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Abstract
Answer Set Programming (ASP) is a well-known paradigm of declarative programming with

roots in logic programming and non-monotonic reasoning. Similar to other closely related problem-
solving technologies, such as SAT/SMT, QBF, Planning and Scheduling, advancements in ASP
solving are assessed in competition events. In this paper, we report about the design and results of
the Sixth ASP Competition, which was jointly organized by the University of Calabria (Italy), Aalto
University (Finland), and the University of Genoa (Italy), in affiliation with the 13th International
Conference on Logic Programming and Non-Monotonic Reasoning. This edition maintained some
of the design decisions introduced in 2014, e.g., the conception of sub-tracks, the scoring scheme,
and the adherence to a fixed modeling language in order to push the adoption of the ASP-Core-2
standard. On the other hand, it featured also some novelties, like a benchmark selection stage
classifying instances according to their empirical hardness, and a “Marathon” track where the top-
performing systems are given more time for solving hard benchmarks.

1. Introduction

Answer Set Programming (ASP) (Brewka, Eiter, & Truszczyński, 2011) is a well-known declarative
programming approach to knowledge representation and reasoning, with roots in the areas of logic
programming and non-monotonic reasoning (Gelfond & Lifschitz, 1991) as well as in close relation-
ships to other formalisms such as Propositional Satisfiability (SAT), Satisfiability Modulo Theories
(SMT), Quantified Boolean Formulas (QBF), Constraint Programming, Planning and Scheduling,
and many others. Thanks to its high readability and expressiveness, and the availability of efficient
solvers, many ASP-based applications have been presented in the literature (Erdem, Gelfond, &
Leone, 2016), in several areas ranging from Artificial Intelligence (Balduccini, Gelfond, Watson, &
Nogueira, 2001; Baral & Gelfond, 2000; Baral & Uyan, 2001; Brewka, Niemelä, & Syrjänen, 2002;
Garro, Palopoli, & Ricca, 2006; Nogueira, Balduccini, Gelfond, Watson, & Barry, 2001) to Knowl-
edge Management (Baral, 2003; Bardadym, 1996), Databases (Bertossi, Hunter, & Schaub, 2005;
Bravo & Bertossi, 2003; Leone, Gottlob, Rosati, Eiter, Faber, Fink, Greco, Ianni, Kałka, Lembo,
Lenzerini, Lio, Nowicki, Ruzzi, Staniszkis, & Terracina, 2005; Manna, Ricca, & Terracina, 2013,
2015), Phylogeny (Erdem, 2011; Koponen, Oikarinen, Janhunen, & Säilä, 2015), Bio-informatics
(Dworschak, Grell, Nikiforova, Schaub, & Selbig, 2008; Gebser, Schaub, Thiele, & Veber, 2011),
and industrial settings (Aschinger, Drescher, Friedrich, Gottlob, Jeavons, Ryabokon, & Thorstensen,
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2011; Ielpa, Iiritano, Leone, & Ricca, 2009; Ricca, Grasso, Alviano, Manna, Lio, Iiritano, & Leone,
2012).

The ASP Competition is a biennial event organized in odd years, with the exception of the Fifth
edition, which was held in 2014 in order to join the FLoC Olympic Games at the Vienna Summer of
Logic (VSL, 2014). In this paper, we report about the design and the results of the Sixth ASP Com-
petition (ASP-Comp, 2015), which was jointly organized by the University of Calabria (Italy), Aalto
University (Finland), and the University of Genoa (Italy), in affiliation with the 13th International
Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR, 2015). It maintained
some of the design decisions introduced in the previous edition, e.g., (i) the conception of sub-
tracks, based on the “complexity” of the encoded problems (as in past events), but also considering
the language features used in encodings (e.g., choice rules, aggregates, presence of queries), (ii) the
scoring scheme, which had been significantly simplified, and (iii) the adherence to a fixed model-
ing language in order to push the adoption of the ASP-Core-2 standard (Calimeri, Faber, Gebser,
Ianni, Kaminski, Krennwallner, Leone, Ricca, & Schaub, 2012). On the other hand, it introduced
novelties, some of them borrowed from past editions of the SAT and QBF Competitions, i.e., (i) a
benchmark selection stage classifying instances according to their empirical hardness, in order to
cover a broad range of scalability, and (ii) a “Marathon” track where the top-performing systems are
given more time for solving hard benchmarks, in order to assess their success to complete challeng-
ing instances and to compare their performance in the long run. While details on the previous ASP
Competition edition, held in 2014, are provided by Calimeri, Gebser, Maratea, and Ricca (2016),
the main new contributions of this paper can be summarized as follows:

• We give a comprehensive overview of common ASP solving approaches, which allows us to
thoroughly characterize current participant systems and analyze their relative performance.

• We introduce new benchmarks submitted to this ASP Competition edition, stemming from six
application-oriented domains, and report about the encodings provided by benchmark authors
as well as alternatives ones furnished for comparison.

• We describe the refined benchmark selection process applied for the first time, which consists
of a classification of available instances based on empirical hardness along with a balanced
selection accomplished by means of ASP.

• We present the results of the Sixth ASP Competition and analyze system performance with re-
spect to language features, computational tasks, reference systems from the previous edition,
effect of modeling, runtime limits, and sequential versus parallel processing.

• We relate the design novelties of this edition to competitions in neighboring areas and outline
potential directions for future ASP Competition editions as well as ASP research in general.

The rest of the paper is structured as follows. Section 2 recalls the ASP syntax and semantics,
relevant ASP program properties, and the ASP evaluation process. Then, Section 3 surveys main
approaches for solving ASP programs, and presents the competition participants and systems. Sec-
tion 4 introduces the setting of the Sixth ASP Competition, followed by Section 5 and 6 detailing
benchmark domains and the newly introduced instance selection process, respectively. Section 7
presents the winners of competition categories and sub-tracks, and also provides a detailed analysis
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of performance results. The paper concludes in Section 8 and 9 by discussing similarities and differ-
ences to related competition series on the design novelties introduced as well as some considerations
on future directions, respectively.

2. Background

In this section, we first review the syntax and semantics of ASP-Core-2 programs (Calimeri et al.,
2012). Then, we remind some program properties that will be useful in the benchmark classification.
Finally, we illustrate the typical two-step ASP evaluation process.

2.1 Syntax

Terms are composed of constants, variables, and functions. Dedicated arithmetic terms have the
form −(t) or (t � u) with � ∈ {+,−, ∗, /}. Terms and ≺ ∈ {<,≤,=, 6=, >,≥} are used to
construct three kinds of atoms:

• classical atoms p(t1, . . . , tn) and ¬p(t1, . . . , tn) for a predicate name p and terms t1, . . . , tn,

• built-in atoms t ≺ u for terms t and u, and

• aggregate atoms #agg{e1; . . . ; ek} ≺ u for #agg ∈ {#count,#sum,#max,#min},
where ei (1 ≤ i ≤ k) is an aggregate element t1, . . . , tn : l1, . . . , lm in which t1, . . . , tn
are terms and l1, . . . , lm are naf-literals, i.e., built-in atoms t ≺ u or expressions a and not a
for classical atoms a.

Note that not stands for default negation, and literals in general include naf-literals as well as a
and not a for aggregate atoms a.

ASP-Core-2 programs consist of rules, possibly accompanied by weak constraints or a query. A
rule r is of the form a1 | . . . | am ← b1, . . . , bn, where a1, . . . , am are classical atoms for m ≥ 0 and
b1, . . . , bn are literals for n ≥ 0. If m = 1 and n = 0, r is also called a fact, and r is a disjunctive
rule if m > 1. Moreover, choice rules have the form {e1; . . . ; ek} ≺ u ← b1, . . . , bn, where ei
(1 ≤ i ≤ k) is a choice element a : l1, . . . , lm in which a is a classical atom and l1, . . . , lm are
naf-literals. A weak constraint � b1, . . . , bn [w@l, t1, . . . , tm] associates literals b1, . . . , bn with a
weight w, a level l, and additional terms t1, . . . , tm for m ≥ 0. Finally, a? is a query for a classical
atom a. An atom, a rule, an ASP-Core-2 program, etc. is ground if it does not contain any variables
or arithmetic terms, and non-ground otherwise.

2.2 Semantics

An interpretation I is a consistent set of ground classical atoms, i.e., p(t1, . . . , tn) and
¬p(t1, . . . , tn) must not jointly occur in I for any predicate name p and terms t1, . . . , tn. The
satisfaction relation w.r.t. I is defined inductively by

• I |= a for a classical atom a, if a ∈ I , otherwise I |= not a;

• I |= t ≺ u, if t ≺ u according to the definition in Section 2.3 by Calimeri et al. (2012);

• I |= #agg{e1; . . . ; ek} ≺ u for #agg ∈ {#count,#sum,#max,#min}, if #agg(T ) ≺
u, where T =

⋃
1≤i≤k,ei=t1,...,tn:l1,...,lm

{(t1, . . . , tn) | I |= l1, . . . , I |= lm} is the (finite)
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set of tuples (t1, . . . , tn) for aggregate elements t1, . . . , tn : l1, . . . , lm whose naf-literals
l1, . . . , lm are satisfied w.r.t. I , and

– #count(T ) = |T |,
– #sum(T ) =

∑
(t1,...,tn)∈T with integer t1 t1,

– #max(T ) = max{t1 | (t1, . . . , tn) ∈ T}, and

– #min(T ) = min{t1 | (t1, . . . , tn) ∈ T},1

while I |= not#agg{e1; . . . ; ek} ≺ u otherwise;

• I |= {e1; . . . ; ek} ≺ u, if |
⋃

1≤i≤k,ei=a:l1,...,lm
{a ∈ I | I |= l1, . . . , I |= lm}| ≺ u;

• I |= a1 | . . . | am for classical atoms a1, . . . , am, if {a1, . . . , am} ∩ I 6= ∅.

A rule of the form A ← b1, . . . , bn is satisfied w.r.t. I , if I |= b1, . . . , I |= bn implies I |= A.
Moreover, I is a model of a ground ASP-Core-2 program P , if every rule in P is satisfied w.r.t. I .
Following (Faber, Leone, & Pfeifer, 2004, 2011) in extending the original notion by Gelfond and
Lifschitz (1991) to aggregates, the reduct P I of P w.r.t. I is obtained in two steps:

1. Delete all rules A← b1, . . . , bi, . . . , bn from P such that I 6|= bi.

2. Replace remaining choice rules {e1; . . . ; a : l1, . . . , lm; . . . ; ek} ≺ u ← b1, . . . , bn by rules
a← b1, . . . , bn, l1, . . . , lm for choice elements a : l1, . . . , lm such that a ∈ I and I |= l1, . . . ,
I |= lm.

Then, a model I of P is an answer set of P , if I is a ⊆-minimal model of P I . That is, all rules of P
have to be satisfied w.r.t. I , and the (true) atoms in I must be “derivable” from the rules in P I . A
ground query a? holds for P , if a belongs to every answer set of P . Moreover, let P I

l denote the
sum of integers w over all distinct tuples (w, t1, . . . , tm) such that P contains some weak constraint
� b1, . . . , bn [w@l, t1, . . . , tm] with I |= b1, . . . , I |= bn. An answer set I of P is optimal, if there
is no answer set J of P such that P J

l < P I
l for an integer l and P J

l′ = P I
l′ for all integers l′ > l.

The semantics of a non-ground program P , possibly including arithmetic terms, is given by the
answer sets of its ground instantiation. To this end, variables in a rule or weak constraint r are
distinguished into global variables, appearing outside of aggregate and choice elements in r, while
the remaining variables are local. A ground instance of r is obtained in two steps:

1. Apply a global substitution σ that maps the global variables in r to ground terms yielding a
rule rσ without global variables.

2. Replace any aggregate or choice element e in rσ by the collection of all aggregate or choice
elements eθ obtainable by applying local substitutions θ that map the local variables in e to
ground terms.

For example, applying the global substitution {X 7→ 1} to the rule {hc(X,Y ) : arc(X,Y )} = 1←
node(X) gives {hc(1, Y ) : arc(1, Y )} = 1 ← node(1). Mapping the local variable Y to the
nodes 1, 2, 3, and 4 then leads to the ground instance {hc(1, 1) : arc(1, 1); hc(1, 2) : arc(1, 2);

1By the convention in Section 2.4 by Calimeri et al. (2012), #max(∅) < u and #min(∅) > u hold for every term u,
so that all aggregates #agg(T ) ≺ u can be evaluated w.r.t. any interpretation I .
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hc(1, 3) : arc(1, 3); hc(1, 4) : arc(1, 4)} = 1 ← node(1). Note that applicable substitutions σ
and θ are required to be well-formed (see Calimeri et al., 2012), that is, the arithmetic evaluation of
arithmetic terms that do not contain variables must be well-defined. Global substitutions σ violating
this condition cannot be used to obtain rσ from a rule r, while a respective local substitution θ does
not yield an instance eθ of an aggregate or choice element e.

The ground instantiation of a program P , denoted by grnd(P ), is the collection of all ground
instances of rules or weak constraints in P obtainable by applying well-formed substitutions and
evaluating arithmetic terms. Then, the (optimal) answer sets of P are the (optimal) answer sets of
grnd(P ), possibly subject to a query in P , where the answer to a non-ground query a? consists
of all ground instances of atom a that belong to every answer set of P . Taking the prerequisites
of instantiation procedures like “intelligent grounding” (Faber, Leone, & Perri, 2012) into account,
non-ground ASP-Core-2 programs have to comply with additional requirements (Calimeri et al.,
2012), including in particular finiteness of answer sets and safety. In a nutshell, these conditions
require the availability of (positive) occurrences of variables within the bodies of rules as well as
aggregate or choice elements in order to restrict the relevant substitutions and enable grounders to
compute a (finite) ground program, which is typically much smaller yet equivalent to grnd(P ).

2.3 Program Properties

In the following, we recall some program properties that are relevant for categorizing ASP programs
and corresponding solving approaches.

2.3.1 TIGHTNESS

Given a ground program P , the positive atom dependency graph of P contains the atoms in P as
nodes and arcs from the head atoms a1, . . . , am of a1 | . . . | am ← b1, . . . , bn or a in {e1; . . . ; a :
l1, . . . , lm; . . . ; ek} ≺ u← b1, . . . , bn to the classical atoms among b1, . . . , bn as well as l1, . . . , lm.
We say that P is non-tight if some strongly connected component in its positive atom dependency
graph contains an arc, and tight otherwise (Fages, 1994; Erdem & Lifschitz, 2003). For a tight
program P , answer sets are in one-to-one correspondence with the propositional models of P ’s
completion (Clark, 1978). In general, this property does not hold for non-tight programs. Note that
our account of tightness could disregard aggregate atoms, as ASP-Core-2 restrictions on their usage
(see Calimeri et al., 2012) do not permit circular (positive) dependencies through aggregates.

