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Abstract. PDDL+ is an extension of PDDL that enables modelling planning
domains with mixed discrete-continuous dynamics. In this paper we present a
new approach to PDDL+ planning based on Constraint Answer Set Programming
(CASP), i.e. ASP rules plus numerical constraints. To the best of our knowledge,
ours is the first attempt to link PDDL+ planning and logic programming. We
provide an encoding of PDDL+ models into CASP problems. The encoding can
handle non-linear hybrid domains, and represents a solid basis for applying logic
programming to PDDL+ planning. As a case study, we consider the EZCSP CASP
solver and obtain promising results on a set of PDDL+ benchmark problems.

1 Introduction

Planning in hybrid domains is a challenging problem that has found increasing attention
in the planning community, mainly motivated by the need to model real-world domains.
Indeed, in addition to classical planning, hybrid domains allow for modeling continuous
behavior with continuous variables that evolve over time. PDDL+ [7] is the extension of
the PDDL language that allows for modelling domains with mixed discrete-continuous
dynamics, through continuous processes and exogenous events.

Various techniques and tools have been proposed to deal with hybrid domains (as
described in Section 6) but few of them are able to handle the full set of PDDL+ fea-
tures. This motivates the search for new ways to handle PDDL+. To this aim, in this
paper we investigate the viability of an approach to PDDL+ planning based on Con-
straint Answer Set Programming (CASP) [2], i.e. set of ASP rules and numerical con-
straints. We provide an encoding of PDDL+ models into CASP problems, which can
handle linear and non-linear domains, and can deal with PDDL+ processes and events.
We describe how the different components of a PDDL+ domain can be encoded into
CASP. In our encoding, continuous invariants are checked at discretized timepoints,
and, following the discretize and validate approach [6], the VAL tool is used to check
whether the candidate solutions are valid or whether granularity needs to be increased.
This contribution represents a solid basis for applying logic programming to PDDL+
planning, and opens up the use of CASP solvers for planning in hybrid domains.

As a case study, we use the CASP solver EZCSP [1]. Experiments performed on
PDDL+ benchmarks show that our approach, while not yet competitive with SMT-
Plan+, outperforms other state-of-the-art PDDL+ planners dReal and UPMurphi.



The paper is structured as follows. We begin with preliminaries on PDDL+ planning
and CASP. Next, we present our encoding, and its specialization to the approach of
EZCSP. These are followed by a discussion of the results of our experiments. Finally,
we discuss related work and draw conclusions. d

2 Background

Planning seeks to select and organize activities in order to achieve specific goals.A plan-
ner uses a domain model, describing the actions through their pre- and post-conditions,
and an initial state together with a goal condition. It then searches for a trajectory
through the induced state space, starting at the initial state and ending in a state sat-
isfying the goal condition. In richer models, such as hybrid systems, the induced state
space can be given a formal semantics as a timed hybrid automaton, which means that
a plan can synchronise activities between controlled devices and external events.

Definition 1 (Planning Instance [3]). A planning instance is a pair I = (Dom,Prob),
where Dom = (Fs,Rs,As, Es,Ps,arity) is a tuple consisting of a finite set of function
symbols Fs, a finite set of relation symbols Rs, a finite set of (durative) actions As, a
finite set of events Es, a finite set of processes Ps, and a function arity mapping all
symbols in Fs∪Rs to their respective arities. The triple Prob = (Os, Init,G) consists of
a finite set of domain objects Os, the initial state Init, and the goal specification G.

For a given planning instance Π , a state of Π consists of a discrete component, de-
scribed as a set of propositions P (the Boolean fluents), and a numerical component,
described as a set of real variables V (the numerical fluents). Instantaneous actions are
described through preconditions (which are conjunctions of propositions in P and/or nu-
merical constraints over V , and define when an action can be applied) and effects (which
define how the action modifies the current state). Instantaneous actions and events are
restricted to the expression of discrete change. Events have preconditions as for actions,
but they are used to model exogenous change in the world, therefore they are triggered
as soon as the preconditions are true. A process is responsible for the continuous change
of variables, and is active as long as its preconditions are true. Durative actions have
three sets of preconditions, representing the conditions that must hold when it starts,
the invariant that must hold throughout its execution and the conditions that must hold
at the end of the action. Similarly, a durative action has three sets of effects: effects that
are applied when the action starts, effects that are applied when the action ends and a
set of continuous numeric effects which are applied continuously while the action is
executing.

