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Abstract. The goal of the Nurse Scheduling Problem (NSP) is to find an
assignment of nurses to shifts according to specific requirements. Given
its practical relevance, many researchers have developed different strate-
gies for solving several variants of the problem. One of such variants was
recently addressed by an approach based on Answer Set Programming
(ASP), obtaining promising results. Nonetheless, the original ASP encod-
ing presents some intrinsic weaknesses, which are identified and eventu-
ally circumvented in this paper. The new encoding is designed by taking
into account both intrinsic properties of NSP and internal details of ASP
solvers, such as cardinality and weight constraint propagators. The per-
formance gain of clingo and wasp is empirically verified on instances
from ASP literature. As an additional contribution, the performance of
clingo and wasp is compared to other declarative frameworks, namely
SAT and ILP; the best performance is obtained by clingo running the
new ASP encoding.

Keywords: Answer Set Programming · Knowledge representation and
reasoning · Nurse Scheduling

1 Introduction

The Nurse Scheduling Problem (NSP) consists of generating a schedule of work-
ing and rest days for nurses working in hospital units. The schedule should
determine the shift assignments of nurses for a predetermined window of time
and must satisfy requirements imposed by the Rules of Procedure of hospitals.
A proper solution to NSP is crucial to guarantee the high level of quality of
health care, to improve the degree of satisfaction of nurses, and the recruitment
of qualified personnel. Given its practical relevance on the quality of hospital
structures, NSP has been widely studied in the literature and several variants
have been considered [14,18]. Such variants are usually grouped according to
several factors, as the planning period, the different types of shifts considered,
and requirements on the preferences of hospitals and nurses.

The NSP variant considered in this paper concerns a planning period fixed to
one year with three different types of shifts (morning, afternoon and night) and
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requirements on nurses and hospitals provided by an Italian hospital. Specifically,
such requirements concern restrictions to the number of working hours per year
and to the number of times nurses are assigned to a specific shift.

Recently, the aforementioned variant of NSP has been modeled by means of
an Answer Set Programming (ASP) [13] encoding presented in [21]. The encoding
resulted to be natural and intuitive, in the sense that it was designed by applying
the standard modeling methodology, yet it obtained reasonable performance on
solving the analyzed instances.

On the other hand, it turned out that the encoding presented in [21] shows
some limitations and intrinsic weaknesses, mainly due to aggregates [7], i.e. opera-
tions on multi-sets of weighted literals that evaluate to some value. The encoding
of [21] presents some aggregates with a quite large number of literals and few dif-
ferent weights, resulting to be counterproductive for the performance of modern
ASP solvers [27], since they deteriorate their propagation power. In this paper,
we circumvented such limitations by taking into account only combinations of
values that can lead to admissible schedules. Interestingly, the new encoding
did not require to significantly sacrifice the readability of the encoding, which
remains intuitive and clear.

The performance of the ASP solvers executed on the new encoding has been
empirically evaluated on the same data and settings used in [21], showing a clear
improvement on the performance of state of the art ASP systems clingo [26]
and wasp [5]. As an additional contribution, the ASP-based approaches have
been compared to other declarative frameworks, namely Propositional Logic
Satisfiability (SAT) [8] and Integer Linear Programming (ILP) [1]. Results show
that clingo and wasp executed on the new encoding outperform their coun-
terparts executed on the original encoding. Moreover, clingo executed on the
new encoding is considerably faster than all other tested approaches.

The contributions of the paper can be summarized as follows:

1. We formalize the variant of NSP considered in this paper and in [21]
(Sect. 2.2).

2. We propose a new ASP-based solution to NSP overcoming some limitations
of the encoding presented in [21] (Sect. 3.3).

3. We present an experimental analysis comparing the ASP solution proposed in
this paper with the previous one as well as with SAT and ILP based solutions
(Sect. 4). Results show a significant improvement of the performance of ASP
solvers and, specifically, clingo performs better than all other alternatives.

2 Description and Formalization

We start this section by providing a description of the problem as posed by an
Italian hospital (Sect. 2.1). In the description we identify parameters that allow
to reuse the proposed solution even if part of the specification given by the
hospital will change. The formalization presented in Sect. 2.2 in fact considers
these parameters as part of the input.
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2.1 Nurse Scheduling Problem

NSP amounts to the totalization of partial schedules assigning nurses to working
and rest days over a predetermined period of time, which is fixed to one year in
this paper. Usually, partial schedules to be totalized involve few data concerning
already authorized vacations. Admissible schedules must satisfy a set of require-
ments dictated by the rules of the hospital units. In the following, we report the
requirements specified by an Italian hospital.