2.3.2 HEAD-CYCLE FREENESS

Depending on the class of programs under consideration, verifying ⊆-minimality w.r.t. P I can be
tractable or computationally complex (Eiter & Gottlob, 1995). The syntactic property of head-
cycle-freeness (Ben-Eliyahu & Dechter, 1994) allows for distinguishing such cases based on the
positive atom dependency graph. A ground program P is called head-cycle-free (HCF), if there is no
disjunctive rule a1 | . . . | am ← b1, . . . , bn in P such that two or more of the head atoms a1, . . . , am
share some strongly connected component in the positive atom dependency graph of P ; otherwise,
P is non-HCF. Note that, if P is non-HCF, it is also non-tight, but not necessarily vice versa. The
check whether a model is an answer set of P is tractable for HCF programs but coNP-complete for
non-HCF programs.
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(a) A directed graph
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(b) Fact representation of the graph in (a)

arc(1, 2)← cost(1, 2, 3)← node(1)←
arc(2, 1)← cost(2, 1, 2)← node(2)←
arc(2, 3)← cost(2, 3, 1)← node(3)←
arc(3, 2)← cost(3, 2, 2)← node(4)←
arc(3, 4)← cost(3, 4, 2)←
arc(4, 3)← cost(4, 3, 2)←
arc(1, 4)← cost(1, 4, 1)←
arc(4, 1)← cost(4, 1, 2)←

Figure 1: An example graph with arc costs that constitutes a TSP instance

2.4 Evaluation Process

Given a non-ground ASP program P , the computation of answer sets typically consists of two steps:

1. Grounding takes a non-ground ASP program as input and produces a ground program that has
the same answer sets as the input program. Grounders, i.e., tools for grounding, implement
techniques for generating ground programs that are often much smaller than the theoretical
instantiation grnd(P ).

2. Solving takes a ground ASP program as input and computes one or more answer sets, which
coincide with answer sets of the original non-ground program P .

To give some ideas how these steps work, let us consider the well-known Traveling Salesperson
Problem (TSP). The directed graph with arc costs displayed in Figure 1(a) constitutes a particular
problem instance. A corresponding representation in terms of ASP facts is shown in Figure 1(b),
making use of the predicates arc/2, cost/3, and node/1 (determined by their names and arities)
to specify arcs, their associated costs, and the nodes of the graph, respectively. Such facts are
combined with a general encoding of TSP, which formulates conditions on (optimal) solutions for
any TSP instance or set of facts, respectively. The following encoding is written in the ASP-Core-2
language:

{hc(X,Y ) : arc(X,Y )} = 1 ← node(X) (1)

← node(Y ),#count{X : hc(X,Y )} 6= 1 (2)

reach(X) ← #min{Y : node(Y )} = X (3)

reach(Y ) ← reach(X), hc(X,Y ) (4)

← node(X),not reach(X) (5)

� hc(X,Y ), cost(X,Y,C) [C@1, X, Y ] (6)

Rules (1) and (2) express that, for every node, exactly one outgoing and one incoming arc must be
part of a Hamiltonian cycle, i.e., a cycle that visits each node exactly once, and atoms over hc/2
represent the selected (outgoing) arcs. Rule (3) picks a starting node for the cycle, taken to be the
lexicographically smallest one by using a #min aggregate. Rule (4) derives further nodes reachable
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Rule (1)arc/2

node/1

hc/2

Rule (2) Rule (3)

Rule (4)

reach/1

Weak Constraint (6)cost/3

Rule (5)

Figure 2: Predicate-rule dependency graph for the TSP encoding with rules/weak constraint (1)–(6)

via selected arcs, and rule (5), whose empty head stands for the constant⊥, denies isolated subcycles
(indicated by a node that is not reachable). Finally, the objective of finding a Hamiltonian cycle with
minimum cost is formulated by weak constraint (6), which penalizes any selected arc by its cost.

Given the facts specifying an instance and an encoding with (universally quantified) variables,
the latter denoted by strings starting with uppercase letters, the grounding step consists of substitut-
ing variables by variable-free terms to obtain a ground program that has the same answer sets as the
non-ground input. Virtually all ASP grounders exploit dependencies between non-ground rules, as
given by the predicate-rule dependency graph in Figure 2 for the above TSP encoding, to schedule
the order in which they process rules (and other constructs). The basic idea is that rules are relevant
to the instantiation of another rule if instances of their head atoms may occur as preconditions in
instances of the other rule. Hence, grounders process non-ground rules in topological order and use
information about the head atoms of already generated ground instances for performing simplifi-
cations, still guaranteeing equivalence to the input program. For instance, facts over the predicate
arc/2 can be used to restrict atoms over hc/2 in instances of rule (1) to pairs of nodes that are
indeed connected by an arc, while any remaining pairs are disregarded, so that only a subset of the
combinatorially feasible ground atoms over hc/2 is produced in practice. In fact, restricting atoms
appearing in ground instances to head atoms is the primary means of ASP grounders for computing
a small ground program that is equivalent to grnd(P ), given that underivable atoms must be false.

Regarding the graph in Figure 2, the mutual dependency between rule (4) and the predicate
reach/1 indicates that the rule may produce head atoms that can in turn give rise to further ground
instances. Existing grounding approaches differ mostly in the way they treat such positive recur-
sion. Grounders performing rule-wise instantiation, including LPARSE (Syrjänen, 2001) and the
first two versions of GRINGO (Gebser, Schaub, & Thiele, 2007), require that each variable in a rule
occurs within some positive precondition whose predicate is topologically preceding the rule. For
rule (4), this requirement is fulfilled in view of hc(X,Y ) in the body, and head atoms over hc/2
are determined before instantiating rule (4) relative to them. (The conditions required by LPARSE

are slightly stricter, as each variable must be bound by a so-called domain predicate that can be de-
terministically evaluated during grounding. For instance, adding arc(X,Y ) to the body establishes
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this condition for rule (4).) Unlike that, the DLV grounder (Leone, Pfeifer, Faber, Eiter, Gottlob,
Perri, & Scarcello, 2006; Faber et al., 2012) and recent versions of GRINGO (Gebser, Kaminski,
König, & Schaub, 2011a; Gebser, Kaminski, & Schaub, 2015) are based on semi-naive bottom-up
evaluation (cf. Abiteboul, Hull, & Vianu, 1995), only requiring safety, i.e., some occurrence in a
positive precondition for each variable, to iteratively generate ground instances of recursive rules
until no new head atoms are produced anymore.

To see the difference between rule-wise and semi-naive approaches, assume that the arcs from
node 1 to 4 and from node 2 to 3 were not included in Figure 1. Then, the nodes 3 and 4 would be dis-
connected from the starting node 1 determined via rule (3). Given reach(1), semi-naive bottom-up
evaluation traces the available arcs, expressed in terms of the predicate hc/2, to iteratively produce
instances of rule (4), whose head atoms may identify further reachable nodes. However, in view of
the omitted edges, only two rule instances can be generated before this process stops:

reach(2) ← reach(1), hc(1, 2)

reach(1) ← reach(2), hc(2, 1)

That is, the atoms reach(3) and reach(4) are found underivable during grounding, and rule instances
that would include them as positive preconditions are not produced. Rule-wise instantiation, on the
other hand, aims to process rule (4) in a single pass, while making sure that all possibly applicable
ground instances are generated. Hence, the partial information about (un)derivable atoms over
reach/1 cannot be used for simplifications, and merely the arcs indicated by hc/2 are available to
restrict ground instances accordingly. In addition to the two rule instances above, this leads to:

reach(1) ← reach(4), hc(4, 1)

reach(2) ← reach(3), hc(3, 2)

reach(3) ← reach(4), hc(4, 3)

reach(4) ← reach(3), hc(3, 4)

Observe that rule-wise instantiation results in one ground instance per arc, as given by hc/2, and
thus constitutes a combinatorial instantiation procedure w.r.t. predicates whose rules have already
been processed. Although the requirement of non-recursive positive dependencies for instantiation
does not make any difference for many problem encodings, there are also meaningful encodings
that cannot (realistically) be processed in a strictly rule-wise fashion. For instance, the following
(positive) program can be used to reverse a list, given by a fact like list(f(d, f(o, f(g,nil)))):

traverse(L,nil) ← list(L)

traverse(L, f(X,R)) ← traverse(f(X,L), R)

reverse(R) ← traverse(nil , R)

While this encoding can be processed and even be evaluated to ground facts by means of semi-naive
bottom-up evaluation, it requires recursion at the first-order level to deal with inputs of arbitrary
length. In such a case, rule-wise grounding approaches reach their limits and are not viable anymore.
As a consequence, rule-wise instantiation came out of fashion, and state-of-the-art ASP grounders
like DLV and GRINGO harness semi-naive bottom-up evaluation.

Regarding ASP solving, common systems focus on ground programs. That is, the search for
(optimal) answer sets amounts to Boolean constraint solving, as pioneered by the classical Davis-
Putnam-Logemann-Loveland (DPLL) procedure (Davis & Putnam, 1960; Davis, Logemann, &
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Loveland, 1962) and modern Conflict-Driven Clause Learning (CDCL) (Marques-Silva & Sakallah,
1999; Zhang, Madigan, Moskewicz, & Malik, 2001) in the area of SAT. In fact, ASP solvers are
based on similar backtracking procedures, yet refined to the semantics of ASP programs. This
requires that (positive) recursion is addressed at the ground level. For example, reachability in
the TSP encoding in (1)–(6) must trace back to a unique starting node, such as 1 for the graph in
Figure 1. As a consequence, atoms representing isolated subcycles, e.g., one between the nodes 1
and 4 and another between the nodes 2 and 3, are not acceptable within answer sets, and ASP
solvers implement means to detect and handle such situations. Respective approaches, especially
those implemented by participant systems in the competition, are surveyed in the next section.

3. ASP Solving Approaches and Participants

This section gives an overview of principal approaches to solving ground ASP programs (Kauf-
mann, Leone, Perri, & Schaub, 2016), guided by their historical evolution (Lierler, Maratea, &
Ricca, 2016). Then, we particularly focus on the competition participants and systems.

3.1 ASP Solving Approaches

The approaches summarized below have in common that they rely on a grounding step, after which
native and translation-based methods constitute the two main approaches to ASP solving. Moreover,
portfolios and/or multi-processing can serve as means to blend or parallelize such basic techniques.

3.1.1 NATIVE APPROACHES

The first full-fledged ASP solvers, DLV (Leone et al., 2006) and SMODELS (Simons, Niemelä, &
Soininen, 2002), were pioneered in the late ’90s and pursued “native” approaches based on the
classical DPLL procedure. While DPLL augments basic backtracking search with unit propagation
on clauses, DLV and SMODELS adjust such techniques to ASP programs. In particular, this includes
dedicated inference mechanisms to detect and falsify so-called unfounded sets (Van Gelder, Ross,
& Schlipf, 1991; Leone, Rullo, & Scarcello, 1997), which particularly address positive recursion in
case of non-tight programs. Later on, DLV was extended with backjumping techniques (Ricca, Faber,
& Leone, 2006), in place of basic backtracking, and look-back heuristics (Maratea, Ricca, Faber,
& Leone, 2008) that take advantage of the backjumping process (Prosser, 1993). Similarly, the
SMODELSCC solver (Ward & Schlipf, 2004) extended the algorithm of SMODELS with backjumping,
while further adding mechanisms for conflict-driven clause learning, as pioneered by CDCL in the
area of SAT.

Going beyond DPLL-based solvers (and their extensions), the second generation of native ASP
solvers, including CLASP (Gebser, Kaufmann, & Schaub, 2012) and WASP (Alviano, Dodaro, Leone,
& Ricca, 2015a), integrates CDCL-style search with propagation principles dedicated to ASP pro-
grams. Implementation features shared with modern SAT solvers include, e.g., watched literals
(Moskewicz, Madigan, Zhao, Zhang, & Malik, 2001), activity-based heuristics (Biere & Fröhlich,
2015), and rapid restarts (Huang, 2007). Such basic features are accompanied by techniques for
dealing with unfounded sets, aggregates, and optimization in order to cover the range of modeling
concepts and computational tasks available in ASP (Kaufmann et al., 2016). While the IDP system
(Bruynooghe, Blockeel, Bogaerts, De Cat, De Pooter, Jansen, Labarre, Ramon, Denecker, & Ver-
wer, 2015) has been conceived as a model generator for first-order theories extended with inductive
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definitions, it has much in common with the aforementioned ASP grounders and solvers. That is, it
includes a grounder, GIDL (Wittocx, Mariën, & Denecker, 2008), a solver, MINISATID (Mariën, Wit-
tocx, Denecker, & Bruynooghe, 2008), and handles (positive) recursion among atoms in inductive
definitions.

For solving non-HCF programs P , where checking whether a model of P is⊆-minimal w.r.t. P I

is in general coNP-complete, native ASP solvers employ a two-level architecture in which DPLL-
or CDCL-style search is used for (i) generating candidate models of P and (ii) checking for the
existence of smaller counter-models of P I . To this end, the propagation principles of the first
respective solver, DLV, are capable of handling disjunctive rules (Calimeri, Faber, Leone, & Pfeifer,
2006), while the check for counter-models is delegated to a SAT solver (Koch, Leone, & Pfeifer,
2003; Pfeifer, 2004). The GNT system (Janhunen, Niemelä, Seipel, Simons, & You, 2006) pursues
a corresponding approach by casting the tasks of generating and checking candidate models to
ASP programs processed with separate instances of SMODELS. Similarly, CLASP (or its nowadays
deprecated sibling CLASPD) and WASP couple complementary instances of their CDCL-style search
engines to perform model generation or checking, respectively. Notably, both CLASP and WASP

internally encode the checking task for arbitrary candidate models (Gebser, Kaufmann, & Schaub,
2013; Alviano, Dodaro, & Ricca, 2015), and then perform assumption-based reasoning (Eén &
Sörensson, 2003) to check the generated candidates.

3.1.2 TRANSLATION-BASED APPROACHES

Given that answer sets of a tight program P coincide with propositional models of P ’s completion
(a theory in which rules sharing a head atom are taken as definition for the atom), the answer sets of
tight programs can be computed by running SAT solvers. In particular, the first version (Babovich
& Lifschitz, 2003) of the SAT-based solver CMODELS (Giunchiglia, Lierler, & Maratea, 2006) was
based on this correspondence. As a generalization to the non-tight case, Lin and Zhao (2004) pro-
posed loop formulas whose addition to a program’s completion establishes correspondence between
propositional models and answer sets. Since the number of required loop formulas can be exponen-
tial (Lifschitz & Razborov, 2006), the SAT-based solvers ASSAT (Lin & Zhao, 2004) and CMODELS,
from its second version on, add loop formulas incrementally to eliminate models that are no answer
sets. In fact, loop formulas deny unfounded sets (Lee, 2005), which are also handled by native
systems, so that there is a close proximity between native and SAT-based solvers utilizing loop for-
mulas, and both kinds of systems are based on similar search procedures. This also carries forward
to non-HCF programs (Lee & Lifschitz, 2003), where the third version (Lierler, 2005) of CMODELS

utilizes SAT solvers for generating and checking candidate models.

