [6]
deals with assigning jobs to devices such that the makespan of a schedule stays within
a given budget. The matching problem Partner Units [5] has applications in the con-
figuration of surveillance, electrical engineering, computer network, and railway safety
systems. The Crossing Minimization [17] domain aims at optimized layouts of hierar-



Table 1. Encodings selected for benchmark domains from the Fifth ASP Competition

Domain App Problem Encoding
Graph Colouring Decision 2014

Track
#1

Hanoi Tower Decision 2014
Knight Tour with Holes Decision 2014
Labyrinth Decision 2013
Stable Marriage Decision 2014
Visit-all Decision 2014
Bottle Filling Decision 2013

Track
#2

Graceful Graphs Decision 2013
Incremental Scheduling

√
Decision 2014

Nomystery Decision 2014
Partner Units

√
Decision 2014

Permutation Pattern Matching Decision 2014
Qualitative Spatial Reasoning Decision 2014
Reachability Query 2013
Ricochet Robots Decision 2013
Sokoban Decision 2014
Solitaire Decision 2014
Weighted-Sequence Problem Decision 2014
Connected Still Life∗ Optimization 2013 Track

#3

Crossing Minimization
√

Optimization 2014
Maximal Clique Optimization 2014
Valves Location

√
Optimization 2013

Abstract Dialectical Frameworks Optimization 2013 Track
#4

Complex Optimization
√

Decision 2014
Minimal Diagnosis

√
Decision 2014

Strategic Companies Query 2013

chical network diagrams in graph drawing. The hydroinformatics problem Valves Loca-
tion [18] is concerned with designing water distribution systems such that the isolation
in case of damages is minimized. In contrast to objective functions considered in the
Optimization track (#3), the Complex Optimization [22] domain addresses subset mini-
mization in the contexts of biological network repair [19] and minimal unsatisfiable core
membership [32]. Finally, Minimal Diagnosis [27] tackles the identification of minimal
reasons for inconsistencies between biological networks and experimental data.

New domains. Six new benchmark domains, all of which are application-oriented as
indicated in Table 2, were submitted to the Sixth ASP Competition:

• Combined Configuration [26] is a Decision problem inspired by industrial prod-
uct configuration tasks dealing with railway interlocking systems, automation sys-
tems, etc. In the considered scenario, orthogonal requirements as encountered in
bin packing, graph coloring, matching, partitioning, and routing must be fulfilled
by a common solution. Since the combined problem goes beyond its individual
subtasks, specialized procedures for either of them are of limited applicability, and
the challenge is to integrate all requirements into general solving methods.



Table 2. New benchmark domains of the Sixth ASP Competition

Domain App Problem
Combined Configuration

√
Decision

Tr.#2Consistent Query Answering
√

Query
MaxSAT

√
Optimization Track

#3

Steiner Tree
√

Optimization
System Synthesis

√
Optimization

Video Streaming
√

Optimization

• Consistent Query Answering [38] addresses phenomena arising in the integration
of data from heterogeneous sources. The goal is to merge as much information as
possible, even though local inconsistencies and incompleteness typically preclude
a mere data fusion. In particular, the Query problem amounts to cautious reasoning,
retrieving consequences that are valid under all candidate repairs of input data.

• MaxSAT [34] is the optimization variant of SAT, where so-called soft clauses may
be violated to particular costs and the sum of costs ought to be minimal. Industrial
instances, taken from the 2014 MaxSAT Evaluation,11 are represented by facts and
encoded as an Optimization problem.

• Steiner Tree [16] is concerned with connecting particular endpoints by a spanning
tree. The domain deals with the rectilinear version of this problem, where points on
a two-dimensional grid may be connected by horizontal or vertical line segments.
This setting is of practical relevance as it corresponds to wire routing in circuit
design. The accumulated line segments determine a wire length, which is subject
to minimization in the considered Optimization problem.

• System Synthesis [9] deals with the allocation of parallel tasks and message routing
in integrated hardware architectures for target applications. On the one hand, the
capacities of processing elements are limited, so that communicating tasks must be
distributed. On the other hand, network communication shall avoid long routes to
reduce delays. The Optimization problem combines three lexicographically ordered
objectives: balancing the allocation of processing elements, minimizing network
communication, and keeping routes short.

• Video Streaming [46] aims at an adaptive regulation of resolutions and bit rates in
a content delivery network. While the bit rates of users and the number of different
video formats that can be offered simultaneously are limited, service disruptions are
admissible for a fraction of users only. The objective of the Optimization problem
is to achieve high user satisfaction with respect to particular video contents.