Hospital requirements. For every working day, nurses can be assigned to exactly
one of the following shifts: morning (7 A.M.–2 P.M.), afternoon (2 P.M.–9
P.M.), night (9 P.M.–7 A.M.). Thus, the morning and the afternoon shifts
last 7 h, whereas the night shift lasts 10 h. In order to ensure the best
assistance program for patients, the number of nurses in every shift x ∈
{morning, afternoon, night} must range from xnurse

min to xnurse
max .

Nurses requirements. In order to guarantee a fair workload, each nurse must work
a number of hours ranging from workmin to workmax. Additional requirements
are also imposed to ensure an adequate rest period to each nurse: (a) nurses are
legally guaranteed 30 days of paid vacation; (b) the starting time of a shift must
be at least 24 h later than the starting time of the previous shift; and (c) each
nurse has at least two ordinary rest days for every window of fourteen days. In
addition, nurses working on two consecutive nights deserve one special rest day
in addition to the ordinary rest days.

Balance requirements. The number of morning, afternoon and night shifts
assigned to every nurse should range over a set of acceptable values, that is,
from xday

min to xday
max for each x ∈ {morning, afternoon, night}.

2.2 Formalization

According to the above requirements, we define the following decisional problem
NSP d : Given a set N of nurses, a partial schedule

s ′ : N × [1..365] �→ {morning, afternoon, night, special-rest, rest, vacation}
(1)

natural numbers workmin, workmax, and xnurse
min , xnurse

max , xday
min, xday

max for x ∈
{morning, afternoon, night}, check the existence of a schedule

s : N × [1..365] → {morning, afternoon, night, special-rest, rest, vacation}
(2)

extending s ′ and satisfying the following conditions:

xnurse
min ≤| {n ∈ N : s(n, d) = x} |≤ xnurse

max (3)

for all x ∈ {morning, afternoon, night}, and all d ∈ [1..365];

workmin ≤ 7· | {d ∈ [1..365] : s(n, d) ∈ {morning, afternoon}, n ∈ N } |
+ 10· | {d ∈ [1..365] : s(n, d) = night, n ∈ N } |≤ workmax;

(4)



An Advanced Answer Set Programming Encoding for Nurse Scheduling 471

| {d ∈ [1..365] : s(n, d) = vacation} |= 30 (5)
| {d ∈ [2..365] : s(n, d) = morning, s(n, d − 1) ∈ {afternoon, night}} |= 0
| {d ∈ [2..365] : s(n, d) = afternoon, s(n, d − 1) = night} |= 0 (6)

for all n ∈ N ;

| {d ′ ∈ [d ..d + 13] : s(n, d ′) = rest} |≥ 2 (7)

for all n ∈ N , and all d ∈ [1..352];

s(n, d) = special-rest if and only if s(n, d − 1) = night and s(n, d − 2) = night
(8)

for all n ∈ N , and all d ∈ [3..365];

xday
min ≤| {d ∈ [1..365] : s(n, d) = x} |≤ xday

max (9)

for all n ∈ N , and x ∈ {morning, afternoon, night}.

Optimal balance requirements. In addition to the above requirements, the hospi-
tal reported some further requirements to guarantee a balance in the assignment
of shifts. Indeed, the number of morning, afternoon and night shifts assigned to
every nurse should be preferably fixed to some desired values, that is, xday for
each x ∈ {morning, afternoon, night}.

According to the above additional requirement, we define the fol-
lowing optimization problem NSP o : Given a set N of nurses, natural
numbers workmin, workmax, and xnurse

min , xnurse
max , xday, xday

min, x
day
max for x ∈

{morning, afternoon, night}, check the existence of a schedule s of the form
(2) satisfying (3)–(9), and minimizing

∑

x∈{morning,afternoon,night}, n ∈ N

abs(xday− | {d ∈ [1..365] : s(n, d) = x} |).

(10)

3 ASP Encodings

In Sect. 3.3 we present the new advanced encoding, improving on the existing one
introduced in [21] and briefly recalled in Sect. 3.2. We assume that the reader is
familiar with basic knowledges of Answer Set Programming and ASP-Core-2
input language specification [15] (some minimal notions are given in Sect. 3.1).