Complementing SAT-based solvers relying on loop formulas, the translation by LP2SAT (Jan-
hunen, 2006; Janhunen & Niemelä, 2011) is based on so-called level rankings (Niemelä, 2008) to
check ⊆-minimality w.r.t. the reduct of an HCF program in the non-tight case. Such level rankings
are encoded a priori, rather than incrementally, and expressing them in SAT requires sub-quadratic
instead of exponential space. Technically, the tool LP2ACYC (Gebser, Janhunen, & Rintanen, 2014a)
instruments an ASP program such that propositional models of its completion subject to an acyclic-
ity condition match the answer sets of the program. The required acyclicity can then be established
via level rankings, where linear representations are feasible in several target formalisms, including
ASP, Pseudo-Boolean Constraints/Optimization, or SAT Modulo Acyclicity (Bomanson, Gebser,
Janhunen, Kaufmann, & Schaub, 2016; Gebser, Janhunen, & Rintanen, 2014b), SMT with Differ-
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ence or Bit-Vector Logic (Janhunen, Niemelä, & Sevalnev, 2009; Nguyen, Janhunen, & Niemelä,
2011), and Mixed Integer Programming (Liu, Janhunen, & Niemelä, 2012). In fact, the translation-
based systems participating in the Sixth ASP Competition (see Section 3.2) are based on this infras-
tructure, while SAT-based solvers utilizing loop formulas have come out of fashion in view of the
proximity to the basic search procedures of native ASP solvers.

3.1.3 PORTFOLIO APPROACHES

Automated algorithm selection techniques (Rice, 1976) aim at robustness across a range of heteroge-
neous inputs. Inspired by SATZILLA (Xu, Hutter, Hoos, & Leyton-Brown, 2008) in the area of SAT,
the CLASPFOLIO system (Gebser, Kaminski, Kaufmann, Schaub, Schneider, & Ziller, 2011a; Hoos,
Lindauer, & Schaub, 2014) uses support vector regression to learn scoring functions approximating
the performance of several CLASP variants in a training phase. Given an instance, CLASPFOLIO then
extracts features and evaluates such functions in order to pick the most promising CLASP variant for
solving the instance. This algorithm selection approach was particularly successful in the Third ASP
Competition (Calimeri, Ianni, & Ricca, 2014), held in 2011, where CLASPFOLIO won the first place
in the NP category and the second place overall (without participating in the Beyond-NP category).
The ME-ASP system (Maratea, Pulina, & Ricca, 2014, 2015b) goes beyond the solver-specific set-
ting of CLASPFOLIO and chooses among different grounders as well as solvers. Grounder selection
traces back to Maratea, Pulina, and Ricca (2013), and similar to the QBF solver AQME (Pulina &
Tacchella, 2009), ME-ASP uses a classification method for performance prediction. Notably, “bad”
classifications can be treated by adding respective instances to the training set of ME-ASP (Maratea,
Pulina, & Ricca, 2015a), which enables an adjustment to new problems or instances thereof.

In contrast to selecting a single solving strategy from a portfolio, the ASPEED system (Hoos,
Kaminski, Lindauer, & Schaub, 2015) indeed runs different solvers, sequentially or in parallel,
as successfully performed by PPFOLIO (Roussel, 2011) in the 2011 SAT Competition (SAT-Comp,
2011). Given a benchmark set, a fixed time limit per instance, and performance results for candidate
solvers, the idea of ASPEED is to assign time budgets to the solvers such that a maximum number
of instances can be completed within the allotted time. In other words, the goal is to divide the
total runtime per computing core among solvers such that the number of instances on which at least
one solver successfully completes its run is maximized. The portfolio then consists of all solvers
assigned a non-zero time budget along with a schedule which solvers to run on the same computing
core. As calculating such an optimal portfolio for a benchmark set is an Optimization problem, it can
be addressed by means of ASP, and ASPEED takes advantage of corresponding problem encodings.

3.1.4 MULTI-PROCESSING SUPPORT

The aforementioned ASPEED system allows for scheduling solver runs on multiple computing cores.
Moreover, translation-based systems may readily exploit parallelism provided by respective back-
end solvers, as done in the 2013 and 2014 editions of the ASP Competition. We below further focus
on ASP systems with dedicated multi-core/processor support.

On the one hand, parallel grounding techniques were developed as extensions of LPARSE (Bal-
duccini, Pontelli, El-Khatib, & Le, 2005) and the DLV grounder (Perri, Ricca, & Sirianni, 2013).
The former approach was designed for distributing LPARSE incarnations, working in local memory,
on Beowulf clusters, while the latter aims at shared-memory parallelism on multi-core/processor
machines. In particular, the parallel version of the DLV grounder allows for concurrent instantiation
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Table 1: Overview of submitted systems along with categories, sub-tracks, and query support

System Category ST #1 ST #2 ST #3 ST #4 Query

LP2NORMAL+CLASP SP
√ √ √ √

LP2ACYCASP+CLASP SP
√ √ √

LP2ACYCPB+CLASP SP
√ √ √

LP2ACYCSAT+CLASP SP
√ √ √

LP2ACYCSAT+GLUCOSE SP
√ √ √

LP2MIP SP
√ √ √

LP2MIP-MT MP
√ √ √

LP2SAT+LINGELING SP
√ √

LP2SAT+PLINGELING-MT MP
√ √

WASP+DLV SP
√ √ √ √ √

WASP SP
√ √ √ √

(
√

)
JWASP SP

√ √
(
√

)
ME-ASP SP

√ √ √ √ √

at several levels, i.e., regarding the strongly connected components in a predicate-rule dependency
graph (cf. Section 2.4), distinct rules, or even the instances of a rule. This is accompanied by tech-
niques for granularity control and dynamic load balancing to achieve an efficient parallelization.

On the other hand, parallel solving techniques concern the search for answer sets at the ground
level. The first approaches in this direction (Finkel, Marek, Moore, & Truszczyński, 2001; Pontelli,
Balduccini, & Bermudez, 2003; Balduccini et al., 2005; Gressmann, Janhunen, Mercer, Schaub,
Thiele, & Tichy, 2006) were based on SMODELS and divided its DPLL-style search among cluster
machines or multiple threads, primarily using guiding paths (Zhang, Bonacina, & Hsiang, 1996), pi-
oneered in the area of SAT, to process separate subproblems in parallel. Cluster and multi-threaded
versions of the CDCL-based solver CLASP (Gebser, Kaminski, Kaufmann, Schaub, & Schnor,
2011b; Gebser, Kaufmann, & Schaub, 2012), however, turned out to be particularly successful
when applying a parallel portfolio of CLASP variants to a common problem. Recent versions of
CLASP (Gebser, Kaminski, Kaufmann, Romero, & Schaub, 2015) further extend the multi-threaded
search infrastructure to non-HCF programs (Gebser et al., 2013). Moreover, Dovier, Formisano,
Pontelli, and Vella (2016) provide an approach to parallel CDCL-style ASP solving utilizing GPUs.

3.2 Participants and Systems

Table 1 surveys the thirteen systems submitted to the Fifth ASP Competition along with their cate-
gories, sub-tracks, and whether they participate on Query problems (cf. Sections 4 and 5). We below
briefly summarize the approaches of these systems, grouped by their respective participant teams.

3.2.1 AALTO TEAM

The Aalto team from Aalto University submitted nine systems, all using GRINGO for grounding
(and not participating on Query problems due to lacking support by GRINGO), but then apply dif-
ferent preprocessing/translation techniques and back-end solvers at the ground level. The first sys-
tem, LP2NORMAL+CLASP, represents a native approach based on CLASP, where the preprocessor
LP2NORMAL (Bomanson, Gebser, & Janhunen, 2014) is run beforehand to “normalize” aggregates
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of small to medium size, i.e., aggregates like #count and #sum are replaced by basic subprograms
without such constructs when the resulting size increase is acceptable according to heuristics.

The other eight systems utilize translations based on the tool LP2ACYC (Gebser et al., 2014a;
Bomanson et al., 2016), instrumenting ASP programs with acyclicity conditions to establish cor-
respondence between the propositional models of a program’s completion and answer sets in
the non-tight case (cf. Section 3.1). As such equivalence is restricted to HCF programs, the
translation-based systems do not participate in the Unrestricted sub-track (#4). However, the back-
end solvers (indicated after “+” or the Mixed Integer Programming solver CPLEX in case of LP2MIP)
of LP2ACYCASP+CLASP, LP2ACYCPB+CLASP, LP2ACYCSAT+CLASP, LP2ACYCSAT+GLUCOSE, LP2MIP,
and LP2MIP-MT work with linear representations of acyclicity in terms of ASP, Pseudo-Boolean
Constraints/Optimization, or (Max)SAT Modulo Acyclicity and numerical variables for level rank-
ings when using Mixed Integer Programming. Their back-end solvers also support optimization, so
that these systems can compete in the Optimization sub-track (#3). Moreover, LP2SAT+LINGELING

and LP2SAT+PLINGELING-MT rely on a sub-quadratic representation of level rankings (for non-tight
programs) in plain SAT without optimization, so that they participate in the Basic and Advanced
Decision sub-tracks (#1 and #2) only. All systems but those indicated by “MT” run in the single-pro-
cessor (SP) category, while LP2MIP-MT and LP2SAT+PLINGELING-MT exploit multi-threaded versions
of their back-end solvers CPLEX or LINGELING, respectively, in the multi-processor (MP) category.

3.2.2 WASP TEAM

The Wasp team from the University of Calabria submitted two systems based on WASP, namely
WASP+DLV and WASP, as well as the proof-of-concept prototype JWASP, written in Java. The hy-
brid WASP+DLV system relies on GRINGO for grounding all but Query problems, where the latter are
handled by means of DLV whose dedicated support for Query answering (Alviano, Faber, Greco, &
Leone, 2012) allows WASP+DLV to compete in all domains. Unlike that, the WASP system exploits
GRINGO also on Query problems, utilizing simple syntactic means along with Query answering
functionalities at the ground level (Alviano, Dodaro, & Ricca, 2014),2 which is still a drawback
in data-driven domains (cf. Section 5). The prototype system JWASP extends the (Max)SAT solver
SAT4J (Le Berre & Parrain, 2010) with ASP-specific features for dealing with aggregates and (pos-
itive) recursion. This enables JWASP to participate in the Basic and Advanced Decision as well as
the Optimization sub-tracks (#1, #2, and #3), like WASP addressing Query answering at the ground
level. All three systems by the Wasp team run in the SP category.

3.2.3 ME-ASP TEAM

The ME-ASP team from the University of Genoa, the University of Sassari, and the University of
Calabria submitted the multi-engine system ME-ASP. Its approach comprises the selection among
grounders, namely GRINGO and DLV, as well as solvers (cf. Section 3.1) based on first-order or
propositional features of an input program, respectively. The pool of ASP systems ME-ASP chooses
from is built of submissions to the Fifth ASP Competition, held in 2014, including DLV, CLASP,
WASP, and translation-based solvers. This range of back-ends allows ME-ASP to participate in all
sub-tracks and domains, running in the SP category. Notably, ME-ASP is a new entrant to the ASP

2Rather than passing it to GRINGO, a query is intercepted, and the WASP solver is then run with options activating
dedicated techniques for cautious reasoning as well as output filtering based on the predicate name appearing in the query.
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Competition series and represents a novel portfolio approach, reviving and extending the idea of the
CLASPFOLIO system whose last participation was in 2013.

Finally, it is worth mentioning that, to assess the improvements in ASP solving, we also consider
the CLASP version of 2014, which won the first place in accumulation over sub-tracks, for reference.

4. Format of the Sixth ASP Competition

As outlined in Section 1, the Sixth ASP Competition maintains design decisions made in the 2014
edition, but also adds some novelties. First, the scoring scheme, which was significantly simplified
in 2014 (cf. Calimeri et al., 2016), remains unchanged. We also group benchmarks in sub-tracks
based on language features rather than inherent computational complexity, as in the previous edition.
In the following, we describe the general format of the Sixth ASP Competition along with categories
and sub-tracks, review the scoring scheme, and provide details on the competition platform.

4.1 Competition Format

The competition is open to solving systems based on the ASP-Core-2 input format. However, fol-
lowing the positive experiences of 2014, we also organized an on-site modeling event at LPNMR
2015, in the spirit of Prolog Programming Contests (Prolog-Comp). Regarding benchmarks, the
Sixth ASP Competition featured a call for new domains, whose specific goal was to attract bench-
marks (i) arising from applications of practical impact and/or (ii) that are “ASP-focused” by relying
on non-tight problem encodings. The new domains together with those from the previous edition
form the available benchmark collection (see Section 5). The whole benchmark set was evaluated
during a benchmark selection stage, classifying instances according to their empirical hardness for
covering a broad range of scalability in the competition (see Section 6).

4.1.1 COMPETITION CATEGORIES

The competition consists of two categories, depending on the computational resources made avail-
able to participant systems:

• SP: One processor (core) allowed;

• MP: Multiple processors (cores) allowed.

While the SP category aims at sequential systems, parallelism can be exploited in the MP category.

4.1.2 COMPETITION TRACKS

Both categories feature two tracks, called Regular and Marathon track. The idea of the Marathon
track, inspired by the 2006 QBF Competition (QBF-Comp, 2006), is to assess the performance on
challenging instances in the long run by granting more time to the top-performing systems of the
Regular track. In view of just two systems in the MP category (cf. Section 3.2), we decided to skip
the Marathon track in the MP category and ran both tracks in the SP category only.

4.1.3 COMPETITION SUB-TRACKS

The categories and tracks of the competition are structured into four sub-tracks each:
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• Sub-track #1: Basic Decision. Encodings: non-disjunctive and non-choice rules (also called
normal rules) with classical and built-in atoms only.

• Sub-track #2: Advanced Decision. Encodings: full language with queries, excepting weak
constraints and non-HCF disjunction.

• Sub-track #3: Optimization. Encodings: full language with queries and weak constraints,
excepting non-HCF disjunction.

• Sub-track #4: Unrestricted. Encodings: full language.

A benchmark domain then belongs to the upmost sub-track its problem encoding is compatible with.

4.2 Scoring Scheme

We adopt the scoring scheme of the Fifth ASP Competition. In particular, it complies with the
following considerations:

• All domains are weighted equally.

• If a system outputs an incorrect answer to some instance in a domain, this invalidates its score
for the domain, even if other instances can be solved correctly.

• In case of Optimization problems, the scoring takes solution quality into account.

In general, 100 points can be earned in each benchmark domain. The total score of a system is the
sum of points over all domains.

4.2.1 SCORING DETAILS

For Decision and Query problems, the score S(D) of a system S in a domain D featuring N
instances is calculated as

S(D) =
NS ∗ 100

N

whereNS is the number of instances successfully solved within the allotted time and memory limits.
For Optimization problems, systems are ranked by solution quality, following the approach of

the MANCOOSI International Solver Competition (MISC-Comp). GivenM participant systems, the
score S(D, I) of a system S for an instance I in a domain D featuring N instances is calculated as

S(D, I) =
MS(I) ∗ 100
M ∗N

where MS(I) is

• 0, if S did neither produce a solution nor report unsatisfiability, or otherwise

• the number of participant systems that did not produce any strictly better solution than S,
where a confirmed optimum solution is considered strictly better than an unconfirmed one.

The score S(D) of system S in domain D is then taken as the sum of scores S(D, I) over the N
instances I in D. Note that, as with Decision and Query problems, S(D) can range from 0 to 100.
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4.2.2 SYSTEM RANKING

In each track and sub-track of the same category, the participant systems are ranked by their sums
of scores over all domains, in decreasing order. In case of a draw in terms of the sum of scores, the
sums of runtimes over all instances are taken into account for tie-breaking.