4 Benchmark Selection

For an informed instance selection going beyond the random selection adopted in the
2014 edition of the ASP Competition or the solver-dependent criterion employed in
2013, we utilize an instance selection strategy inspired by the 2014 SAT Competition.12

11 http://www.maxsat.udl.cat/14/index.html
12 http://www.satcompetition.org/2014/index.shtml



First, the empirical hardness of all available instances is evaluated by running the top-
performing systems from last year, and then a balanced selection is made among in-
stances of varying difficulty.

Top-performing systems. We considered the best performing system per team that par-
ticipated in the Fifth ASP Competition, corresponding to the systems taking the first
three places last year, i.e., CLASP, LP2NORMAL2+CLASP, and WASP-1.5. This choice
comes close to the ideal state-of-the-art solver that matches the best performing sys-
tem on each instance.

Instance classification. All instances available in the benchmark collection are clas-
sified according to the runtimes of the top-performing systems by picking the upmost
applicable category as follows:

(non-groundable) Instances that could not be grounded by any of the top-performing
systems within the timeout of 20 minutes.

(very easy) Instances solved by all top-performing systems in less than 20 seconds.
(easy) Instances solved by all top-performing systems in less than 2 minutes.
(medium) Instances solved by all top-performing systems within the timeout of 20

minutes.
(hard) Instances solved by at least one among the top-performing systems within 40

minutes, i.e., twice the timeout.
(too hard) Instances that could not be solved (no solution produced in case of Opti-

mization problems) by any of the top-performing systems within 40 minutes.

While non-groundable instances are basically out of reach for traditional ASP sys-
tems, very easy ones are highly unlikely to yield any relevant distinction between par-
ticipant systems. Hence, instances falling into the first two categories are discarded
and not run in the competition. Unlike that, easy, medium, and hard instances are ex-
pected to differentiate between unoptimized, average, and top-performing competition
entries. Albeit they may not be solvable by any participant system within 20 minutes,
too hard instances are included to impose challenges and are primary candidates for the
Marathon track in which the timeout will be increased.

Instance selection. Instances to be run in the competitions will be picked per benchmark
domain, matching the following conditions as much as possible:

1. 20 instances are included in each domain.
2. Easy, medium, hard, too hard, and randomly picked (yet excluding non-groundable

and very easy) instances shall evenly contribute 20% (i.e., four) instances each.
3. Satisfiable and unsatisfiable instances should be balanced (if known/applicable).
4. The selection among candidate instances according to the previous conditions is

done randomly, using the concatenation of winning numbers in the EuroMillions
lottery of 23rd June 2015 as seed.

Further criteria will be taken into account to filter domains by need. That is, domains
in which instances lack variety, i.e., all instances turn out as easy to medium or (too)



hard, may be excluded in the competition. We do not impose strict conditions, however,
as being new, application-oriented, based on ASP-specific language features (e.g., ag-
gregates, recursion, or disjunction) or a particular computational task (Optimization or
Query answering) may justify an interest beyond the scalability of available instances.

Preliminary data. The instance classification process has been running at the time of
writing this report. In the first stage, non-groundable instances were identified and dis-
carded, thus dropping 88 of the available instances (86 from Incremental Scheduling
and two from Sokoban). This leaves 4970 instances for running the three top-performing
systems from last year, using a timeout of 40 minutes. We expect to obtain complete
results of these runs, on which the instance selection will be based, by 22nd June 2015.

5 Participants

In this section, we briefly survey the participants and systems registered for the compe-
tition. In total, the competition features 13 systems coming from three teams:

• The Aalto team from Aalto University submitted nine systems, mainly work-
ing by means of translations [10, 20, 37, 43]. Two systems, LP2SAT+LINGELING

and LP2SAT+PLINGELING-MT, rely on translation to SAT, which includes the nor-
malization of aggregates as well as the encoding of level mappings for non-
tight problem instances. The latter are expressed in terms of acyclicity check-
ing [20, 21] on top of ASP, Pseudo-Boolean or SAT formulations, respectively, used
in the systems LP2ACYCASP+CLASP, LP2ACYCPB+CLASP, LP2ACYCSAT+CLASP, and
LP2ACYCSAT+GLUCOSE. While LP2SAT+LINGELING and LP2SAT+PLINGELING-MT do
not support optimization and participate in the Basic and Advanced Decision tracks
(#1 and #2) only, the latter systems compete also in the Optimization track (#3). The
same applies to LP2MIP and LP2MIP-MT, which run CPLEX as a Mixed Integer Pro-
gramming solver back-end. Finally, LP2NORMAL+CLASP normalizes aggregates (of
small to medium size) and uses CLASP as back-end ASP solver; LP2NORMAL+CLASP

participates in all four tracks and thus also in the Unrestricted track (#4). All sys-
tems by the Aalto team utilize GRINGO-4 for grounding, and neither of them sup-
ports Query problems (Consistent Query Answering, Reachability, and Strategic
Companies). The systems LP2SAT+PLINGELING-MT and LP2MIP-MT exploit multi-
threading and run in the MP category, while the other, sequential systems partici-
pate in the SP category.