3.1 ASP Evaluation Strategies

In the following a summary of the evaluation strategies of ASP programs are
reported in order to provide a better insight on the properties of the new encod-
ing. The evaluation of an ASP program is usually made in two steps, called
grounding and solving. First, the ASP program with variables is evaluated by
the grounder, which is responsible to produce its variable-free (propositional)
counterpart.
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Example 1 (Grounding). Consider as example the following rules:

a(1..5). b(1..10). c(1..3).
{output(X,Z,Y) : c(Z)} = 1 :- a(X), b(Y).

The grounder produces 50 (i.e. 5×10) propositional rules of the following form:

p1 : {output(1,1,1); output(1,2,1); output(1,3,1)} = 1.
p2 : {output(1,1,2); output(1,2,2); output(1,3,2)} = 1.
p3 : {output(1,1,3); output(1,2,3); output(1,3,3)} = 1.

.

.

.

Intuitively, the choice rule p1 enforces that exactly one atom between
output(1,1,1), output(1,2,1) and output(1,3,1) must be true in an answer
set. Similar considerations hold for other ground rules generated. �

The resulting propositional program is evaluated by the solver, whose role is to
produce an answer set. Modern ASP solvers implement the algorithm CDCL [27],
which is based on the pattern choose-propagate-learn. Intuitively, the idea is to
build an answer set step-by-step by starting from an empty interpretation, i.e.
all atoms are initially undefined. Then, the algorithm heuristically chooses an
undefined atom to be true in the answer set, and the deterministic consequences
of this choice are propagated, i.e. new atoms are derived true or false in the
answer set candidate. The propagation may lead to a conflict, i.e. an atom is
true and false at the same time. In this case, the conflict is analyzed and a
new constraint is added to the propositional program (learning). The conflict
is then repaired, i.e. choices leading to the conflict are retracted and a new
undefined atom is heuristically selected. The algorithm then iterates until no
undefined atoms are left, i.e. an answer set is produced, or the incoherence of
the propositional program is proved, i.e. no answer sets are admitted.

Example 2 (Propagation). Consider the propositional rule p1 reported in
Example 1 and assume that atoms output(1,1,1) and output(1,2,1) have
been heuristically assigned to false. Then, the solver derives output(1,3,1) to
true because it is the only way to satisfy the rule p1. �

3.2 Existing Encoding

Instances of NSP d and NSP o are represented by means of ASP facts
and constants. Specifically, the interval [1..365] of days is encoded by facts
of the form day(d), for all d ∈ [1..365], and the number of days is
fixed by the fact days(365). The nurses are encoded by facts of the form
nurse(n), for all n ∈ N . Available shifts are encoded by facts of the form
shift(idx , x, h), where idx ∈ [1..6] is a numerical identifier of the shift
x ∈ {morning, afternoon, night, special-rest, rest, vacation}, and h is the num-
ber of working hours associated to the shift. Natural numbers xnurse

min , xnurse
max

for x ∈ {morning, afternoon, night} are represented by facts of the form
nurseLimits(idx , xnurse

min , xnurse
max ), where idx is the identifier of the shift x .
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Fig. 1. ASP encoding introduced in [21] for NSP o (and for NSP d if r14 is removed).

Natural numbers xday, xday
min, x

day
max for x ∈ {morning, afternoon, night} are

represented by dayLimits(idx , xday, xday
min, x

day
max), while workmin, workmax by

workLimits(workmin, workmax). Hence, according to the specification given by
the hospital, the following facts and constants are considered in our setting:

day(1..365). days(365). nurses(1..41).

shift(1,morning,7). shift(2,afternoon,7). shift(3,night,10).

shift(4,specialrest,0). shift(5,rest,0). shift(6,vacation,0).

nurseLimits(1,6,9). nurseLimits(2,6,9). nurseLimits(3,4,7).

dayLimits(1,78,74,82). dayLimits(2,78,74,82). dayLimits(3,60,58,61).

workLimits(1687,1692).