4.3 Competition Platform

The competition is run on a Debian Linux server (64bit kernel), equipped with 2.30GHz Intel Xeon
E5-4610 v2 Processors and 128GB RAM. Time and memory for each run are limited to 20 minutes
wall-clock time and 12GB, respectively. Participant systems can exploit up to eight cores (16 virtual
CPUs, given that Intel Hyperthreading technology is enabled) in the MP category, while the execu-
tion is constrained to one core in the SP category. The system execution is steered by a number of
scripts adopted from the previous ASP Competition edition (cf. Calimeri et al., 2016).

5. Benchmark Suite

The benchmark domains considered in the Sixth ASP Competition include those from the previous
edition, summarized first. Moreover, encodings and instances were provided for six new domains,
introduced afterwards.

5.1 Previous Domains

The Fifth ASP Competition, held in 2014, featured 26 benchmark domains that had been submit-
ted to earlier editions already, mainly in 2013 when the ASP-Core-2 standard input format was
specified. In some domains, however, “unoptimized” encodings submitted by benchmark authors
incurred grounding bottlenecks that made participant systems fail on the majority of instances. In
view of this and in order to enrich the available benchmark collection, alternative encodings were
devised and empirically compared in 2014 (cf. Calimeri et al., 2016) for all but two domains dealing
with Query answering, which were modeled by rather straightforward positive programs.

The first part of assembling the benchmark suite for the Sixth ASP Competition consisted in
the choice of encodings for previously used domains. Table 2 gives an overview of these domains,
outlining application-oriented problems, i.e., problems that abstract or encode some real-world ap-
plication of ASP (cf. Calimeri et al., 2016), respective computational tasks, i.e., Decision, Opti-
mization, or Query answering, and sub-tracks. Moreover, the fourth column reports whether the
encoding provided in 2013 or the alternative one made available in 2014 has been picked for the
Sixth ASP Competition, and the fifth column indicates whether resulting ground instantiations are
tight. The selection was based on the results from 2014, favoring the encoding that exhibited better
performance of participant systems in a benchmark domain.

For Decision problems in the Hanoi Tower, Knight Tour with Holes, Stable Marriage, Incre-
mental Scheduling, Partner Units, Solitaire, Weighted-Sequence Problem, and Minimal Diagnosis
domains, all systems benefited from the usage of alternative 2014 encodings. Although correspond-
ing performance results were not completely uniform, improvements of more systems or greater
extent were obtained in Graph Colouring, Visit-all, Nomystery, Permutation Pattern Matching, and
Qualitative Spatial Reasoning. In the Sokoban and Complex Optimization domains, no signifi-
cant performance differences were observed, and 2014 encodings were picked as they simplify the
original submissions, i.e., aggregates are omitted in Sokoban and redundant preconditions of rules
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Table 2: Encodings selected for benchmark domains from the Fifth ASP Competition

Domain App Problem Encoding Tight

Graph Colouring Decision 2014
√

ST
#1

Hanoi Tower Decision 2014
√

Knight Tour with Holes Decision 2014
Labyrinth Decision 2013
Stable Marriage Decision 2014

√

Visit-all Decision 2014
√

Bottle Filling Decision 2013
√

ST
#2

Graceful Graphs Decision 2013
√

Incremental Scheduling
√

Decision 2014
√

Nomystery Decision 2014
√

Partner Units
√

Decision 2014
√

Permutation Pattern Matching Decision 2014
√

Qualitative Spatial Reasoning Decision 2014
√

Reachability Query 2013
Ricochet Robots Decision 2013

√

Sokoban Decision 2014
√

Solitaire Decision 2014
√

Weighted-Sequence Problem Decision 2014
√

Connected Still Life* Optimization 2013 ST
#3

Crossing Minimization
√

Optimization 2014
√

Maximal Clique Optimization 2014
√

Valves Location
√

Optimization 2013
Abstract Dialectical Frameworks Optimization 2013 ST

#4

Complex Optimization
√

Decision 2014
Minimal Diagnosis

√
Decision 2014

Strategic Companies Query 2013

dropped in Complex Optimization. Due to similar simplifications, the Basic Decision sub-track (#1)
consists of six domains, while it previously included Labyrinth and Stable Marriage only. On the
other hand, the encodings from 2013 were kept for domains in which alternative variants did not
lead to improvements or even deteriorated performance, the latter applying to Graceful Graphs.

In view of the relative scoring of systems on Optimization problems, the selection of encod-
ings could not be based on (uniform) improvements in terms of score here. Rather than that, we
investigated runtimes, timeouts, and solution quality of the top-performing systems in 2014, thus
concentrating on the feasibility of producing good but not necessarily optimal solutions. In this
regard, the alternative 2014 encodings turned out to be advantageous in Crossing Minimization and
Maximal Clique, while the original submissions led to better results in Connected Still Life and
Valves Location, or essentially similar performance in Abstract Dialectical Frameworks.

Notably, the Sixth ASP Competition utilizes a revised formulation of Connected Still Life (thus
marked by ‘*’ in Table 2), where instances specify grid cells that must be “dead” or “alive” accord-
ing to the Game of Life version considered in this domain. Such conditions are addressed by side
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Table 3: New benchmark domains of the Sixth ASP Competition

Domain App Problem Tight

Combined Configuration
√

Decision

ST
#2Consistent Query Answering

√
Query

√

MaxSAT
√

Optimization
√

ST
#3

Steiner Tree
√

Optimization
System Synthesis

√
Optimization

Video Streaming
√

Optimization
√

constraints added to the encoding from 2013 and enable a diversification of instances of same size,
while size had been the only parameter for obtaining different instances before. In addition, the
benchmark authors provided new instances of Knight Tour with Holes, Stable Marriage, Ricochet
Robots, and Maximal Clique. For Knight Tour with Holes, the instances from 2014 were too hard
for most participant systems, and too easy in the other three domains. Finally, recall that the 2013
encodings for Query problems in the Reachability and Strategic Companies domains are reused.

Six out of the 26 benchmark domains stemming from earlier ASP Competition editions are
based on particular applications. In more detail, Incremental Scheduling (Balduccini, 2011) deals
with assigning jobs to devices such that the makespan of a schedule stays within a given budget.
The matching problem Partner Units (Aschinger et al., 2011) has applications in the configuration
of surveillance, electrical engineering, computer network, and railway safety systems. Crossing
Minimization (Gange, Stuckey, & Marriott, 2010) aims at optimized layouts of hierarchical network
diagrams in graph drawing. The hydroinformatics problem Valves Location (Gavanelli, Nonato, &
Peano, 2015) is concerned with designing water distribution systems such that the isolation in case
of damages is minimized. In contrast to objective functions considered in the Optimization sub-track
(#3), the Complex Optimization (Gebser, Kaminski, & Schaub, 2011b) domain addresses subset-
minimization in the contexts of biological network repair (Gebser, Guziolowski, Ivanchev, Schaub,
Siegel, Thiele, & Veber, 2010) and minimal unsatisfiable core membership (Janota & Marques-
Silva, 2011). Finally, Minimal Diagnosis (Gebser et al., 2011) tackles the identification of subset-
minimal reasons for inconsistencies between biological networks and experimental data.

5.2 New Domains

Table 3 lists the six new benchmark domains, all of which are application-oriented and half of them
rely on non-tight problem encodings, that have been submitted to the Sixth ASP Competition. Their
specific areas are summarized in the following:

• Combined Configuration (Gebser, Ryabokon, & Schenner, 2015b) is a Decision problem in-
spired by industrial product configuration tasks dealing with railway interlocking systems,
automation systems, etc. In the considered scenario, orthogonal requirements as encountered
in bin packing, graph coloring, matching, partitioning, and routing must be fulfilled by a com-
mon solution. Since the combined problem goes beyond its individual subtasks, specialized
procedures for either subtask are of limited applicability, and the challenge is to integrate all
requirements within general solving methods.
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• Consistent Query Answering (Manna et al., 2013) addresses phenomena arising in the in-
tegration of data from heterogeneous sources. The goal is to merge as much information
as possible, even though local inconsistencies and incompleteness typically preclude a mere
data fusion. In particular, the Query problem amounts to cautious reasoning, retrieving con-
sequences that are valid under all candidate repairs of input data.

• MaxSAT (Li & Manyà, 2009) is the optimization variant of SAT, where so-called soft clauses
may be violated to particular costs and the sum of costs ought to be minimum. Industrial
instances, taken from the 2014 MaxSAT Evaluation (MaxSAT-Comp, 2014), are represented
by facts and encoded as an Optimization problem.

• Steiner Tree (Erdem & Wong, 2004) is concerned with connecting particular endpoints by a
spanning tree. The rectilinear version of this problem, where points on a two-dimensional
grid may be connected by line segments, is of practical relevance as it corresponds to wire
routing in circuit design. Accumulated line segments then determine the total wire length,
which ought to be minimum in the considered Optimization problem.

• System Synthesis (Biewer, Andres, Gladigau, Schaub, & Haubelt, 2015) deals with the allo-
cation of parallel tasks and message routing in integrated hardware architectures for target
applications. On the one hand, the capacities of processing elements are limited, so that com-
municating tasks must be distributed. On the other hand, network communication shall avoid
long routes to reduce delays. The Optimization problem combines three lexicographically or-
dered objectives: balancing the allocation of processing elements, minimizing network com-
munication, and keeping routes short.

• Video Streaming (Toni, Aparicio-Pardo, Simon, Blanc, & Frossard, 2014) aims at an adaptive
regulation of resolutions and bit rates in a content delivery network. While the bit rates and
different video formats that can be offered simultaneously are limited, service disruptions can
be tolerated for a small fraction of users only. The objective of the Optimization problem is
to achieve high user satisfaction with respect to particular video contents.

For each new domain, the benchmark authors provided problem instances along with an encod-
ing in ASP-Core format. Similar to previous domains, we also furnished alternative encodings for
comparison (cf. Section 7.1) and to provide options for customizing the benchmark suite in future
ASP Competition editions. The only exception is the Query problem in Consistent Query Answer-
ing, where the encoding proposed by Manna et al. (2015) (in case of real-world instances) often
enables ASP systems equipped with first-order Query answering functionalities to accomplish most
of the required evaluation deterministically during grounding, and we did not further investigate
the effect of modeling in this domain. For the remaining five domains, we below survey the main
differences between the submitted encodings and the devised alternatives. (To keep the presentation
simple, we concentrate on essential parts and simplified versions of the full encodings run in the
competition (ASP-Comp, 2015).)

5.2.1 COMBINED CONFIGURATION

As mentioned above, problems in this domain involve elements of bin packing, graph coloring,
matching, partitioning, and routing. In particular, each vertex of an input graph must be assigned to
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some color, and other subtasks focus on groups of vertices having the same color. Accordingly, a
choice rule as follows forms the basis of the provided encoding:

{color(V,C) : col(C)} = 1 ← vertex (V ) (7)

As a matter of fact, the problem is such that particular colors are indistinguishable and serve only
to partition the vertices at hand. However, in view of rule (7), any partition using n colors has n!
equivalent representations. Since such symmetry is usually not detected and explored by common
ASP solving approaches (cf. Section 3), the availability of permutations leads to heavily increased
combinatorics, which becomes a major bottleneck for hard instances with few or no solutions.

To avoid unnecessary guesses concerning the labels of colors, we devised an encoding variant
such that colors must be assigned consecutively along a static order of input vertices, as determined
by a domain predicate (i.e., a predicate that can be deterministically evaluated during grounding)
next/2 in our alternative encoding. This is accomplished by means of the following subprogram:

admit(V2, C) ← next(V1, V2), color(V1, C − 1), col(C) (8)

admit(V2, C) ← next(V1, V2), admit(V1, C) (9)

← color(V,C), col(C − 1),not admit(V,C) (10)

An atom of the form admit(v2, c), derived via rules (8) and (9), expresses that some vertex v1
preceding v2 in the given static order is assigned to color c−1. Note that atoms over next/2 provide
direct successors, so that there is (at most) one ground instance of (8), indicating an assigned color to
a direct successor, and one of (9), forwarding an assigned color along direct successors, per vertex v2
and color c. Given this, rule (10) requires that color c − 1 is assigned earlier than c according to
the vertex order. As a consequence, any partition of vertices has a unique (rather than n! many)
representation in terms of colors, which narrows the number of solution candidates down. The full
alternative encoding includes rules similar to (8)–(10) to disambiguate the assignment of vertices to
bins as well, and further uses atoms like in the order encoding from SAT (Crawford & Baker, 1994;
Tamura, Taga, Kitagawa, & Banbara, 2009) to abstract from particular colors and bins.

5.2.2 MAXSAT

Instances in this domain consist of clauses, i.e., disjunctions c of literals l given by facts of the form
inClause(c, l). A clause c can be either hard or soft, meaning that some literal in c must hold or
that the violation of all contained literals incurs some cost, respectively. Then, the task is to find
a consistent set of literals, including either x or ¬x for each propositional variable x, such that the
sum of associated costs is minimum. A literal x or ¬x that holds is represented by pVar(x) or
nVar(x), respectively, within an answer set, and an encoding has to evaluate clauses accordingly.

In order to generate consistent sets of literals, the provided encoding includes the following
disjunctive rule:

pVar(X) |nVar(X) ← vars(X) (11)

In view of the semantics of ASP programs (cf. Section 2.2), however, it turns out that instances
of pVar(X) and nVar(X) are mutually exclusive. As a potential simplification exploiting such
inverse polarity, our alternative encoding replaces (11) by:
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{pVar(X)} ← vars(X) (12)

nVar(X) ← vars(X),not pVar(X) (13)

In fact, choice rule (12) expresses that any positive literal may unconditionally hold, thus reflecting
the semantics of propositional logic. Negative literals are in turn derived via rule (13), defining the
predicate nVar/1 as the complement of pVar/1, so that negative literals can be read off.

A second modification concerns the evaluation of (hard and soft) clauses, where

satisfied(C) ← clause(C),#count{L : inClause(C,L), holds(L)} > 0 (14)

from the provided encoding is reformulated as follows:

satisfied(C) ← inClause(C,L), holds(L) (15)

That is, our alternative encoding omits the #count aggregate in (14) and uses basic rule (15) instead
to check the satisfaction of clauses. With either encoding, an additional rule then denies unsatisfied
hard clauses, and a weak constraint penalizes violated soft clauses.