• The ME-ASP team from the University of Genova, the University of Sassari, and
the University of Calabria submitted the multi-engine ASP solver ME-ASP [39, 40].
ME-ASP applies a selection policy to decide what is the most promising ASP solver
to run, given some characteristics of an input program. The pool of ASP solvers
from which ME-ASP can choose is a selection of the solvers submitted to the Fifth
ASP Competition, while input characteristics correspond to non-ground and ground
features. The ME-ASP system utilizes GRINGO-4 for grounding and participates in all
four tracks of the SP category.



• The Wasp team from the University of Calabria submitted two systems based on
WASP [1, 2, 4], namely WASP and WASP+DLV, as well as the proof-of-concept proto-
type JWASP, written in Java. WASP is a native ASP solver based on conflict-driven
learning, yet extended with techniques specifically designed for solving disjunctive
logic programs. It utilizes GRINGO-4 for grounding and participates in all tracks,
although with limited support for Query problems. On the other hand, WASP+DLV

includes full functionalities for Query answering [3, 33] and competes in all do-
mains. The prototype system JWASP is based on the SAT4J [8] SAT solver and im-
plements some of the algorithms employed in WASP for handling ASP-specific fea-
tures, which enables its participation in the Basic and Advanced Decision tracks
(#1 and #2). All systems by the Wasp team run in the SP category.

In sum, similar to past competitions, the vast majority of submitted systems is based
on two main approaches to ASP solving: (i) “native” systems, which exploit techniques
purposely conceived and/or adapted for dealing with logic programs under the stable
models semantics, and (ii) “translation-based” systems, which (roughly) at some stage
of the evaluation produce an intermediate specification in some different formalism that
is then fed to a corresponding solver. The solvers submitted by the Wasp team as well as
ME-ASP and LP2NORMAL+CLASP pursue a native approach, while the remaining systems
by the Aalto team utilize translations.

The main novelty among competition entries this year is the “portfolio” solver ME-
ASP. Its multi-engine approach differs from CLASPFOLIO [24], which participated last in
the 2013 edition of the ASP Competition. Furthermore, it is worth mentioning that, in
order to assess the improvements in ASP solving, we also consider the version of CLASP

submitted in 2014 for reference, given that CLASP was the overall winner of the Fifth
ASP Competition.

6 Conclusions

The Sixth ASP Competition is jointly organized by the University of Calabria (Italy),
Aalto University (Finland), and the University of Genova (Italy), in affiliation with the
13th International Conference on Logic Programming and Non-Monotonic Reason-
ing (LPNMR 2015). The main goal is measuring advances of the state of the art in
ASP solving, where native and translation-based systems constitute the two main ap-
proaches. This report presented the design of the event and gave an overview of bench-
marks as well as participants. On the one hand, this edition of the ASP Competition
maintains design decisions from 2014, e.g., tracks are conceived on the basis of lan-
guage features. On the other hand, it also introduces some novelties, i.e., a benchmark
selection phase and a Marathon track.

The competition results will be announced at LPNMR 2015, at which, following the
positive experience of 2014, we also plan to organize another on-site modeling event in
the spirit of the Prolog contest. This modeling competition to some extent replaces the
Model&Solve track that was included last in the 2013 edition of the ASP Competition,
yet the idea is to margin the effort of problem modeling.



References

1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: Wasp: A native ASP solver based
on constraint learning. In: Proceedings of LPNMR’13, pp. 54–66. Springer (2013)

2. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in Wasp. In: Proceedings of LP-
NMR’15. Springer (2015)

3. Alviano, M., Dodaro, C., Ricca, F.: Anytime computation of cautious consequences in an-
swer set programming. Theory and Practice of Logic Programming 14(4-5), 755–770 (2014)

4. Alviano, M., Dodaro, C., Ricca, F.: Preliminary report on Wasp 2.0. In: Proceedings of
NMR’14, pp. 68–72. Vienna University of Technology (2014)

5. Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeavons, P., Ryabokon, A.,
Thorstensen, E.: Optimization methods for the partner units problem. In: Proceedings of
CPAIOR’11, pp. 4–19. Springer (2011)

6. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Proceedings of LPNMR’11,
pp. 284–296. Springer (2011)

7. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

8. Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Mod-
eling and Computation 7, 59–64 (2010)

9. Biewer, A., Andres, B., Gladigau, J., Schaub, T., Haubelt, C.: A symbolic system synthesis
approach for hard real-time systems based on coordinated SMT-solving. In: Proceedings of
DATE’15, pp. 357–362. ACM (2015)