Definition 2 (Plan). A plan for a planning instance I = ((Fs, Rs, As, Es, Ps, arity),
(Os, Init,G)) is a finite set of triples (t,a,d) ∈ R × As × R, where t is a timepoint, a
is an action and d is the action duration.

Note that processes and events do not appear in a plan, as they are not under the direct
control of the planner.



Next, we introduce ASP. Let Σ be a signature containing constant, function and
predicate symbols. Terms and atoms are formed as in first-order logic. A literal is an
atom a or its classical negation ¬a. A rule is a statement of the form:

h← l1, . . . , lm,not lm+1, . . . ,not ln (1)

where h and li’s are literals and not is the so-called default negation. The intuitive mean-
ing of the rule is that a reasoner who believes {l1, . . . , lm} and has no reason to believe
{lm+1, . . . , ln}, has to believe h. We call h the head of the rule, and {l1, . . . , lm,not lm+1,
. . . ,not ln} the body of the rule. A rule with an empty body is called a fact, and indicates
that the head is always true. In that case, the connective← is often dropped. A program
is a set of rules over Σ .

A set S of literals is consistent if no two complementary literals, a and ¬a, belong
to S. A literal l is satisfied by a consistent set of literals S (denoted by S |= l) if l ∈ S. If
l is not satisfied by S, we write S 6|= l. A set {l1, . . . , lk} of literals is satisfied by a set of
literals S (S |= {l1, . . . , lk}) if each li is satisfied by S.

Programs not containing default negation are called definite. A consistent set of
literals S is closed under a definite program Π if, for every rule of the form (1) such that
the body of the rule is satisfied by S, the head belongs to S. The reduct of an arbitrary
program Π with respect to a set of literals S, denoted by Π S, is the definite program
obtained from Π by deleting every rule r such that l ∈ S for some expression of the
form not l from the body of r, and by removing all expressions not l from the bodies of
the remaining rules.

The following definition completes the definition of the semantics of ASP:

Definition 3. Consistent set of literals A is an answer set of definite program Π ∗ if A
is closed under Π ∗ and is set-theoretically minimal among the sets with that property.
Set A is an answer set of an arbitrary program Π if it is an answer set of ΠA .

Variables (identifiers with an uppercase initial) are allowed in ASP programs. A
rule containing variables (a non-ground rule) is a shorthand for the set of its ground
instances, obtained by replacing the variables by all possible ground terms. Similarly, a
non-ground program stands for the set of the ground instances of its rules.

There are other useful shorthands, which we introduce informally to save space. A
rule whose head is empty is called denial, and states that its body must not be satisfied.
A choice rule has a head of the form λ{m(

−→
X ) : Γ (

−→
X )}µ , where

−→
X is a list of variables,

λ , µ are non-negative integers, and Γ (X) is a set of literals that may include variables
from

−→
X . A choice rule intuitively states that, in every answer set, the number of literals

of the form m(
−→
X ) such that Γ (

−→
X ) is satisfied must be between λ and µ . If not specified,

λ , µ default, respectively, to 0, ∞.
CASP integrates ASP and Constraint Programming (CP) in order to deal with con-

tinuous dynamics. In this section we provide an overview of CP and of its integration in
CASP. The central concept of CP is the Constraint Satisfaction Problem (CSP), which
is formally defined as a triple 〈V,D,C〉, where V = {v1, . . . ,vn} is a set of variables,
D = {D1, . . . ,Dn} is a set of domains, such that Di is the domain of variable vi, and C is
a set of constraints. A solution to a CSP 〈V,D,C〉 is a complete assignment (i.e. where



a value from the respective domain is assigned to each variable) satisfying every con-
straint from C. For simplicity of presentation, in this paper we allow denoting a CSP by
its set of constraints, leaving the sets of variables and domains implicitly defined. So, a
solution to a set of constraints C is a solution to the CSP implicitly defined by C.