5.2.3 STEINER TREE

In the rectilinear version of the Steiner Tree problem, a number of crossing points can be placed on
a two-dimensional grid to form a spanning tree connecting given endpoints and the crossing points,
so that the total length of the contained edges is minimum. The amount of possible crossing points
is a crucial issue, where, e.g., 100×100-grids yield about 10000 possible locations. In this respect,
the provided encoding leads to large ground instantiations, as it includes rules like the following:

{cross(I,X, Y )} ← id(I), grid(x,X), grid(y, Y ) (16)

point(X,Y ) ← cross(I,X, Y ) (17)

point(X,Y ) ← given(X,Y ) (18)

{edge(X1, Y1, X2, Y2)} ← point(X1, Y1), point(X2, Y2) (19)

Given a 100×100-grid, rules (16) and (17) for guessing and propagating the location of a crossing
point roughly yield 10000 ground instances each, while the instantiation of rule (18) remains pro-
portional to the endpoints specified by an instance. Moreover, rule (19) is particularly critical as its
ground instances make the cross product of grid locations explicit, consisting of one million pairs
for a 100×100-grid. To avoid such size blow-up, our alternative encoding splits the locations of
crossing points by horizontal and vertical coordinates, and also uses a different edge representation:

{cross(I, C, Z)} ← id(I), grid(C,Z) (20)

{edge(e(X1, Y1), e(X2, Y2))} ← given(X1, Y1), given(X2, Y2) (21)

{edge(e(X,Y ), c(I))} ← given(X,Y ), id(I) (22)

{edge(c(I1), c(I2))} ← id(I1), id(I2) (23)

The idea of rule (20) is to pick x- and y-coordinates of crossing points separately, which results
in 200 ground instances per point for a 100×100-grid. In fact, the length of edges, taken as the
endpoints’ Manhattan distance and subject to minimization, can be determined coordinate-wise,
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so that there is no need to combine x- and y-coordinates, and the full alternative encoding makes
use of order encoding techniques (Crawford & Baker, 1994; Tamura et al., 2009) for a compact
representation. Most importantly, choice rules (21)–(23) express edges in terms of identifiers for
their endpoints to avoid referring to the (guessed) coordinates of crossing points. To this end, the
function term e(x, y) denotes a given point at location (x, y), as specified by an instance, while c(i)
refers to a crossing point, which may be placed anywhere on the grid, in terms of its identifier. As
a consequence, (21)–(23) yield (m + n)2 ground instances for m given endpoints and a maximum
number n of additional crossing points. In particular, the n2 instances obtained from rule (23) con-
stitute a crucial reduction compared to the cross product of grid locations expressed by (19), so that
instantiations of the alternative encoding are substantially smaller. Notably, our alternative encod-
ing also breaks symmetries among identifiers for crossing points in the same way as with Combined
Configuration above, thus establishing a unique representation for any placement of crossing points.

5.2.4 SYSTEM SYNTHESIS

The Optimization problem in this domain, dealing with the design of integrated hardware architec-
tures, combines three lexicographically ordered objectives: balancing the allocation of processing
elements, minimizing network communication, and keeping routes short. In the provided encoding,
these objectives are expressed by rules and weak constraints as follows:

limit(1000) ← (24)

{limit(L2)} ← limit(L1),next(L1, L2) (25)

← proc(P ), limit(L),#sum{U, T : task(T,U), bind(T, P )} > L (26)

� next(L1, L2),not limit(L2) [1@3, L2] (27)

� route(M,S,R) [1@2,M ] (28)

� route(M,S,R) [1@1,M, S,R] (29)

Rules (24)–(26) along with weak constraint (27) encode the first objective, where the predicate
limit/1 provides candidate thresholds for the utilization of processing elements. While the thresh-
old 1000 (representing 100.0%) is hard, gradually decreasing thresholds can be generated via choice
rule (25), provided that the accumulated utilization by tasks on any processing element does not ex-
ceed the threshold, as checked in (26). Given that a missing instance of limit(L2) in an answer set is
penalized by (27), a balanced distribution of tasks among processing elements is thus preferable. In
addition, network communication, reflected by instances of route(M,S,R) for directly connected
senders S and receivers R along the route of a message M , is penalized by weak constraints (28)
and (29), the former referring to routed messages M (i.e., communicating tasks are allocated to dis-
tinct processing elements) and the latter to direct connections along routes (reflecting route lengths).

Our alternative encoding varies the formulation of objectives and replaces (24)–(29) by:

receive(M,R) ← route(M,S,R) (30)

exceed(L) ← proc(P ), threshold(L),#sum{U, T : task(T,U), bind(T, P )} > L(31)

← exceed(1000) (32)

� exceed(L) [1@3, L] (33)

� receive(M,R) [1@2,M ] (34)

� receive(M,R) [1@1,M,R] (35)
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The idea of rule (31) is to avoid the guess of candidate thresholds in (25), but rather derive thresholds
that are exceeded on some processing element, where rule (32) denies a utilization beyond 1000 or
100.0%, respectively, and weak constraint (33) penalizes excesses of lower thresholds. Moreover,
auxiliary instances of receive(M,R), derived via rule (30), drop senders and provide the receiversR
of a messageM only. (Although not shown here, the basic formulation of routes in the provided and
our alternative encoding is such that any receiver gets a message from one sender only, which makes
sense in view of the objective to keep routes short and thus omit redundant routing connections.)
The weak constraints (34) and (35), addressing routed messages or direct connections, respectively,
are then based on receive/2 instead of route/3, so that the number of ground instances is smaller.

5.2.5 VIDEO STREAMING

The objective in this Optimization problem is to achieve high satisfaction of users interested in
videos of particular contents (cartoons, movies, sports, etc.), while the number of different video
formats to broadcast and the available bandwidth are limited. Such conditions are formulated in the
following encoding:

{cast(V,B, S) : poss(V,B, S)} = L ← limit(L) (36)

{assign(U, V,B, S)} ← user(U, V,C,M), cast(V,B, S), B ≤ C (37)

← width(W ),#sum{B,U, V : assign(U, V,B, S)} > W (38)

← serve(N),#count{U, V : assign(U, V,B, S)} < N (39)

� user(U, V,C,M), assign(U, V,B, S) [M − S@1, U, V ] (40)

Choice rule (36) expresses that exactly the given limit many instances of cast(V,B, S) shall be
selected among all possible video formats, where V stands for particular video contents, B for a bit
rate, and S for the respective user satisfaction. Given this, choice rule (37) allows for assigning a
selected format to a user, indicated by U , requesting the video contents, provided that the bit rate B
does not exceed the capacity C of the user’s connection. Two observations can be made regarding
this pattern to assign video formats to users. On the one hand, a format selected via rule (36) does
not necessarily have to be assigned to any user via (37), as some other format (providing higher
satisfaction) or nothing at all may be picked instead. On the other hand, several selected formats
of the same contents may in principle be assigned to the same user, and only bandwidth limitations
and primarily penalties in view of the objective suppress such redundant assignments. In fact,
rule (38) uses a #sum aggregate to make sure that video formats assigned to users do not exceed the
available bandwidth, and (39) checks that at least a given number of users receive their requested
video contents in some format. Finally, weak constraint (40) penalizes gaps M − S between the
satisfaction S associated with a video format assigned to a user and a fixed valueM , where instances
are built such that M represents the maximum satisfaction among formats that can be assigned in
view of the capacity of the user’s connection. This choice of M means that the assignment of any
but the format providing highest satisfaction incurs some penalty, so that each user will be assigned
at most one format of a contents in an optimal solution or answer set, respectively.

Our alternative encoding in this domain primarily addresses the selection of video formats to
assign to users as well as the penalization of formats not providing highest satisfaction:

{assign(U, V,B, S)} ← user(U, V,C,M), poss(V,B, S), B ≤ C (41)

leq(U, V, S) ← assign(U, V,B, S) (42)
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leq(U, V, S1) ← next(U, V, S1, S2), leq(U, V, S2) (43)

← next(U, V, S1, S2), leq(U, V, S2), assign(U, V,B, S1) (44)

← limit(L),#count{V,B, S : assign(U, V,B, S)} > L (45)

� next(U, V, S1, S2), leq(U, V, S2) [S1 − S2@1, U, V, S1] (46)

Rather than picking formats first, choice rule (41) directly provides potential assignments with re-
spect to users’ connection capacities. Then, rules (42) and (43) derive instances of leq(U, V, S),
expressing that a format of satisfaction S or lower is assigned to a user U requesting video con-
tents V . To this end, instances of next(U, V, S1, S2), where next/4 is a domain predicate defined
by the full alternative encoding, chain successive satisfaction levels S1 and S2 for video contents V
and formats assignable to user U in decreasing order. Given this, rule (44) denies an assignment
of several formats (with distinct satisfaction levels) to the same user, thus handling the inherent re-
dundancy of such assignments by a hard constraint rather than leaving it as subject to optimization.
Moreover, the limit on formats that can be broadcast simultaneously is checked by rule (45), which
replaces the original choice in (36), while rules (38) and (39) remain unchanged and are not re-
peated above for brevity. Finally, weak constraint (46) utilizes instances of leq(U, V, S2), indicating
an assigned as well as higher satisfaction levels S2, to implement a differential penalization scheme
based on gaps S1 − S2 between successive levels S1 and S2. This approach reflects higher satisfac-
tion of a user in terms of a subset of penalized atoms in an answer set, which can sometimes lead to
an improved solving performance (see, e.g., Gebser, Kaminski, Kaufmann, & Schaub, 2012).

6. Benchmark Selection

In the following, we describe the selection of benchmark instances that were run in the Sixth ASP
Competition. The goal of this step was to make an informed selection balancing the hardness of
instances per domain, even in cases where the majority of available instances, provided by bench-
mark authors, tend to be too easy or overly hard and thus rather uninformative to rank participant
systems. To this end, we applied an instance selection strategy inspired by the 2014 SAT Com-
petition (SAT-Comp, 2014), going beyond the random selection approaches of earlier editions (cf.
Calimeri et al., 2014, 2016). First, we evaluated the empirical hardness of all available instances by
running the top-performing systems from the previous ASP Competition edition, held in 2014, and
by classifying the instances according to the performance of these reference systems. Then, the in-
stance selection aims at balancing the obtained hardness classes per domain, using an ASP program
to compensate for underpopulated classes by adjusting the numbers of instances to pick from each
class accordingly. The two steps, instance classification by hardness and balanced selection among
classes, are detailed below.

6.1 Instance Classification

To evaluate the hardness of instances, we ran the top-performing system per team participating in
the Fifth ASP Competition, corresponding to the systems taking the first three places in 2014, i.e.,
CLASP, LP2NORMAL2+CLASP, and WASP-1.5. This choice comes close to the virtual state-of-the-art
solver that matches the top-performing system on each instance. Each run was limited to 20 minutes
for grounding and 40 minutes for solving, granting 12GB memory for each of the two steps. The
allotted resources exceed those of actual competition runs, where 20 minutes and 12GB are available
for both grounding and solving, in order to also capture runs that a reference system completes
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within some tolerance. The obtained performance results are then taken to classify instances into
hardness categories by picking the upmost class such that some of the following conditions applies:

[non-groundable] Instances such that none of the three systems finished grounding in 20 minutes.

[very easy] Instances completed by all three systems in less than 20 seconds solving time.

[easy] Instances completed by all three systems in less than 2 minutes solving time.

[medium] Instances completed by all three systems in less than 20 minutes solving time.

[hard] Instances completed by at least one system in 40 minutes (twice the timeout) solving time.

[too hard] Instances such that none of the three systems finished solving in 40 minutes.

Running the reference systems exhaustively on all available instances, belonging to the 32
benchmark domains introduced in Section 5, where the encodings indicated in Table 2 are used for
previous domains and those provided by benchmark authors for new domains, took about 212 CPU
days on the competition platform. Given that participant systems in the Sixth ASP Competition are
based on similar solving approaches as the three reference systems (cf. Section 3), non-groundable
and very easy instances are likely to remain uninformative regarding the ranking of systems, and
we decided to drop such instances. In four domains, Bottle Filling, Hanoi Tower, Solitaire, and
Weighted-Sequence Problem, this left too few suitable instances, so that we had to exclude these do-
mains. The actual competition thus featured 28 domains, among which 12 are application-oriented.

6.2 Instance Selection

For each of the 28 domains used for ranking participant systems, the selection task was to pick 20
instances to run in the competition. As mentioned above, non-groundable and very easy instances
were excluded, so that the selection is made among easy, medium, hard, and too hard instances.
Perfect balancing would then consist of picking four instances per hardness class and another four
instances freely in order to guarantee that each hardness class contributes at least 20% of the in-
stances in a domain. The objective of this division is to cover a range of scalability, including
instances that are in reach for newcomer or yet unoptimized participant systems as well as challeng-
ing instances that may indicate the progress of and differentiate state-of-the-art systems.

In practice, however, the division must also account for the availability of instances and com-
pensate for underpopulated hardness classes. To this end, we increased the numbers of instances to
pick from other hardness classes whenever a class lacks the four intended instances. In more detail,
let the labels e, m, h, and t denote the classes of easy, medium, hard, and too hard instances. For
any subset C of {e,m, h, t}, by #C we refer to the number of instances belonging to some of the
hardness classes in C. Moreover, we arrange subsets of {e,m, h, t} in a binary tree as follows:

{e,m, h, t}

{e,m} {h, t}

{m} {e} {h} {t}
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For the three inner nodes C (the non-singletons), let left(C) and right(C) be the child nodes of C,
where the idea is that instances belonging to left(C) are preferred for compensation. In particular,
this applies to medium instances in left({e,m}) = {m} in case a domain lacks the intended eight
hard or too hard instances. The following equations make this balancing scheme precise:

target({e,m, h, t}) = 16

target(left(C)) = min{#left(C), target(C)−min{#right(C), |right(C)| ∗ 4}}
target(right(C)) = min{#right(C), target(C)− target(left(C))}

After doing the calculation, the numbers of instances to pick from hardness classes are read off the
leaves of the above binary tree. For example, when a domain includes 12 easy, 6 medium, 1 hard,
and 5 too hard instances, we obtain target({e,m}) = 10, target({h, t}) = 6, target({m}) = 6,
target({e}) = 4, target({h}) = 1, and target({t}) = 5, where two additional medium and one
too hard instance compensate for the lack of three hard instances. Given the availability of at least
20 instances per domain in appropriate hardness classes, our balancing scheme makes sure that 16
instances will be picked based on hardness and augmented with four freely chosen instances.

As a secondary criterion beyond hardness, we consider the satisfiability of instances, where
respective information is available whenever at least one of the three reference systems completed
its run on an instance (or produced some solution in case of Optimization problems). The idea is to
split the number of instances to pick from a hardness class evenly, provided that sufficiently many
instances have been determined as satisfiable or unsatisfiable, respectively. Letting #C[sat ] and
#C[unsat ] denote the corresponding satisfiable or unsatisfiable, respectively, instances belonging
to a set C of hardness classes, the goal of an even division of instances to pick from C can be
expressed as follows, where s ∈ {sat , unsat}:

divide(C, s) = min{#C[s],
⌊

target(C)

2

⌋
}

However, such secondary division based on satisfiability is neutral except for instances of Decision
and Query problems that are not too hard, as the available instances of Optimization problems are
satisfiable (or there would be nothing to optimize), and the reference systems do not yield satisfiabil-
ity information for too hard instances otherwise. Also, divide(C, s) > max{0, target(C)−#C[s]}
has to hold for sat = unsat and unsat = sat to yield a non-trivial secondary condition.

We encoded the balanced instance selection by an ASP program in ASP-Core-2 format, where
the results of running the three reference systems are provided by facts, target(C) and divide(C, s)
are determined by domain predicates (deterministically evaluated during grounding), and an addi-
tional domain predicate instance/3 represents the file names of instances in a domain along with
their hardness and satisfiability. The following combinatorial encoding part then expresses condi-
tions on the selection of instances:

{select(I, C, S) : instance(I, C, S)} = 20 ← (47)

← c ∈ {e,m, h, t},#count{I : select(I, c, S)} < target({c}) (48)

← c ∈ {e,m, h, t}, s ∈ {sat , unsat},#count{I : select(I, c, s)} < divide({c}, s) (49)

That is, choice rule (47) generates candidate sets of 20 instances in a domain, while rules (48)
and (49) check that at least the number of target instances are picked per hardness class and that the
latter are evenly divided based on satisfiability, provided that a respective condition is non-trivial.
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The higher the number of appropriate instances in a domain, the more loose are the conditions
expressed by (47)–(49), and an answer set found is solver-specific. Pragmatically, we picked the
instances provided in the first answer set computed by CLASP, using its options rand-freq, sign-def,
and seed for guaranteeing reproducible randomization. In particular, we fixed the random seed to
the concatenation of winning numbers in the EuroMillions lottery of 23rd June 2015. The resulting
instances run in the competition and tools to reproduce the instance selection are available on-line
(ASP-Comp, 2015).