10. Bomanson, J., Gebser, M., Janhunen, T.: Improving the normalization of weight rules in
answer set programs. In: Proceedings of JELIA’14, pp. 166–180. Springer (2014)

11. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: The design of the fifth answer set program-
ming competition. In: Technical Communications of ICLP’14, http://arxiv.org/
abs/1405.3710v4. CoRR (2014)

12. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: Answer set programming with lazy
grounding. Fundamenta Informaticae 96(3), 297–322 (2009)

13. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative problem-solving using the DLV
system. In: Logic-Based Artificial Intelligence, pp. 79–103. Kluwer Academic Publishers
(2000)

14. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database
Systems 22(3), 364–418 (1997)

15. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In: Proceedings of
RW’09, pp. 40–110. Springer (2009)

16. Erdem, E., Wong, M.: Rectilinear Steiner tree construction using answer set programming.
In: Proceedings of ICLP’04, pp. 386–399. Springer (2004)

17. Gange, G., Stuckey, P., Marriott, K.: Optimal k-level planarization and crossing minimiza-
tion. In: Proceedings of GD’10, pp. 238–249. Springer (2010)

18. Gavanelli, M., Nonato, M., Peano, A., Alvisi, S., Franchini, M.: An ASP approach for the
valves positioning optimization in a water distribution system. In: Proceedings of CILC’12,
pp. 134–148. CEUR-WS.org (2012)

19. Gebser, M., Guziolowski, C., Ivanchev, M., Schaub, T., Siegel, A., Thiele, S., Veber, P.:
Repair and prediction (under inconsistency) in large biological networks with answer set
programming. In: Proceedings of KR’10, pp. 497–507. AAAI (2010)

20. Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as SAT modulo acyclicity.
In: Proceedings of ECAI’14, pp. 351–356. IOS (2014)

21. Gebser, M., Janhunen, T., Rintanen, J.: SAT modulo graphs: Acyclicity. In: Proceedings of
JELIA’14, pp. 137–151. Springer (2014)



22. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set programming.
Theory and Practice of Logic Programming 11(4-5), 821–839 (2011)

23. Gebser, M., Kaufmann, B., Schaub, T.: Advanced conflict-driven disjunctive answer set solv-
ing. In: Proceedings of IJCAI’13, pp. 912–918. IJCAI/AAAI (2013)

24. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M., Ziller, S.: A portfolio
solver for answer set programming: Preliminary report. In: Proceedings of LPNMR’11, pp.
352–357. Springer (2011)

25. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence 187-188, 52–89 (2012)

26. Gebser, M., Ryabokon, A., Schenner, G.: Combining heuristics for configuration problems
using answer set programming. In: Proceedings of LPNMR’15. Springer (2015)

27. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological
networks with answer set programming. Theory and Practice of Logic Programming 11(2-
3), 323–360 (2011)

28. Gelfond, M., Leone, N.: Logic programming and knowledge representation – the A-Prolog
perspective. Artificial Intelligence 138(1-2), 3–38 (2002)

29. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

30. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

31. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.: Unfolding partiality and disjunc-
tions in stable model semantics. ACM Transactions on Computational Logic 7(1), 1–37
(2006)

32. Janota, M., Marques-Silva, J.: On deciding MUS membership with QBF. In: Proceedings of
CP’11, pp. 414–428. Springer (2011)

33. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

34. Li, C., Manyà, F.: MaxSAT. In: Handbook of Satisfiability, pp. 613–631. IOS (2009)
35. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2),

39–54 (2002)
36. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artifi-

cial Intelligence 157(1-2), 115–137 (2004)
37. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming.

In: Proceedings of KR’12, pp. 32–42. AAAI (2012)
38. Manna, M., Ricca, F., Terracina, G.: Consistent query answering via ASP from different

perspectives: Theory and practice. Theory and Practice of Logic Programming 13(2), 227–
252 (2013)

39. Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set programming.
Theory and Practice of Logic Programming 14(6), 841–868 (2014)

40. Maratea, M., Pulina, L., Ricca, F.: Multi-level algorithm selection for ASP. In: Proceedings
of LPNMR’15. Springer (2015)

41. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In: The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398. Springer (1999)

42. Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): Satisfiability of propo-
sitional logic extended with inductive definitions. In: Proceedings of SAT’08, pp. 211–224.
Springer (2008)

43. Nguyen, M., Janhunen, T., Niemelä, I.: Translating answer-set programs into bit-vector logic.
In: Proceedings of INAP’11 and WLP’11, pp. 105–116. Springer (2013)

44. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)



45. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

46. Toni, L., Aparicio-Pardo, R., Simon, G., Blanc, A., Frossard, P.: Optimal set of video repre-
sentations in adaptive streaming. In: Proceedings of MMSys’14, pp. 271–282. ACM (2014)