There is currently no widely accepted, standardized definition of CASP. To ensure
generality of our results, we introduce a simplified definition of CASP, defined next,
which captures the common traits of the above approaches. In Section 4, we introduce
a specific CASP language to discuss the use case and the experimental results.

Syntax. In order to accommodate CP constructs, the language of CASP extends ASP
by allowing numerical constraints of the form x ./ y, where ./∈ {<,≤,=, 6=,≥,>}, and
x and y are numerical variables4 or standard mathematical terms possibly containing
numerical variables, numerical constants, and ASP variables. Numerical constraints are
only allowed in the head of rules.

Semantics. Given a numerical constraint c, let τ(c) be a function that maps c to
a syntactically legal ASP atom and τ−1 be its inverse5. We say that an ASP atom a
denotes a constraint c if a = τ(c). Function τ is extended in a natural way to CASP
rules and programs. Note that, for every CASP program Π , τ(Π) is an ASP program.
Finally, given a set S of ASP literals, let γ(S) be the set of ASP atoms from S that denote
numerical constraints. The semantics of a CASP program can thus be given by defining
the notion of CASP solution, as follows.

Definition 4. A pair 〈A ,α〉 is a CASP solution of a CASP program Π if-and-only-if
A is an answer set of τ(Π) and α is a solution to τ−1(γ(A )).

3 Encoding PDDL+ Models into CASP Problems

Our approach to encoding PDDL+ problems in CASP is based on recent research on
reasoning about actions and change and action languages. It builds upon the existing
SAT-based and ASP-based planning approaches and extends them to hybrid domains.

In reasoning about actions and change, the evolution of a domain over time is of-
ten represented by a transition diagram (or transition system) that represents states and
transitions between states through actions. Traditionally, in transition diagrams, actions
are instantaneous, and states have no duration and are described by sets of Boolean flu-
ents. Sequences of states characterizing the evolutions of the domain are represented
as a sequence of discrete time steps, identified by integer numbers, so that step 0 cor-
responds to the initial state in the sequence. We extend this view to hybrid domains
according to the following principles:

– Similarly to PDDL+, a state is characterized by Boolean fluents and numerical
fluents.

– The flow of actual time is captured by the notion of global time. States have a
duration, given by the global time at which a state begins and ends. Intuitively, this
conveys the intuition that time flows “within” the state.

4 Numerical variables are distinct from ASP variables.
5 Technically, τ−1 is a partial inverse whose domain is suitably restricted to ASP atoms that

denote a constraint.



– The truth value of Boolean fluents only changes upon state transitions. That is, it is
unaffected by the flow of time “within” a state. On the other hand, the value of a
numerical fluent may change within a state.

– The global time at which an action occurs is identified with the end time of the state
in which the action occurs.

– Invariants are checked at the beginning and at the end of every state in which dura-
tive actions and processes are in execution. Thus, in order to guarantee soundness
we exploit a discretize and validate approach.

Next, we describe the CASP formalization of PDDL+ models. We begin by dis-
cussing the correspondence between global time and states, and the representation of
the values of fluents and of occurrences of actions.

The global time at which the state at step i begins is represented by numerical
variable tstart(i). Similarly, the end time is represented by tend(i). The truth value
of Boolean fluent f at discrete time step i is represented by literal holds( f , i) if f is true
and by ¬holds( f , i) otherwise. For every numerical fluent n, we introduce two numer-
ical variables, representing its value at the beginning and at the end of time step i. The
variables are v initial(n, i) and v f inal(n, i), respectively. The occurrence of an action
a at time step i is represented by an atom occurs(a, i).