7. Competition Results

This section presents the results of the Sixth ASP Competition. We first announce the winners in
the SP category and analyze their performance, and then proceed to systems in the MP category.

7.1 Results in the SP Category

After summarizing the results of the Regular track, we provide details on each sub-track. We further
assess the improvements in solving performance by comparing the top-performing systems in this
ASP Competition edition to those from the previous edition, held in 2014. Moreover, we evaluate
the alternative encodings for five of the six new benchmark domains introduced in Section 5.2.
Finally, we turn to the Marathon track in which the top-performing systems were given more time.

7.1.1 REGULAR TRACK

Figure 3(a) shows the scores of participant systems, ordered by their sums of scores over all sub-
tracks. Accordingly, the first three places in the Regular track go to the systems:

1. ME-ASP, by the ME-ASP team, with 1971 points;

2. WASP+DLV, by the Wasp team, with 1938 points;

3. LP2NORMAL+CLASP, by the Aalto team, with 1760 points.

That is, the first place is taken by a system pursuing the portfolio approach outlined in Section 3,
and the following two places by native systems. Notably, the overall winner ME-ASP is a newcomer
participating for the first time in this ASP Competition edition.

Within sub-tracks, the three top-performing systems overall take the first places as well:

• Sub-track #1 (Basic Decision): ME-ASP with 340 points;

• Sub-track #2 (Advanced Decision): ME-ASP with 675 points;

• Sub-track #3 (Optimization): LP2NORMAL+CLASP with 685 points;

• Sub-track #4 (Unrestricted): WASP+DLV with 345 points.

Note that Figure 3(a) distinguishes the Optimization problem Abstract Dialectical Frameworks in
sub-track #4 in view of its dedicated scoring scheme, as described in Section 4. The total scores in
sub-track #4, however, include all four domains listed in Table 2, given that up to 100 points can be
earned in each of them.
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(a) Score acquisition per sub-track

(b) Number of solved instances (confirmed optima) per computational task

Figure 3: Overall results of the Regular track

Figure 3(b) views solving performance from the perspective of successfully completed runs rel-
ative to computational tasks, i.e., Decision, Optimization, and Query answering. For Decision and
Query problems (belonging to sub-tracks #1, #2, and #4), the numbers of solved instances are di-
rectly proportional to scores, and we observe that ME-ASP performed particularly well on Decision
and WASP+DLV on Query problems. Regarding Optimization problems (in sub-tracks #3 and #4), the
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correlation between runs completed with a confirmed optimum solution and scores is not that imme-
diate, since the quality of best solutions found comes into play in case of timeouts. In fact, ME-ASP,
WASP+DLV, and WASP completed more runs on Optimization problems than LP2NORMAL+CLASP,
which still achieved the highest scores, as given in Figure 3(a). This divergence is due to the use of
different optimization strategies, namely model- versus core-guided approaches (Morgado, Heras,
Liffiton, Planes, & Marques-Silva, 2013; Alviano et al., 2015a; Alviano, Dodaro, Marques-Silva,
& Ricca, 2015b; Gebser et al., 2015), where the former are geared for producing good-quality so-
lutions and the latter for confirming optimum solutions.3 As ME-ASP, WASP+DLV, and WASP utilize
core-guided optimization, they are able to complete more runs than LP2NORMAL+CLASP, whose
model-guided approach yields better solutions in case of timeouts. That is, the choice of an appro-
priate optimization strategy depends on the expected hardness of instances as well as the objective
whether to find good-quality solutions or having optimality confirmed. In this respect, the available
benchmark collection includes a significant portion of instances for which confirmed optimum solu-
tions are beyond reach, so that the scoring scheme favors model-guided optimization. On the other
hand, the number of suitable instances and possibly domains were heavily reduced in case runs
on Optimization problems had to be completed to achieve a non-zero score, which is the primary
reason for taking solution quality into account.

The cactus plot in Figure 4 further displays the solved instances of Decision and Query prob-
lems, whose number increases along the x-axis, within the runtime given on the y-axis. The curves
allow for distinguishing four groups of systems by their performance. First, ME-ASP outperforms
the other participants in terms of the number of instances solved within a given runtime, yet closely
followed by WASP+DLV. In fact, the detailed results provided in Tables 4 and 5 in the appendix
yield excellent performance of ME-ASP on six Decision problems and of WASP+DLV on three De-
cision as well as three Query problems. The latter advantage is based on dedicated techniques for
cautious reasoning (Alviano et al., 2014), while ME-ASP relies on stand-alone DLV for Query an-
swering. Query problems also separate the first from the second group, consisting of WASP and
LP2NORMAL+CLASP, where WASP applies the same cautious reasoning techniques as WASP+DLV to
“unoptimized” instantiations at ground level and LP2NORMAL+CLASP provides no support at all. The
third group of systems comprises JWASP as well as the translation-based systems by the Aalto team
that are limited to HCF programs. Among them, LP2ACYCASP+CLASP performs best, given that it
merely instruments non-tight programs with acyclicity conditions. The detailed results on Knight
Tour with Holes in Tables 4 and 5 show that such conditions can sometimes be advantageous, as also
confirmed by the comparable performance of LP2ACYCPB+CLASP and LP2ACYCSAT+CLASP, which
vary the underlying problem representation formalism, in this domain. While LP2SAT+LINGELING,
utilizing the plain SAT solver LINGELING, has disadvantages on non-tight programs, it is interesting
to note that it is the only system solving all (tight) instances of Visit-all. The back-end solver of
LP2ACYCSAT+GLUCOSE turns out to be less successful on the competition benchmarks, so that it
falls behind the other translation-based systems in the third group. It is still ahead of the prototype
system JWASP, which is implemented in Java and thus not tuned for low-level performance. The
LP2MIP system, relying on Mixed Integer Programming, constitutes the last group, as the approach
of its back-end solver CPLEX is different from DPLL- or CDCL-style search and aims primarily at
problems including numerical variables, rather than Boolean variables only.

3Model-guided approaches take the quality of a best solution found as (strict) upper bound for the next solution to
produce, and thus improve solution quality “from above”. Unlike that, core-guided approaches successively admit more
penalties based on the unsatisfiability of tighter quality bounds, aiming to converge to an optimal solution “from below”.
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Figure 4: Cactus plot for Decision and Query problems
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Figure 5: Score acquisition plot for Optimization problems

Figure 5 plots the score acquisition on Optimization problems, where the non-zero scores of
a system are arranged in increasing order and the cumulative sum over the number of instances
on the x-axis is displayed on the y-axis. Right-most points thus yield total scores achieved on
Optimization problems belonging to sub-tracks #3 and #4. The steep curves of JWASP, WASP, and
LP2ACYCSAT+GLUCOSE indicate that these systems tend to produce either a confirmed optimum
solution or no solution at all, which matches the typical behavior of core-guided optimization ap-
proaches. Unlike that, the three top-performing systems on Optimization problems (and overall),
LP2NORMAL+CLASP, ME-ASP, and WASP+DLV, exhibit a gentler slope, given that their optimiza-
tion strategies put stronger focus on finding good-quality solutions in case a confirmed optimum
solution is beyond reach. In particular, WASP+DLV combines model- and core-guided optimiza-
tion approaches, LP2NORMAL+CLASP pursues a model-guided strategy, and ME-ASP frequently picks
the model-guided CLASP system from 2014 for solving. The remaining translation-based systems,
LP2ACYCASP+CLASP, LP2ACYCPB+CLASP, LP2ACYCSAT+CLASP, and LP2MIP, are less successful than
the native LP2NORMAL+CLASP system, even though three of them are based on the same back-end
solver. In fact, Tables 4 and 5 show that the large ground instantiations faced in the Steiner Tree
domain constitute a bottleneck for translation tools and lead to memory outs. Moreover, aggre-
gates involving large weights, as in the Valves Location domain, as well as lexicographically or-
dered objectives, as encountered in System Synthesis, impose issues for the translations made by
LP2ACYCPB+CLASP, LP2ACYCSAT+CLASP, and LP2MIP.4 However, systems that may seem disadvan-
tageous over all domains may still be useful in particular cases, e.g., LP2ACYCSAT+GLUCOSE and
LP2MIP are the only systems achieving perfect scores in Connected Still Life and Crossing Mini-
mization, respectively.

4Due to technical problems in the handling of large weights that could not be fixed before running the competition,
LP2ACYCPB+CLASP had to be disqualified in Valves Location and LP2ACYCSAT+GLUCOSE as well as LP2MIP-MT in
Video Streaming.
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Figure 6: Comparison to reference systems from 2014

7.1.2 ADVANCEMENTS IN ASP SOLVING

The cactus plot in Figure 6 compares the top-performing systems from the previous edition, namely
CLASP, LP2NORMAL2+CLASP, and WASP-1.5 (indicated by the suffix “-2014”), to those of the Sixth
ASP Competition: ME-ASP, WASP+DLV, and LP2NORMAL+CLASP. While the winner system from
2014, CLASP, could complete 270 instances (confirmed optima in case of Optimization problems)
out of those run in this edition, LP2NORMAL+CLASP, WASP+DLV, and ME-ASP solved 21, 75, or 84
instances more, respectively. When comparing LP2NORMAL+CLASP and WASP+DLV to their earlier
versions from 2014, LP2NORMAL2+CLASP and WASP-1.5, the improvements of the current systems
amount to 35 more solved instances for LP2NORMAL+CLASP and 171 more for WASP+DLV. The
additional margin of the new entrant ME-ASP, which solved 11 instances more than WASP+DLV,
further outlines the benefit of a portfolio approach along with well-configured algorithm selection
for tackling the variety of competition benchmarks. In summary, these performance results exhibit
significant advancements of the state of the art and growing maturity of ASP systems, despite of
only one year development time since the previous ASP Competition edition.

7.1.3 IMPACT OF MODELING ON NEW DOMAINS

As described in Section 5.1, alternative encodings were devised for almost all of the domains avail-
able in 2014, and corresponding performance results served as basis for selecting the encodings to
use in this ASP Competition edition. Similarly, we furnished alternative encodings for five of the
six new domains introduced in Section 5.2, and below contrast the outcomes of running the three
top-performing systems, LP2NORMAL+CLASP, ME-ASP, and WASP+DLV, on the alternative encodings
and those provided by benchmark authors, which were used to rank participant systems. This gives
insights into the effectiveness of modeling approaches as well as indications for customizing the
benchmark suite in future ASP Competition editions.
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Figures 7(a)–(c) view the performance differences due to the use of alternative encodings from
several perspectives, concerning the number of successfully completed runs (confirmed optima in
case of Optimization problems), the number of timeouts, and the number of instances for which
some solution was found. For the Decision problem in the Combined Configuration domain, these
three measures coincide, and we observe significant improvements thanks to the alternative encod-
ing: 9, 10, or 8 more instances, respectively, solved by LP2NORMAL+CLASP, ME-ASP, and WASP+DLV.
As detailed in Table 7 in the appendix, LP2NORMAL+CLASP and ME-ASP each complete 16 out of 20
instances with the alternative encoding, but the relative increase is highest for WASP+DLV, which
solves 9 instances instead of one only with the original encoding. Such performance improvements
are owed to compactly formulated symmetry breaking in the alternative encoding (cf. Section 5.2),
in order to avoid a combinatorial explosion due to redundant representations of solution candidates.

The other four domains address Optimization problems, where an increase or decrease of the
number of solutions found in Figure 7(c) indicates additional or fewer instances, respectively, on
which a non-zero score could be achieved. In MaxSAT, however, we do not observe such effects,
but merely one more instance solved with a confirmed optimum solution by WASP+DLV when run
on the alternative encoding. This fortifies the position of WASP+DLV as the system that performs
best on MaxSAT, now providing confirmed optima for all 20 instances. However, given that both
the original and alternative encoding for MaxSAT are rather straightforward, where modifications
amount to minor syntactic simplifications, such a performance difference is modest as well.

In the Steiner Tree domain, our alternative encoding aims to reduce the large ground instantia-
tions obtained with the original encoding, which has a significant impact on solving performance.
Most notably, the use of the alternative encoding abolishes seven memory outs of WASP+DLV, as
indicated in Figure 7(c) by the increase of solutions found. In fact, the four additional timeouts
of WASP+DLV in Figure 7(b) relieve previous memory outs and do not constitute a performance
decline, given that some, yet not necessarily optimal, solution is found on each instance. Sim-
ilarly, LP2NORMAL+CLASP and ME-ASP produce solutions for all instances, where one run of the
former failed with the original encoding. In fact, performance improvements in terms of confirmed
optimum solutions, shown in Figure 7(a), apply to all three systems: 2, 5, or 3 more instances, re-
spectively, solved by LP2NORMAL+CLASP, ME-ASP, and WASP+DLV. Interestingly, ME-ASP overtakes
LP2NORMAL+CLASP and completes six instances with a confirmed optimum solution, one more than
LP2NORMAL+CLASP and two more than WASP+DLV, when switching from the original to our al-
ternative encoding. These performance results further indicate an increased empirical hardness of
instances in the Steiner Tree domain in comparison to MaxSAT.

As described in Section 5.2, our alternative encoding for System Synthesis boils down to a
syntactic reformulation of the three lexicographically ordered objectives in this domain. This leads
to rather modest performance differences, i.e., one more instance solved with a confirmed optimum
solution by ME-ASP, which increases its number of completed runs from 7 to 8. The fact that
penalties in the three objectives amount to zero for all solved instances, while LP2NORMAL+CLASP

and WASP+DLV could not provide confirmed optima with either encoding, is particularly striking.
We checked that ME-ASP picked the CLASP version of 2014 for solving, whose “aggressive” model-
guided optimization strategy turns out to perform well on instances admitting unpenalized solutions.

While the effect of alternative encodings was positive or neutral in the domains considered so
far, we observe a clear performance decline of all three systems with the alternative encoding for
Video Streaming, given that the numbers of instances for which some solution is found decrease in
Figure 7(c). Moreover, LP2NORMAL+CLASP, which produces the most, i.e., 15, confirmed optimum
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(a) Differences in terms of solved instances (confirmed optima)

(b) Differences in terms of timeouts

(c) Differences in terms of solutions found

Figure 7: Comparison between original and alternative encodings for new domains
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solutions when run on the original encoding, falls back to 10 confirmed optima (one more than ME-
ASP and WASP+DLV) with our alternative encoding. We conclude that indirection introduced in the
alternative encoding to establish a differential penalization scheme as well as hard constraints sup-
pressing redundant solutions (cf. Section 5.2) is counterproductive for the optimization approaches
of participant systems. This reminds that, beyond apparent effects regarding the (deterministic)
behavior of grounders, the impact of modeling on solving performance remains difficult to predict.