The computed schedule is encoded by atoms of the form assign(n, x, d),
representing that nurse n is assigned shift x on day d , that is, s(n, d) = x . The
same predicate assign is used to specify the partial schedule s ′ in input. x

The ASP encoding introduced in [21] is reported in Fig. 1. It implements the
Guess&Check programming methodology: Choice rule r1 is used to guess the
schedule s : N × [1..365] → [1..6] extending s ′ and assigning each day of each
nurse to exactly one shift, and rules r2–r13 are used to discard schedules not sat-
isfying some of the desired requirements. Specifically, hospital requirements, for-
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malized as property (3), are enforced by the integrity constraints r2 and r3, which
filter out assignments exceeding the limits. Regarding nurse requirements, prop-
erty (4) is enforced by integrity constraints r4 and r5, property (5) by integrity
constraint r6, property (6) by integrity constraint r7, property (7) by integrity
constraint r8, and property (8) by integrity constraint r9–r11. Note that r7 takes
advantage of the numerical identifiers associated with shifts, and in particular
by the fact that morning has ID 1, afternoon has ID 2, and night has ID 3.
Concerning balance requirements, formalized as property (9), they are enforced
by integrity constraints r12 and r14. Rules r1–r13 encode NSP d , while for NSP o

we also need weak constraint r14: It assigns a cost to each admissible schedule
measured according to function (10). Optimum schedules are those minimizing
such a cost.

3.3 Advanced Encoding

The aim of this section is to introduce a new encoding, shown on Fig. 2, which
improves the encoding reported in the previous section. First of all, note that
many constraints of the encoding in Fig. 1 only involve assignments to working
shifts, that is, morning, afternoon and night. The Guess part of the encoding
(i.e., rule r1) can thus be replaced by two different choice rules, r ′

1a , r
′
1b , where

r ′
1a guesses among one of the working shifts or otherwise marks nurses as not
working, and r ′

1b eventually guesses among rest, special-rest and vacation for
each nurse marked as not working. To achieve such a behavior, an additional
meta-shift is added to the set of facts, namely shift(7,notworking,0).

Table 1. Number of working hours assigned to nurse n, that is, 7 · (M + A) + 10 · N ,
where M =| {d ∈ [1..365] : s(n, d) = morning} |, A =| {d ∈ [1..365] : s(n, d) =
afternoon} |, and N =| {d ∈ [1..365] : s(n, d) = night} |. Admissible values, that is,
those in the interval [1687..1692], are emphasized in bold.

N M + A

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

58 1616 1623 1630 1637 1644 1651 1658 1665 1672 1679 1686 1693 1700 1707 1714 1721 1728

59 1626 1633 1640 1647 1654 1661 1668 1675 1682 1689 1696 1703 1710 1717 1724 1731 1738

60 1636 1643 1650 1657 1664 1671 1678 1685 1692 1699 1706 1713 1720 1727 1734 1741 1748

61 1646 1653 1660 1667 1674 1681 1688 1695 1702 1709 1716 1723 1730 1737 1744 1751 1758

A second improvement is obtained by combining the knowledge represented
by Eqs. (4) and (9) with some observations on how rules r4 and r5 are evalu-
ated. In fact, during the solving phase, rules obtained by instantiating r4 and
r5 comprise aggregates with relatively large aggregation sets and few different
weights. Specifically to our setting, where morning and afternoon shifts are fixed
to 7 h, and night shifts to 10 h, each aggregation set contains 365 elements with
weight 7, and 365 elements with weight 10. It turns out that several sched-
ules result into exactly the same sum value. The question is now how many
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Fig. 2. Advanced ASP encoding for NSP o (and for NSP d if r ′
14 is removed).
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of these schedules actually satisfy both (4) and (9). Restricting to the spec-
ification given by the hospital, that is, morningdaymin = afternoonday

min = 74,
morningdaymax = afternoonday

max = 82, nightdaymin = 58, and nightdaymax = 61, the
possible sum values are those reported in Table 1, where we also highlight admis-
sible values in the interval [workmin..workmax] = [1687..1692]. The new encod-
ing therefore determines the admissible pairs of the form (N ,M + A), where
M ,A,N are the number of morning, afternoon and nights assigned to a given
nurse, by means of rule r ′

15. These pairs are then used to check whether the
assignment of working shifts is valid for each nurse by means of rules r ′

4 and r ′
5.