Additive fluents, whose value is affected by increase and decrease statements of
PDDL+, are represented by introducing numerical variables of the form v(contrib(n,s),
i), where n is a numerical fluent, s is a constant denoting a source (e.g., the action that
causes the increase or decrease), and i is a time step. The expression denotes the amount
of the contribution to fluent n from source s at step i. Intuitively, the value of n at the
end of step i (encoded by numerical variable v f inal(n, i)) is calculated from the values
of the individual contributions. Next, we discuss the encoding of the domain portion of
a PDDL+ problem.
Domain Encoding. (Instantaneous) Actions. The encoding of the preconditions of ac-
tions varies depending on their type. Preconditions on Boolean fluents are encoded by
denials. For example, a denial: ← holds(unavail(tk1), I),occurs(ref uel with(tk1), I)
states that refuel tank tk1 must be available for the corresponding refuel action to occur.
(Here and below, ASP variables I, I1, I2 denote time steps.) Preconditions on numerical
fluents are encoded by means of numerical constraints on the corresponding numerical
variables. For example, a rule: v f inal(height(ball), I) > 0 ← occurs(drop(ball), I)
states that, if drop(ball) is selected to occur, then the height of the ball is required to
be greater than 0 in the preceding state.

The effects of instantaneous actions on Boolean fluents are captured by rules of the
form holds( f , I+1)← occurs(a, I), where a is an action and f is a fluent affected by a.
The rule states that f is true at the next time step I+1 if the action occurs at (the end of)
step I. The effects on numerical fluents are represented similarly, but the head of the rule
is replaced by a numerical constraint. For example, the rule: v initial(height(ball), I +
1) = 10← occurs(lif t(ball), I) states the action of lifting the ball causes its height to
be 10 at the beginning of the state following the occurrence of the action. If the action
increases or decreases the value of a numerical fluent, rather than setting it, then a
corresponding variable of the form v(contrib(n,s), i) is used in the numerical constraint.



The link between contributions and numerical fluent values is established by axioms
described later in this section.

Durative actions. A durative action d is encoded as two instantaneous actions,
start(d) and end(d). The start (end) preconditions of d are mapped to preconditions
of start(d) (end(d)). The overall conditions are encoded with denials and constraints,
as described above in the context of preconditions. Start (end) effects are mapped to
effects of start(d) and end(d) actions. Additionally, start(d) makes fluent inprogr(d)
true. The continuous effects of d are made to hold in any state in which inprogr(d)
holds. For example, if a ref uel action causes the level of fuel in a tank to increase lin-
early with the flow of time, its effect may be encoded by: v(contrib( f level,ref uel), I) =
tend(I)− tstart(I)← holds(inprogr(d), I). The rule intuitively states that, at the end
of any state in which d is in progress, the fuel level increases proportionally to the du-
ration of the state. The value of the fluent is updated from its set of contributions S by
the general constraint, shown next, which applies to every fluent F : v f inal(F, I) =
v initial(F, I) + ∑s∈S v(contrib(F,s), I). The fact that the value of numerical fluents
stays the same by default throughout the time interval associated with a state is mod-
eled by a rule: v f inal(F, I) = v initial(F, I)← not ab(F, I), which applies to every
numerical fluent F . Intuitively, ab(F, I) means that F is an exception to the default.
That is the case when the value of F is being changed by a durative action or pro-
cess. In those situations, the expression not ab(F, I) blocks the application of the rule,
preventing it from making the final value of F equal to its initial one. Additionally,
rules are introduced, which make ab(F, I) true when appropriate. For example, for
a durative action d that affects a numerical fluent f , the encoding includes a rule:
ab( f , I)← holds(inprogr(d), I). In a similar way, the contribution to a numerical flu-
ent by every source is assumed to be 0 by default. This is guaranteed by the rule:
v(contrib(F,S), I) = 0)← not ab(F, I).

To keep track of the duration of an action spanning multiple time steps, a rule
records the global time at which d begun: stime(d) = tend(I)← occurs(start(d), I).
Action end(d) is modeled so that it is automatically triggered after start(d). Finding the
time at which the end action occurs, both in terms of time step and global time, is part
of the constraint problem to be solved. The rule: 1{occurs(end(d), I2) : I2 > I1}1←
occurs(start(d), I1) ensures that end(d) will be triggered at some timepoint following
start(d). Finally, requirements on the duration of durative actions are encoded using
numerical constraints: if the PDDL+ problem specifies that the duration of d is δ , the
requirement is encoded by a rule: tend(I)− stime(d) = δ ← occurs(end(d), I). Intu-
itively, any CASP solution of the corresponding program will include a specification of
when end(d) must occur, both in terms of time step and global time.