In summary, clear performance improvements due to modeling could be achieved on the Deci-
sion problem in the Combined Configuration domain and the Optimization problem in the Steiner
Tree domain. These advantages are owed to symmetry breaking, cutting down a vast number of re-
dundant representations of solution candidates, as well as compact formulations, reducing the size
of ground instantiations by some order of magnitude. On the other hand, the modest performance
differences observed in the MaxSAT and System Synthesis domains, where our alternative encodings
constitute minor reformulations of the original encodings provided by benchmark authors, indicate
a certain robustness of ASP systems towards syntactic perturbations. Finally, the performance de-
cline due to the alternative encoding for Video Streaming emphasizes that the impact of particular
modeling approaches remains problem-specific and requires empirical investigation, considering
that corresponding techniques were found to work well in other domains (cf. Gebser et al., 2012).

7.1.4 MARATHON TRACK

In the Marathon track, the three top-performing systems of the Regular track, namely
LP2NORMAL+CLASP, ME-ASP, and WASP+DLV, are granted more time, i.e., 3 hours rather than 20
minutes only, in order to assess their performance on challenging instances in the long run. Since
runs of these systems are reproducible, instances completed within less time given in the Regular
track (confirmed optima in case of Optimization problems) are solved in the Marathon track as well,
so that the focus is on the remaining instances that could not be completed in the Regular track.

Similar to Figure 3 above, Figures 8(a) and 8(b) show the scores as well as the numbers of
instances solved by the three participant systems, listed in the order of their sums of scores over all
sub-tracks. This yields the following ranking in the Marathon track:

1. WASP+DLV, by the Wasp team, with 2200 points;

2. ME-ASP, by the ME-ASP team, with 2190 points;

3. LP2NORMAL+CLASP, by the Aalto team, with 1952 points.

In comparison to the Regular track, ME-ASP and WASP+DLV switch their positions on the first two
places, owed to the greater improvement of WASP+DLV on Optimization problems in sub-track #3.
The combination of model- and core-guided optimization approaches implemented by WASP+DLV

is indeed not geared for producing many solutions quickly, but aims at confirmed optima or good-
quality approximations of an optimum solution. Moreover, note that the algorithm selection method
of ME-ASP was trained relative to the timeout of the Regular track, while the allotted time in the
Marathon track is increased by a factor of nine. The margin between the two systems, however, re-
mains virtually imperceptible, and Figure 8(b) even yields one more run completed by ME-ASP. We
also note that the gap to LP2NORMAL+CLASP is primarily due to its lacking support for Query prob-
lems, while regarding solved instances all three systems benefit near uniformly from the additional
runtime in comparison to the Regular track: both LP2NORMAL+CLASP and ME-ASP complete 55 more
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(a) Score acquisition per sub-track

(b) Number of solved instances (confirmed optima) per computational task

Figure 8: Overall results of the Marathon track

runs, and WASP+DLV improves by 63. In particular, the detailed results provided in Table 6 in the ap-
pendix exhibit increased numbers of instances solved by the respective top-performing system in 19
out of the 28 domains, where exceptions are twofold. On the one hand, some system completes all
instances in Qualitative Spatial Reasoning, Reachability, Abstract Dialectical Frameworks, Min-
imal Diagnosis, and Strategic Companies in the Regular track already, which does not leave any
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Figure 9: Improvement in terms of solved instances (confirmed optima)

room for improvement. On the other hand, in Knight Tour with Holes, Incremental Scheduling,
Sokoban, and Video Streaming, instances not solved in the Regular track remain too hard in the
Marathon track as well. In general, the results for the top-performing participant systems indicate
that performance trends are almost independent from time limits.

7.2 Results in the MP Category

The MP category, granting eight computing cores instead of a single one per run, features two
translation-based systems, LP2MIP-MT and LP2SAT+PLINGELING-MT, exploiting multi-threaded ver-
sions of their back-end solvers CPLEX or LINGELING, respectively. Both systems utilize six parallel
threads and participate on Decision problems in sub-tracks #1 and #2, while LP2MIP-MT is the only
participant on Optimization problems in sub-track #3 of the MP category. Hence, the comparison
between multi-threaded versions and their single-threaded reference systems in Figure 9 includes
eight more domains for LP2MIP-MT, whose total score of 560 is still lower than the 720 points earned
by LP2SAT+PLINGELING-MT. Regarding the number of completed runs, we observe that switching
from single- to multi-threading leads to 20 and 9 more instances solved by LP2SAT+PLINGELING-
MT or LP2MIP-MT, respectively, so that LP2SAT+PLINGELING-MT maintains the edge of its single-
threaded counterpart LP2SAT+LINGELING over LP2MIP (also in terms of total scores). That is, the
multi-threaded versions of sequential systems achieve improvements but do not change the overall
picture, and parallel portfolios, extending the idea of ME-ASP, may probably be even more effective.
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8. Related Competitions

A detailed comparison between past editions of the ASP Competition and various competitions in
neighboring areas has been provided by Calimeri et al. (2016). In the following, we focus on the
novelties introduced in this ASP Competition edition.

As mentioned in Section 6, the instance selection strategy of the Sixth ASP Competition is in-
spired by the 2014 SAT Competition (SAT-Comp, 2014). In comparison, our classification includes
two more hardness categories: “non-groundable” instances, which have no counterpart in SAT in
view of its propositional input format, and “very easy” instances, distinguished from “easy” ones in
order to make a fine-grained instance selection covering a range of scalability. The instance clas-
sification of the 2014 SAT Competition was based on running five solvers that participated before
in the 2012 edition. Then, the selection aimed at a 50-50 ratio between benchmarks categorized
as “medium” or “hard”, while disregarding “easy” instances and allowing “too hard” ones within a
20% pool of freely picked instances. In contrast to this approach, we decided to drop “very easy”
instances only and to include “too hard” ones as a regular class in balanced instance selection, in
order to present challenging instances to participants advancing over earlier reference systems and
to leave room for improvement in the Marathon track. The latter has been inspired by the 2006
QBF Competition (QBF-Comp, 2006), accounts for instances that are “too hard” in the Regular
track, and also intends to assess the impact of time limits on performance results.

The 2014 edition of the International Planning Competition (IPC-Comp, 2014; Vallati, Chrpa,
Grzes, McCluskey, Roberts, & Sanner, 2015) employed an instance selection strategy with similar
goals as ours, i.e., picking instances that are neither too easy nor overly hard. The main difference
to our approach is the usage of actual participant systems for evaluating the empirical hardness of
instances and selecting 20 suitable ones per domain. Building on current participants for selecting
the benchmarks used for ranking the same systems is somewhat problematic, as at least in theory
it biases the selection towards systems that dominate in particular domains, while less specialized
systems performing well in general may be degraded and appear worse than deserved.

Further competitions featuring an instance selection stage based on empirical hardness include
the SMT Competition (SMT-Comp). E.g., SMT solvers submitted in 2011 have been used to clas-
sify instances for the 2012 edition (Cok, Griggio, Bruttomesso, & Deters, 2012), and hardness cat-
egories contribute different percentages of instances depending on whether a domain is concerned
with application, crafted, or random benchmarks. While the ASP Competition does not distinguish
the contexts of benchmarks, the underlying domains, more than 40% of which were application-
oriented in this edition, give some indications. Moreover, the benchmark collection of the 2016
QBF Competition (QBF-Comp, 2016) was composed of instances considered suitable according to
several parameters, such as empirical hardness, syntactic and structural features, and satisfiability,
where 10 instances per domain were then picked at random. The Automated Theorem Proving
Competition series (ATP-Comp; Sutcliffe, 2016) relies on benchmarks from the TPTP (Thousands
of Problems for Theorem Provers) library (Sutcliffe, 2009), which associates instances with numer-
ical ranks, determined by the results of running state-of-the-art systems on them. A benchmark set
is then formed from instances with “intermediate” ranks, in order to exclude too easy or overly hard
ones, while also aiming to balance the numbers of instances picked per domain and to make sure that
at least 50% of the selected instances are new, i.e., have not been run in previous editions. Unlike
that, the MaxSAT Evaluation (MaxSAT-Comp) and the 2016 edition of the Pseudo-Boolean Com-
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petition (PB-Comp, 2016) pick instances at random among those submitted by benchmark authors,
which resembles the approaches of earlier ASP Competition editions.

9. Conclusions and Future Directions

This paper reported about the Sixth ASP Competition, which maintained design decisions made in
the previous edition, but also introduced some novelties, including a benchmark selection stage, a
Marathon track, and an extended benchmark set featuring six new application-oriented domains.
The goals were to (i) assemble a benchmark suite covering a range of scalability, (ii) assess solving
performance on challenging instances in the long run, and (iii) put stronger focus on benchmarks
arising from applications of practical impact. In the following, we discuss the experiences made and
outline potential directions for future ASP Competition editions as well as ASP research in general.

9.1 Portfolio Approaches

In view of the growing maturity of ASP systems, developing a competitive system from scratch
is all but an easy task. Hence, portfolio approaches that can take advantage of existing technol-
ogy constitute a worthwhile alternative, as underpinned by the first place of the newcomer system
ME-ASP in the Regular track. Given that algorithm selection is an active research area of its own
(see, e.g., Bischl, Kerschke, Kotthoff, Lindauer, Malitsky, Fréchette, Hoos, Hutter, Leyton-Brown,
Tierney, & Vanschoren, 2016), there is certainly room for further improvement. Moreover, portfo-
lio approaches may almost seamlessly benefit from parallelization, as demonstrated by the PPFOLIO

system in the 2011 SAT Competition (SAT-Comp, 2011). However, no participant system exploited
a parallel portfolio in the MP category of this ASP Competition edition, so that exploring such
techniques is a subject to future research.

9.2 “Minisat hack”-Like Track

Another option to attract junior researchers as well as experts from neighboring areas to the devel-
opment of ASP solvers may be a track dedicated to modifications of a common reference system,
in the spirit of the Minisat hack track of the SAT Competition series (SAT-Comp). This would
aim to lower the “entrance barrier” by keeping the effort of a successful participation affordable,
especially for one-person teams, and also to provide a test bed for evaluating specific ideas un-
der “laboratory conditions”. Somewhat unfortunately, establishing such a track as part of the ASP
Competition is not as straightforward as it may seem, given that (to our knowledge) there is no
light-weight implementation of a modern ASP solver that would be easy to modify or extend by
third parties. In this respect, the range of language features, including aggregates and positive re-
cursion, as well as computational tasks, addressing Decision, Optimization, and Query problems,
available in ASP necessitates dedicated functionalities going beyond the basic search procedures of
SAT solvers. Hence, coming up with a simple yet general enough reference system is non-trivial
and needs initiative of experienced ASP system developers.

9.3 Grounding Techniques

While virtually all ASP systems rely on a grounding step (cf. Section 2.4), merely the DLV grounder
and GRINGO support the instantiation of ASP-Core-2 programs. As a matter of fact, both grounders
work deterministically (using fixed heuristics), so that the “quality” of encodings at the first-order
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level is a crucial issue, e.g., in the System Synthesis domain investigated in Section 5.2. In order
to substitute such manual tuning and handle “unoptimized” encodings more effectively, first-order
techniques that go beyond the syntactic analysis of predicate-rule dependencies would need to be
applied to non-ground ASP programs. Respective methods are already in use for Query answer-
ing, where DLV exploits so-called magic sets (Alviano et al., 2012) to narrow down the scope of a
query. Similarly, the “lazy grounding” approach of the IDP system (De Cat, Denecker, Bruynooghe,
& Stuckey, 2015) aims to instantiate first-order theories extended with inductive definitions on de-
mand, i.e., driven by search at the ground level. Moreover, IDP is equipped with means to detect
functional dependencies among variables (De Cat & Bruynooghe, 2013) and map them to built-in
constructs, rather than combinatorially instantiating a problem encoding. Such first-order prepro-
cessing techniques must still be regarded as “exotic”, and ASP grounders that provide corresponding
options, which would in turn increase the opportunities and potential benefit of grounder selection
(Maratea et al., 2013, 2015b), remain a subject to future research.

9.4 Language Features

Beyond the availability of efficient systems, sharing basic search and implementation features with
modern (Max)SAT and Pseudo-Boolean solvers, its expressive modeling language is characteristic
for ASP. However, instantiation procedures lead to a propositional representation at the ground level,
which can become a bottleneck, e.g., when dealing with numerical variables over large domains.
To handle such scenarios, Constraint Answer Set Programming (CASP) (Mellarkod, Gelfond, &
Zhang, 2008) has been proposed as an extension incorporating numerical variables and correspond-
ing constraints into ASP programs. The additional expressiveness due to such modeling concepts
has inspired the development of several systems for (dialects of) CASP, including ADSOLVER (Mel-
larkod & Gelfond, 2008), CLINGCON (Ostrowski & Schaub, 2012), EZCSP (Balduccini, 2009), EZSMT

(Susman & Lierler, 2016), INCA (Drescher & Walsh, 2010), and MINGO (Liu et al., 2012). While
tracks dedicated to extensions like CASP would certainly be of interest from the perspective of
knowledge representation, the lack of respective standard input formats (possibly extending ASP-
Core-2) constitutes an open issue that would need to be settled first.

9.5 Modeling Challenges

From 2009 to 2013, three editions of the ASP Competition featured a so-called Model&Solve track
in which the participants had to prepare problem encodings and solving systems domain by domain.
On the one hand, the opportunity to use customized encodings allowed more teams to participate,
as their systems did not have to comply with any fixed modeling language. On the other hand,
the effort of participation was much higher, since encodings had to be devised and systems tuned
individually for each domain. Last but not least, the obtained performance results often reflected the
“cleverness” put into different problem encodings, rather than indicating the relative strengths and
weaknesses of solving systems. Hence, the former Model&Solve track has been replaced by an on-
site modeling event in the previous and this edition of the ASP Competition, aiming to emphasize
the fun of modeling in ASP but also keep the extra effort low. Maintaining and possibly extending
this mode, e.g., by following the Logic/Constraint Programming Contest (LP/CP-Comp, 2016) in
supporting a range of solving systems or on-line participation, is certainly one option for future ASP
Competition editions. Another consideration would be to reintroduce a lighter version of the former
Model&Solve track (each of its editions had included about 30 domains) and restrict challenges
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for modeling and solving to a few selected domains. In this way, systems relying on distinct input
formats or supporting extensions like CASP, which do not pay off on ASP-Core-2 programs, could
be showcased, while allowing participants to focus on specific rather than heterogeneous domains.

Acknowledgments

This paper is an extended and revised version of a preliminary report (Gebser, Maratea, & Ricca,
2015a), which presented the design of the event before the competition was indeed run. A brief
survey of the Sixth ASP Competition was given by Gebser, Maratea, and Ricca (2016).

The organizers of the Sixth ASP Competition would like to thank the LPNMR 2015 officials for
the co-location of the event. Moreover, we are grateful for the local support provided by Mirosław
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Appendix A.