Actually, rules r ′
4 and r ′

5 take advantage from a third improvement of the
advanced encoding. The number of morning, afternoon and night shifts that
can be assigned to a nurse must adhere to Eq. (9), and are therefore limited to
a few different values. The possible values of these aggregations are therefore
encoded by means of atoms of the form countGE(x ,n, v), being true whenever
| {d ∈ [1..365] : s(n, d) = x} |≥ v . It turns out that any answer set satisfies
the following property: for each shift x and for each nurse n, there is exactly
one value v such that countGE(x ,n, v), not countGE(x ,n, v + 1) is true. In the
advanced encoding, predicate countGE is defined by rule r ′

17. Moreover, rule
r ′
18 is used to enforce truth of countGE(x ,n, v − 1) whenever countGE(x ,n, v)

is true; it is not required for correctness, but convenient to prune the search
space in case countGE(x ,n, v) is assigned to true during the computation even
if | {d ∈ [1..365] : s(n, d) = x} |≥ v does not yet hold (for example, in case
countGE(x ,n, v) is selected as a branching literal).

The fourth improvement is obtained by noting that rules r12–r14 aggregate
on sets {d ∈ [1..365] : s(n, d) = x} for x ∈ {morning, afternoon, night}. It is
therefore convenient to rewrite these rules in terms of predicate countGE, hence
obtaining rules r ′

12–r
′
14. Finally, a further improvement is obtained by checking

the number of nonworking days assigned to each nurse. For the specification given
by the hospital it must range between 149 and 150, and in general the admitted
range can be determined by rule r ′

16. The check itself is then performed by rules
r ′
12 and r ′

13 (for S being 7). Note that also this last check is not required to
guarantee correctness of the encoding.

4 Empirical Evaluation

In this section the results of the empirical evaluation conducted on the same
setting of [21] is reported. The experiments consider real data provided by the
Italian hospital unit, which comprises a set of 41 nurses and holidays selected
using the preferences of nurses of the year 2015. Moreover, the scalability of
the approach has been evaluated by considering different number of nurses. In
particular, an additional experiment was run by considering 10, 20, 41, 82 and
164 nurses without fixed holidays. We consider both the decisional (NSP d) and
the optimization (NSP o) variants of NSP. Concerning the decisional variant, we
compared our new ASP-based approach with the previous ASP encoding, with
a solution based on SAT and one based on ILP.
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The ASP encodings have been tested using the system clingo (v. 5.1.0) [24]
and the solver wasp (v. 996bfb3) [5] combined with the grounder gringo [25],
both configured with the core-based algorithms [4] for NSP o . Solvers lingeling
(v. bbc-9230380-160707) [12], glucose (v. 4.1) [8] and clasp (v. 3.2.2) have
been executed on the SAT encoding, while the commercial tool gurobi (v.
7.0.2) [1] on the ILP encoding. Concerning the optimization variant, the same
tools for ASP and ILP have been used, whereas lingeling and glucose have
been replaced by the MaxSAT tools mscg [32] and maxino [6], both binaries
taken from MaxSAT Competition 2016.

In order to test SAT and ILP solutions, we created a pseudo-Boolean formula
based on the ideas of the advanced ASP encoding. The pseudo-Boolean formula
was represented using the OPB format, which is parsed by the tool gurobi.
Concerning the SAT-based solutions, we use the tool pblib [33] to convert the
pseudoBoolean formula into a CNF. The running time of pblib has not been
included in the analysis.

Time and memory were limited to 1 h and 8 GB, respectively. All the material
can be found at http://www.star.dist.unige.it/∼marco/Data/material.zip.

Results. The results of the run on the instance provided by the Italian hospital
are reported in Table 2. The best result overall is obtained by clingo executed
on the advanced encoding for both NSP d and NSP o , which is able to find a
schedule in 42 and 70 s, respectively. This is a clear improvement with respect to
the original encoding. Indeed, clingo executed on the original encoding was able
to find a schedule in 22 and 7 min for the decisional and optimization variant,
respectively. However, the advanced encoding does not help the other ASP solver
wasp: its bad performance seems related to the branching heuristic, which is not
effective on this particular domain. SAT-based (and MaxSAT-based) approaches
are also not able to find a schedule within the allotted time and memory. In
this case their performance can be explained by looking at the large size of
the formula to evaluate (approximately 65 millions of clauses), which makes the
solvers exceed the allotted memory. The tool gurobi obtained good performance
on both NSP d and NSP d instances. In particular for NSP d gurobi is faster
than clingo executed on the original encoding. On the contrary, gurobi is
slower than clingo on NSP o instances.