It is worth nothing that this encoding extends to multiple occurrences of dura-
tive actions in a natural way, by adding, as second argument of instantaneous actions
start(d) and end(d), a variable for the timepoint at which the durative action starts
(e.g., start(d, I) and end(d, I)). Intuitively, this yields multiple, and completely inde-
pendent, “copies” of the durative action, whose effects and termination can be handled
accordingly by the encoding presented.

Processes and Events. The encoding of processes and events follows the approach
outlined earlier, respectively, for durative and instantaneous actions. However, their



triggering is defined by PDDL+’s must semantics, which prescribes that they are trig-
gered as soon as their preconditions are true. In CASP, this is captured by a choice
rule combined with numerical constraints. Intuitively, when the Boolean conditions of
the process are satisfied, the choice rule states the process will start unless it is inhib-
ited by unsatisfied numerical conditions. Constraints enforced on the numerical con-
ditions capture the latter case. Consider a process corresponding to a falling object,
with preconditions ¬held and height > 0. The choice rule 1{occurs(start( f alling), I),
is f alse(height > 0, I)}1← holds(¬held, I) entails two possible, equally likely, out-
comes: the object will either start falling, or be prevented from doing so by the fact that
condition height > 0 is false. The second outcome is possible only if the height is in-
deed not greater than 0, enforced by: v f inal(height, I) ≤ 0← is f alse(height > 0, I).
Generally speaking, given a process with conditions on numerical fluents n1, . . . ,nk, a
choice rule is included in the encoding, with an atom is f alse(ni, I) for every ni. A
constraint is also added for every condition on some ni. The constraints enforces on
v f inal(ni, I) the complement of the condition. The treatment of events is similar.

The encoding is completed by the usual inertia axioms and by rules for prevent-
ing gaps between consecutive states and for handling propagation of fluent values:
{tstart(I +1) = tend(I). v initial(F, I +1) = v f inal(F, I).}.
Problem Encoding. The problem portion of the PDDL+ problem is encoded as follows.
Initial state: The encoding of the initial state consists of a set of rules specifying the
values of fluents in P∪ v at step 0. Goals: The encoding of a goal consists of a set of
denials on Boolean fluents and of constraints on numerical fluents, obtained similarly
to the encoding of preconditions of actions, discussed earlier. Given a PDDL+ planning
instance I, by Π(I) we denote the CASP encoding of I. Next, we turn our attention to
the planning task.
Planning Task. Our approach to planning leverages techniques from ASP-based plan-
ning. The planning task is specified by the planning module, M, which consists of the
single rule: {occurs(A, I),occurs(start(D), I)}, where A, D are variables ranging over
instantaneous actions and durative actions, respectively. The rule intuitively states that
any action may occur (or start) at any time step. It can be shown that the plans for a given
maximum time step for a PDDL+ planning instance I are in one-to-one correspondence
with the CASP solutions of Π(I)∪M. The plan encoded by a CASP solution A can be
easily obtained from the atoms of the form occurs(a, i) and from the value assignments
to numerical variables start(i) and end(i). Finally, the ε-separation6 is handled, as in
[6], by post-processing the plan. It is also worth noting the level of modularity of our
approach. In particular, it is straightforward to perform other reasoning tasks besides
planning (e.g, a hybrid of planning and diagnostics is often useful for applications) by
replacing the planning module by a different one.

4 Case Study

For our case study, we have focused on a specific incarnation of CASP, called EZCSP
[1]. In EZCSP, numerical constraints are encoded as arguments of the special relation

6 ε-separation requires that interfering actions must be separated by at least a time interval of
length ε . Hence, two interfering actions a1 and a2 cannot start or end at the same timepoint.



required, e.g. required(start(I+1) = end(I)). Encodings of the generator and car do-
mains [4] were created as described above, and the architecture of the EZCSP solver was
expanded to ensure soundness of the algorithm (see below). The complete encodings are
omitted due to space considerations. Rather, to illustrate our approach, we present frag-
ments of a possible encoding of process generate from the generator domain, whose
PDDL+ representation is shown in Figure 1 (left). The contribution to the generator’s
fuel level is encoded by the domain-independent rules discussed earlier, together with
the following problem-specific rules:

cspvar(v(contrib( f uel level,decr,generate), I))← step(I).
required(v(contrib( f uel level,decr,generate), I)>= 0)← step(I).
required(v(contrib( f uel level,decr,generate), I) == start(I)− end(I))←

step(I),holds(inprogr(generate), I).

From an algorithmic perspective, the EZCSP solver computes CASP solutions of a pro-
gram Π by iteratively (a) using an ASP solver to find an answer set A of Π , and (b)
using a constraint solver to find the solutions of the CSP encoded by A . To account
for the discretize and validate approach mentioned earlier, we have extended the EZCSP
solver with a validation module, shown in Figure 1 (right): if step (b) is successful, the
tool VAL is called to validate the plan extracted from the CASP solution before return-
ing it. If VAL finds the plan not to be valid, it returns which invariant was violated and
at which timepoint. If that happens, the expansion process occurs, where the encoding
is expanded with (i) new numerical variables that represent the value of the involved
numerical fluents at that timepoint, and (ii) numerical constraints enforcing the invari-
ant on them.7 The CASP solutions for the new encoding are computed again8, and the
process is iterated until no invariants are violated.

(:process generate
:parameters (?g - generator)
:condition

(over all (>= (fuelLevel ?g) 0))
:effect

(and
(decrease (fuelLevel ?g) (* #t 1))
(increase (generator_time ?g) (* #t 1))

)
)
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Ground
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Module
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Plan
Extractor
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PDDL+
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Encoding

EZCSP
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Fig. 1. PDDL+ process from the generator domain (left); Extended solver architecture (right).

7 Details on the process are omitted to save space.
8 Only the solutions of the CSP need to be recomputed.



5 Experimental Results

We performed an empirical evaluation of the performance achieved with our approach.
The comparison was with the state-of-the-art PDDL+ planners dReal, UPMurphi, and
SMTPlan+. SpaceEx was not considered because it is focused only on plan non-existence.
The experimental setup used a VMWare Workstation 12 virtual machine with an sin-

Domain Solver 1 2 3 4 5 6 7 8
Gen linear EZCSP/basic 5.82 2.19 41.77 74.51 114.86 424.80 164.95 –

EZCSP/heur 0.28 1.03 4.21 7.25 27.08 43.42 54.83 261.89
EZCSP/estim 0.27 0.73 1.64 25.64 77.38 303.75 – –

dReal 3.73 – – – – – – –
Gen non-linear EZCSP/basic 0.78 3.3 18.27 – 143.19 – – *

EZCSP/heur 0.72 1.62 0.68 1.05 87.95 256.59 238.93 *
EZCSP/estim 0.81 1.25 0.49 1.19 93.10 50.50 – *

dReal 8.18 – – – – – – –
Car linear EZCSP 0.32 0.31 0.32 0.32 0.32 0.30 0.31 0.31

dReal 1.11 1.11 1.15 1.14 1.19 1.13 1.14 1.19
Car non-linear EZCSP 0.71 0.68 0.29 0.39 0.25 0.25 0.26 0.84

dReal 58.21 162.60 – – – – – –
Table 1. Fixed time step. Results in seconds.

gle core of a i7-4790K CPU at 4.00GHz and Fedora 22 64 bit. The version of EZCSP
was 1.7.4, using gringo 3.0.5, clasp 3.1.3, B-Prolog 7.5, and GAMS 24.5.7. B-Prolog
was used for all linear problems and GAMS for the non-linear ones. The other systems
used were dReal 2.15.11, UPMurphi 3.0.2, and SMTPlan+ (public version as of Jul 7,
2016). The experiments were conducted on the generator and car domains. These are
well-known PDDL+ domains and were used as the benchmark set in [4].