Scalability. We also performed an analysis about the scalability of the encoding,
considering different numbers of nurses. In particular, for both NSP d and NSP o

we considered five instances containing 10, 20, 41, 82 and 164 nurses, respectively.
For each instance, we proportionally scaled the number of working nurses during
each shift and holidays are randomly generated, whereas other requirements are
not modified. Results are reported in Table 3.

The best results overall is obtained again by clingo executed on the
advanced encoding, which outperforms all other tested approaches. Concerning
ASP-based approaches, their performance is much better when they are exe-
cuted on the advanced encoding. Indeed, the running time of clingo decreases
considerably for all tested instances in both NSP d and NSP o . Moreover, Fig. 3

http://www.star.dist.unige.it/~marco/Data/material.zip
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Table 2. Results of the experiment with 41 nurses and fixed holidays.

NSP d NSP o

Solver Solving time (s) Solver Solving time (s)

clingo (orig enc) 1352 clingo (orig enc) 431

clingo (adv enc) 43 clingo (adv enc) 70

wasp (orig enc) - wasp (orig enc) -

wasp (adv enc) - wasp (adv enc) -

glucose (sat enc) - mscg (maxsat enc) -

lingeling (sat enc) - maxino (maxsat enc) -

clasp (sat enc) - clasp (maxsat enc) -

gurobi (ilp enc) 1018 gurobi (ilp enc) 1073

Table 3. Scalability of the approach. Solving time (s) for each solver.

Solver Nurses

10 20 41 82 164

NSP d clingo (orig enc) 155 117 738 1486 2987

clingo (adv enc) 4 9 70 351 1291

wasp (orig enc) - - - - -

wasp (adv enc) 5 20 - - -

glucose (sat enc) - - - - -

lingeling (sat enc) - - - - -

clasp (sat enc) - - - - -

gurobi (ilp enc) 62 172 1018 - -

NSP o clingo (orig enc) 37 94 339 798 1689

clingo (adv enc) 4 13 72 482 1590

wasp (orig enc) - - - - -

wasp (adv enc) 4 - - - -

mscg (maxsat enc) - - - - -

maxino (maxsat enc) - - - - -

clasp (maxsat enc) - - - - -

gurobi (ilp enc) 113 411 2004 - -

shows a comparison among the number of conflicts found by clingo executed
on the original and on the advanced encodings. The new encoding takes advan-
tage of the better propagations, thus it is able to find a solution with a smaller
number of conflicts. Concerning NSP o , it can also be observed that the perfor-
mance of the two versions of clingo are comparable on the instance with 164
nurses, even if the number of conflicts are much lower when clingo is executed
on the advanced encoding. To explain this discrepancy we analyzed the number
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of branching choices performed by clingo, which are around 128 millions for
the original encoding, and around 300 millions for the advanced encoding. Thus,
for this specific instance, the branching heuristic of clingo seems to be more
effective when the original encoding is considered. Moreover, wasp executed on
the advanced encoding is able to find a schedule for NSP d when 10 and 20
nurses are considered whereas wasp executed on the original one does not ter-
minate the computation in 1 h. The performance of SAT (and MaxSAT) solvers
are also in this case not satisfactory since they cannot solve any of the tested
instances. gurobi can solve instances up to 41 nurses, whereas it is not able to
find a schedule when 82 and 164 nurses are considered.
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Fig. 3. Comparison of the number of conflicts (in thousands) of clingo executed on
the original and on the advanced encodings for both NSP d and NSP o with different
number of nurses.

5 Related Work

In recent years, several approaches to solve NSP have been proposed. The main
differences concern (i) the planning periods; (ii) the different type of shifts;
(iii) the requirements related to the coverage of shifts, i.e. the number of person-
nel needed for every shift; and (iv) other restrictions on the rules of nurses (see
[14] for more detailed information). In this paper a one-year window of time has
been considered as in [17], where however the same requirements on nurses and
hospitals were not reported. Concerning the shifts, we considered three different
shifts (morning, afternoon and night) with no overlapping among shifts, whereas
in the literature other approaches were based on one single shift only (see e.g.
[31]). Other requirements depend on the different policies of the considered hos-
pitals. Thus, this makes the different strategies not directly comparable with
each other.