The comparison with dReal was based on finding a single plan with a given maxi-
mum time step, as discussed in [4]. The results are summarized in Table 1. The com-
parison with UPMurphi and SMTPlan+ was based on the cumulative times for finding
a single plan by progressively increasing the maximum time step. The results are re-
ported in Table 2. In the tables, entries marked “-” indicate a timeout (threshold 600
sec). Entries marked “*” indicate missing entries due to problem size limitations in the
free version of GAMS. It should be noted that none of the instances triggered the ex-
pansion process described in the previous section, given that all plans were found to be
valid by VAL. Next, we discuss the experimental results obtained for each domain.

Generator. Our encoding uses Torricelli’s law (v =
√

2gh) to model the transfer of
liquid. It should be noted that this is different from the approach used in [4], where a
simpler, but less physically accurate model was used. For a fair comparison with [4],
the simpler model was used in reproducing the results for dReal. The instances were
generated by increasing the number of refuel tanks from 1 to 8. The CASP encoding



Domain Solver 1 2 3 4 5 6 7 8
Gen linear EZCSP/basic 1.14 2.71 8.56 12.79 25.90 151.94 96.40 279.81

EZCSP/heur 0.89 1.92 5.46 9.93 30.79 50.25 67.97 292.22
EZCSP/estim 0.83 1.55 3.19 26.27 82.32 318.98 – –
UPMurphi 2.02 12.75 91.80 – – – – –
SMTPlan+ 0.06 0.06 0.07 0.09 0.14 0.30 0.93 3.83

Gen non-linear EZCSP/basic 2.30 4.36 42.11 - 152.53 – – –
EZCSP/heur 1.44 2.44 13.10 53.70 88.58 267.11 250.03 –
EZCSP/estim 0.88 1.89 12.66 54.95 96.47 55.28 – –
UPMurphi – – – – – – – –
SMTPlan+ 0.08 0.08 0.11 0.19 0.37 0.85 2.08 5.22

Car linear EZCSP 1.01 0.98 1.04 0.99 0.91 0.85 0.88 0.83
UPMurphi 0.40 0.38 0.38 0.38 0.41 0.39 0.40 0.41
SMTPlan+ 0.07 0.06 0.06 0.05 0.05 0.06 0.06 0.06

Car non-linear EZCSP 2.32 1.49 1.14 1.85 1.14 1.18 1.06 2.13
UPMurphi 184.88 – – – – – – –
SMTPlan+ 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08

Table 2. Cumulative times. Results in seconds.

presented earlier is labeled “EZCSP/basic” in the table. We also investigated two vari-
ants aimed at improving performance of the encoding w.r.t. the treatment of the must
semantics. It is not difficult to see that the must semantics may significantly affect per-
formance. The encoding labeled to “EZCSP/heur” leverages the observation that sim-
ple syntactic considerations yield the conclusion that the generate process must start at
timepoint 0. Thus, “EZCSP/heur” extends the simpler encoding by a single heuristic stat-
ing that action start(generate) must occur immediately. It is interesting to contrast the
effects of this domain-specific, encoding-level heuristic with those of the sophisticated,
algorithm-level, and yet domain-independent, heuristics used in dReal. The encoding
labeled “EZCSP/estim” takes the observation about the generate process one step fur-
ther, replacing the domain-specific heuristic with rules that, in some conditions, can be
used to estimate the value of numerical fluents without calling the constraint solver.
Compared to dReal and to the previous encoding, the new one is not only encoding-
level, but also domain-independent. Furthermore, while dReal’s heuristics are specific
to the planning task, this approach is task-independent.

The execution times for EZCSP for a fixed maximum time step (Table 1) were for the
most part dominated by “EZCSP/heur”, which had the best performance in both the lin-
ear and the non-linear instances. Remarkably, “EZCSP/basic” won over “EZCSP/estim”
in the linear case, while, as one might have expected, “EZCSP/estim” performed better
in the more challenging non-linear case, suggesting that the additional knowledge may
be more beneficial in the harder case. The slower times, overall, for the linear case are
also somewhat surprising, but are likely due to major differences in the underlying nu-
merical solvers. In both the linear and non-linear case, the “EZCSP/heur” encoding was
substantially faster than dReal, which timed out on all instances except for the first one.