Concerning other solving technologies reported in the literature, they range
from mathematical to meta-heuristics approaches, including solutions based on
integer programming [9,11], genetic algorithms [3], fuzzy approaches [35], and
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ant colony optimization algorithms [28], to mention a few. Detailed and compre-
hensive surveys on NSP can be found in [14,18].

The approach described in this paper represents an enhancement of the one
proposed in [21]. The two encodings mainly differ with respect to how the con-
straints related to hospital and balance requirements are modeled. Indeed, the
new encoding takes into account only combinations of parameters values that
can lead to a valid schedule.

Finally, we report that ASP has been already successfully used for solving
hard combinatorial and application problems in several research areas, includ-
ing Artificial Intelligence [10,20], Bioinformatics [22,29], Hydroinformatics [23],
Databases [30] and also in industrial applications [2,19]. ASP encodings were
proposed for scheduling problems other than NSP: Incremental Scheduling Prob-
lem [16], where the goal is to assign jobs to devices such that their executions
do not overlap one another; and Team Building Problem [34], where the goal is
to allocate the available personnel of a seaport for serving the incoming ships.
However, to the best of our knowledge, the only ASP encodings for NSP are
those shown in Sect. 3.

6 Conclusion

In this paper an advanced ASP encoding for addressing a variant of NSP has been
proposed. The new encoding overcomes the limitations of the one proposed in
[21] by taking into account intrinsic properties of NSP and internal details of ASP
solvers. The resulting approach has been compared with the previous one and
with other declarative approaches on real setting provided by an Italian hospital.
Results clearly show that clingo executed on the new encoding outperforms all
alternatives, being able to solve all instances within 30 min, even with more than
100 nurses.
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12. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Heule, M.,
Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 405–422. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24318-4 29

13. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195

14. Burke, E.K., Causmaecker, P.D., Berghe, G.V., Landeghem, H.V.: The state of the
art of nurse rostering. J. Sched. 7(6), 441–499 (2004). https://doi.org/10.1023/B:
JOSH.0000046076.75950.0b

15. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F., Schaub, T.: ASP-Core-2 Input Language Format (2013).
https://www.mat.unical.it/aspcomp.2013/files/ASP-CORE-2.01c.pdf

16. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth
answer set programming competition. Artif. Intell. 231, 151–181 (2016). https://
doi.org/10.1016/j.artint.2015.09.008

17. Chan, P., Weil, G.: Cyclical staff scheduling using constraint logic programming. In:
Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 159–175. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44629-X 10

18. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems - a bibli-
ographic survey. Eur. J. Oper. Res. 151(3), 447–460 (2003). https://doi.org/10.
1016/S0377-2217(03)00021-3

19. Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., Schekotihin, K.: Com-
bining answer set programming and domain heuristics for solving hard industrial
problems (application paper). TPLP 16(5–6), 653–669 (2016). https://doi.org/10.
1017/S1471068416000284

20. Dodaro, C., Leone, N., Nardi, B., Ricca, F.: Allotment problem in travel industry:
a solution based on ASP. In: Cate, B., Mileo, A. (eds.) RR 2015. LNCS, vol. 9209,
pp. 77–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22002-4 7

https://doi.org/10.1017/S147106841600020X
https://doi.org/10.1017/S147106841600020X
https://doi.org/10.1007/978-3-319-23264-5_5
https://doi.org/10.1007/978-3-642-40564-8_7
https://doi.org/10.1007/978-3-319-40970-2_7
https://doi.org/10.1016/S0305-0548(03)00249-1
https://doi.org/10.1007/3-540-45402-0_39
https://doi.org/10.1016/j.ejor.2003.06.046
https://doi.org/10.1016/j.ejor.2003.06.046
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
https://www.mat.unical.it/aspcomp.2013/files/ASP-CORE-2.01c.pdf
https://doi.org/10.1016/j.artint.2015.09.008
https://doi.org/10.1016/j.artint.2015.09.008
https://doi.org/10.1007/3-540-44629-X_10
https://doi.org/10.1016/S0377-2217(03)00021-3
https://doi.org/10.1016/S0377-2217(03)00021-3
https://doi.org/10.1017/S1471068416000284
https://doi.org/10.1017/S1471068416000284
https://doi.org/10.1007/978-3-319-22002-4_7


482 M. Alviano et al.

21. Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: Bal-
duccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp.
301–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5 27
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