The cumulative times for EZCSP are reported in Table 2. Once again, “EZCSP/heur”
had best performance, but “EZCSP/basic” had a number of good results in the linear
case. Surprisingly, “EZCSP/estim” had the worst performance, timing out on instances
7 and 8 in both the linear and non-linear cases. On the other hand, it is interesting to
notice that, in the non-linear variant, “EZCP/estim” was able to equal and sometimes
beat the performance of the other EZCSP encodings before timing out on the last two
instances. The reasons for this result are currently unclear and will be the subject of
future investigation. UPMurphi did not scale as well. In the linear case, only instances
1-3 were solved. The speedup yielded by EZCSP reached about one order of magnitude
before UPMurphi began to time out. In the non-linear case, UPMurphi timed out on all
instances. SMTPlan+ outperformed EZCSP, achieving a speedup of about 2 orders of
magnitude and solving one more instance than the latter in the non-linear case.

Car. The instances were obtained by progressively increasing the range of allowed
accelerations (velocities in the linear version) from [−1,1] to [−8,8]. The CASP en-
coding leveraged no heuristics. As shown in Table 1, the execution times for EZCSP
were about 3 times faster than dReal in the linear case and orders of magnitude bet-
ter in the non-linear case, where dReal timed out in instances 3-8. The run-times of
EZCSP showed no significant growth in either case. The comparison with UPMurphi
on cumulative times shows some interesting behavior. In the linear case, EZCSP was, in
fact, about 2-3 times slower than UPMurphi. On the other hand, EZCSP outperformed
UPMurphi in the non-linear case, where UPMurphi only solved the first instance with a
time nearly 2 orders of magnitude slower than EZCSP. SMTPlan+ outperformed EZCSP
in this domain as well, with speedups of a little over 1 order of magnitude.

We believe the empirical results demonstrate that our approach is promising, beating
by a good margin the state-of-the-art planners with the exception of SMTPlan+. As for
the difference in performance with SMTPlan+, a thorough algorithmic and architectural
comparison has yet to be conducted due to SMTPlan+ being fairly recent. At this point,
various explanations are possible. First of all, the EZCSP encoding was designed for
clarity and elaboration tolerance rather than speed. Next, our approach currently lacks
important optimizations present in SMTPlan+ – e.g., incremental grounding and multi-
threading. Lastly, the specific numerical solvers used may also play an important role.

6 Related Work

To the best of our knowledge, ours is the first attempt to link PDDL+ planning and logic
programming. Various techniques and tools have been proposed to deal with hybrid do-
mains using other techniques. Most of them are unable to handle the full set of PDDL+
features, namely non-linear domains with processes and events. For instance, dReach
[4] leverages SMT to plan in hybrid systems, but does not provide a direct translation
from PDDL+ and does not handle exogenous events.

SMTPlan+ [5] is another approach based on a translation to SMT, but it supports
the full PDDL+ language, and featured excellent performance in our evaluation.

From the model checking and control communities, a number of approaches have
been proposed (e.g., [3]). Similarly, falsification of hybrid systems tries to guide the
search towards the error states, which can be easily cast as a planning problem. How-



ever, while all of these works aim to address hybrid systems, they do not handle PDDL+
models.

UPMurphi [6] is capable of handling the full set of PDDL+ features, although it is
very limited in scalability as it performs blind search. The approach proposed in this
paper is similar to TM-LPSAT [9]. However, TM-LPSAT assumes linear continuous
change, while we tackle problems with nonlinear dynamics.

For what concerns CASP solvers, a high level view of the languages and solving
techniques can be found in [8]. Of the available systems, EZCSP is, to the best of our
knowledge, the only one supporting both non-linear constraints, required for modeling
non-linear continuous change, and real numbers.

7 Conclusions

We have presented a novel approach to PDDL+ planning based on CASP languages,
providing a solid basis for applying logic programming to PDDL+ planning. Experi-
ments on well-known domains, some involving non-linear continuous change, showed
that our approach outperforms most comparable state-of-the-art PDDL+ planners. Bas-
ing our approach on CASP also makes it amenable to be expanded to handle uncertainty
about the initial situation or the effects of actions, and to reasoning tasks other than
planning. In the future, we plan to investigate these aspects, and to conduct a thorough
algorithmic and architectural comparison with SMTPlan+.
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