This appendix provides performance results per domain for systems in the SP category (gathering
11 participant systems out of a total of 13). In particular, Tables 4 and 5 refer to the Regular track,
Table 6 lists the outcomes of running the three top-performing systems in the Marathon track, and
Table 7 compares their performance relative to the original and alternative encodings for new do-
mains. (Recall that LP2ACYCPB+CLASP was disqualified in Valves Location and LP2ACYCSAT+GLUCOSE

in Video Streaming, as they produced incorrect optimum answers or solution candidates, respec-
tively.4)
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Table 4: Detailed results of the Sixth ASP Competition for the Regular track (1/2).
The benchmark domains are subdivided by sub-tracks, and “Decision”, “Optimization”, and
“Query” entries in the Problem column denote computational tasks. The top-performing partic-
ipant system is reported for each domain, where an asterisk indicates that no other system obtained
the same score. Further columns provide the scores, cumulative CPU times for runs rewarded
with positive scores, numbers of time and memory outs, and average memory consumption (in
megabytes) for the systems JWASP, LP2ACYCASP+CLASP, LP2ACYCPB+CLASP, LP2ACYCSAT+CLASP,
LP2ACYCSAT+GLUCOSE, and LP2MIP.

jwasp lp2acycasp+clasp lp2acycpb+clasp
Domain Problem Top Performer Score Time TO MO Mem Score Time TO MO Mem Score Time TO MO Mem

Graph Colouring Decision lp2acycsat+clasp 60.0 4649.7 8 0 139.1 85.0 2555.9 3 0 11.4 80.0 4743.6 4 0 21.3
Knight Tour with Holes Decision lp2acycsat+clasp 40.0 689.7 12 0 2010.6 70.0 1357.1 6 0 303.4 70.0 1916.7 6 0 682.3
Labyrinth Decision me-asp 40.0 1171.6 12 0 5897.5 50.0 951.1 10 0 162.1 45.0 1625.5 11 0 870.8
Stable Marriage Decision wasp+dlv* 5.0 869.9 9 10 11089.6 30.0 3714.8 0 14 12237.8 30.0 5395.8 0 14 12236.2
Visit-all Decision lp2sat+lingeling* 40.0 1145.3 12 0 1106.9 80.0 6641.8 4 0 179.3 40.0 954.2 12 0 562.7
Combined Configuration Decision lp2normal+clasp* 5.0 3.2 19 0 3832.0 20.0 261.6 16 0 255.5 10.0 347.6 18 0 1110.5
Consistent Query Answering Query wasp 0.0 − 11 9 10723.5 − − − − − − − − − −
Graceful Graphs Decision lp2acycsat+clasp* 35.0 1339.7 13 0 258.4 60.0 2727.2 8 0 58.0 55.0 3102.9 9 0 60.2
Incremental Scheduling Decision lp2normal+clasp* 25.0 2192.2 11 4 7761.2 70.0 2134.4 5 1 3186.0 55.0 1927.7 8 1 3184.0
Nomystery Decision lp2sat+lingeling* 10.0 76.8 17 1 3982.8 45.0 300.8 11 0 458.2 35.0 2021.1 12 1 3291.2
Partner Units Decision lp2acycsat+clasp* 60.0 3164.3 8 0 1097.3 70.0 817.9 6 0 113.2 70.0 1311.0 6 0 366.0
Permutation Pattern Matching Decision wasp+dlv 60.0 1805.9 0 8 8178.4 40.0 1344.1 0 12 8473.2 40.0 965.7 0 12 8461.4
Qualitative Spatial Reasoning Decision me-asp* 35.0 529.4 0 13 10439.3 45.0 3063.5 11 0 2728.1 35.0 1330.7 13 0 5045.3
Reachability Query wasp+dlv* 0.0 − 0 20 12520.2 − − − − − − − − − −
Ricochet Robots Decision lp2acycasp+clasp* 25.0 2221.6 15 0 441.5 85.0 5369.2 3 0 53.4 55.0 3687.8 9 0 189.8
Sokoban Decision lp2sat+lingeling 40.0 2089.3 12 0 1222.5 60.0 1807.0 8 0 120.2 40.0 2282.8 12 0 379.3
Connected Still Life Optimization lp2acycsat+glucose* 50.0 1312.0 10 0 151.0 70.5 18919.6 15 0 22.3 64.5 19523.0 15 0 35.4
Crossing Minimization Optimization lp2mip* 95.0 311.8 1 0 121.7 46.5 16894.2 14 0 24.1 51.5 15790.8 13 0 28.4
Maximal Clique Optimization lp2acycsat+glucose* 0.0 − 20 0 5978.8 66.5 24000.0 20 0 537.7 63.5 24000.0 20 0 553.8
MaxSAT Optimization wasp+dlv* 65.0 5654.3 7 0 5480.1 65.0 14026.5 11 0 455.4 48.5 17457.7 13 0 592.5
Steiner Tree Optimization lp2normal+clasp* 5.0 15.5 0 19 11896.1 5.0 103.8 1 18 11675.6 5.0 101.8 1 18 11702.9
System Synthesis Optimization wasp/wasp+dlv 0.0 − 20 0 5476.0 61.0 24000.0 20 0 618.7 0.0 − 9 11 11253.8
Valves Location Optimization lp2normal+clasp* 20.0 1688.8 14 2 5210.5 96.0 6320.4 5 0 462.0 disq. disq. disq. disq. disq.
Video Streaming Optimization lp2acycasp+clasp* 45.0 308.0 11 0 5081.5 93.0 6890.2 5 0 24.4 82.0 12601.8 10 0 49.7
Abstract Dialectical Frameworks Optimization lp2normal+clasp* − − − − − − − − − − − − − − −
Complex Optimization Decision lp2normal+clasp* − − − − − − − − − − − − − − −
Minimal Diagnosis Decision me-asp − − − − − − − − − − − − − − −
Strategic Companies Query wasp+dlv* − − − − − − − − − − − − − − −

Overall 760 31239 242 86 5004 1314 144201 182 45 1916 975 121088 201 57 2889

lp2acycsat+clasp lp2acycsat+glucose lp2mip
Domain Problem Top Performer Score Time TO MO Mem Score Time TO MO Mem Score Time TO MO Mem

Graph Colouring Decision lp2acycsat+clasp 85.0 2350.5 3 0 16.0 70.0 4455.9 6 0 64.2 10.0 1819.0 18 0 63.3
Knight Tour with Holes Decision lp2acycsat+clasp 70.0 856.2 6 0 499.4 50.0 896.5 10 0 459.7 40.0 330.0 12 0 820.2
Labyrinth Decision me-asp 45.0 928.9 11 0 185.7 55.0 1660.2 9 0 233.6 0.0 − 20 0 1654.5
Stable Marriage Decision wasp+dlv* 30.0 5248.1 0 14 12241.0 25.0 4858.3 1 14 12232.0 0.0 − 0 20 12352.2
Visit-all Decision lp2sat+lingeling* 60.0 4383.1 8 0 472.3 40.0 830.5 12 0 505.8 75.0 3430.6 5 0 718.3
Combined Configuration Decision lp2normal+clasp* 15.0 847.5 17 0 1755.1 15.0 804.7 17 0 723.0 0.0 − 19 1 3209.3
Consistent Query Answering Query wasp − − − − − − − − − − − − − − −
Graceful Graphs Decision lp2acycsat+clasp* 65.0 3490.2 7 0 67.0 35.0 834.5 13 0 148.6 15.0 2229.2 17 0 716.2
Incremental Scheduling Decision lp2normal+clasp* 0.0 − 0 20 12410.4 0.0 − 0 20 12339.9 0.0 − 0 20 12381.5
Nomystery Decision lp2sat+lingeling* 50.0 834.2 10 0 690.1 40.0 944.5 12 0 987.6 0.0 − 18 2 3839.2
Partner Units Decision lp2acycsat+clasp* 75.0 2588.2 5 0 139.0 35.0 2796.1 13 0 229.9 0.0 − 20 0 1353.3
Permutation Pattern Matching Decision wasp+dlv 40.0 1254.6 0 12 8460.5 40.0 930.9 0 12 8455.9 25.0 1338.6 3 12 8645.5
Qualitative Spatial Reasoning Decision me-asp* 50.0 4224.6 10 0 3471.0 45.0 2940.5 11 0 4622.2 0.0 − 20 0 6873.5
Reachability Query wasp+dlv* − − − − − − − − − − − − − − −
Ricochet Robots Decision lp2acycasp+clasp* 75.0 4359.2 5 0 59.0 65.0 4141.0 7 0 170.7 0.0 − 20 0 651.8
Sokoban Decision lp2sat+lingeling 60.0 2265.5 8 0 267.7 55.0 2326.5 9 0 360.5 0.0 − 20 0 651.0
Connected Still Life Optimization lp2acycsat+glucose* 64.5 19599.6 15 0 43.0 100.0 6764.3 1 0 48.3 3.0 7200.0 20 0 140.0
Crossing Minimization Optimization lp2mip* 50.5 16220.8 13 0 28.5 93.0 6447.3 3 0 46.1 100.0 4881.7 1 0 82.2
Maximal Clique Optimization lp2acycsat+glucose* 63.5 24000.0 20 0 553.6 98.5 13320.4 6 0 371.7 68.5 11763.2 9 0 596.2
MaxSAT Optimization wasp+dlv* 68.5 14496.3 11 0 542.0 77.5 9673.8 2 5 3578.8 64.0 7849.7 8 0 635.2
Steiner Tree Optimization lp2normal+clasp* 5.0 72.2 2 17 11431.1 5.0 61.4 2 17 11438.6 5.0 369.7 2 17 11535.1
System Synthesis Optimization wasp/wasp+dlv 23.0 10800.0 20 0 2659.9 0.0 − 20 0 2824.9 0.0 − 12 8 10035.8
Valves Location Optimization lp2normal+clasp* 30.5 5919.1 4 12 9345.3 33.0 5325.5 3 12 9718.5 0.0 − 0 20 12439.1
Video Streaming Optimization lp2acycasp+clasp* 78.5 12883.4 10 0 246.0 disq. disq. disq. disq. disq. 14.5 10036.8 18 0 2304.4
Abstract Dialectical Frameworks Optimization lp2normal+clasp* − − − − − − − − − − − − − − −
Complex Optimization Decision lp2normal+clasp* − − − − − − − − − − − − − − −
Minimal Diagnosis Decision me-asp − − − − − − − − − − − − − − −
Strategic Companies Query wasp+dlv* − − − − − − − − − − − − − − −

Overall 1104 137622 185 75 2981 977 70013 157 80 3312 420 51249 262 100 4168
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Table 5: Detailed results of the Sixth ASP Competition for the Regular track (2/2).
The benchmark domains are subdivided by sub-tracks, and “Decision”, “Optimization”, and
“Query” entries in the Problem column denote computational tasks. The top-performing participant
system is reported for each domain, where an asterisk indicates that no other system obtained the
same score. Further columns provide the scores, cumulative CPU times for runs rewarded with pos-
itive scores, numbers of time and memory outs, and average memory consumption (in megabytes)
for the systems LP2NORMAL+CLASP, LP2SAT+LINGELING, ME-ASP, WASP, and WASP+DLV.

lp2normal+clasp lp2sat+lingeling me-asp
Domain Problem Top Performer Score Time TO MO Mem Score Time TO MO Mem Score Time TO MO Mem

Graph Colouring Decision lp2acycsat+clasp 85.0 3426.3 3 0 16.7 80.0 4832.5 4 0 39.0 85.0 3505.1 3 0 25.4
Knight Tour with Holes Decision lp2acycsat+clasp 55.0 1103.7 9 0 344.1 10.0 90.6 18 0 712.9 55.0 990.7 9 0 352.0
Labyrinth Decision me-asp 80.0 5683.9 4 0 287.5 45.0 2014.4 11 0 352.4 80.0 5534.7 4 0 294.9
Stable Marriage Decision wasp+dlv* 20.0 3339.8 2 14 12229.3 30.0 4744.2 0 14 12233.7 50.0 5522.6 10 0 1615.1
Visit-all Decision lp2sat+lingeling* 85.0 9400.2 3 0 177.7 100.0 9593.5 0 0 253.4 70.0 6440.6 6 0 125.4
Combined Configuration Decision lp2normal+clasp* 35.0 1347.9 13 0 369.0 10.0 110.1 18 0 698.7 30.0 2756.3 14 0 1216.5
Consistent Query Answering Query wasp − − − − − − − − − − 0.0 − 16 4 2218.7
Graceful Graphs Decision lp2acycsat+clasp* 55.0 1147.8 9 0 49.7 45.0 765.2 11 0 105.4 55.0 2257.3 9 0 102.8
Incremental Scheduling Decision lp2normal+clasp* 75.0 3337.4 4 1 3179.8 0.0 − 0 20 12409.6 65.0 1525.8 7 0 3029.0
Nomystery Decision lp2sat+lingeling* 40.0 565.2 12 0 1640.9 60.0 3616.4 8 0 741.5 45.0 1003.0 11 0 1383.6
Partner Units Decision lp2acycsat+clasp* 70.0 1582.0 6 0 152.9 20.0 628.6 16 0 250.2 70.0 461.5 6 0 179.0
Permutation Pattern Matching Decision wasp+dlv 40.0 997.5 0 12 8458.1 40.0 1109.4 0 12 8452.6 100.0 2779.5 0 0 1191.2
Qualitative Spatial Reasoning Decision me-asp* 55.0 5132.2 9 0 2379.8 35.0 1287.3 13 0 2297.9 100.0 2544.5 0 0 811.9
Reachability Query wasp+dlv* − − − − − − − − − − 90.0 2713.4 0 2 3022.4
Ricochet Robots Decision lp2acycasp+clasp* 45.0 704.1 11 0 129.4 80.0 4930.7 4 0 84.3 55.0 2342.8 9 0 73.8
Sokoban Decision lp2sat+lingeling 40.0 643.0 12 0 314.1 65.0 2082.3 7 0 221.6 65.0 3236.2 7 0 742.0
Connected Still Life Optimization lp2acycsat+glucose* 96.5 10091.0 7 0 26.0 − − − − − 80.0 11159.7 8 0 27.6
Crossing Minimization Optimization lp2mip* 85.5 8160.5 6 0 22.0 − − − − − 97.0 1207.8 1 0 7.9
Maximal Clique Optimization lp2acycsat+glucose* 81.5 20579.5 15 0 365.6 − − − − − 87.0 11289.7 5 0 204.1
MaxSAT Optimization wasp+dlv* 70.0 13258.1 10 0 439.2 − − − − − 81.0 6318.2 5 0 438.4
Steiner Tree Optimization lp2normal+clasp* 93.5 19857.6 17 0 3156.1 − − − − − 80.5 22801.8 19 0 6016.5
System Synthesis Optimization wasp/wasp+dlv 71.5 24000.0 20 0 202.4 − − − − − 81.5 18532.6 13 0 186.1
Valves Location Optimization lp2normal+clasp* 97.5 5459.3 4 0 553.7 − − − − − 80.5 12505.5 9 0 399.4
Video Streaming Optimization lp2acycasp+clasp* 89.0 7773.3 5 0 31.3 − − − − − 55.5 13200.0 11 0 317.4
Abstract Dialectical Frameworks Optimization lp2normal+clasp* 100.0 140.9 0 0 16.6 − − − − − 97.5 2112.4 1 0 28.6
Complex Optimization Decision lp2normal+clasp* 95.0 2492.2 1 0 476.1 − − − − − 35.0 459.4 13 0 303.7
Minimal Diagnosis Decision me-asp 100.0 281.8 0 0 264.8 − − − − − 100.0 188.7 0 0 278.3
Strategic Companies Query wasp+dlv* − − − − − − − − − − 80.0 2939.0 4 0 24.0

Overall 1760 150505 182 27 1411 620 35805 110 46 2775 1971 146329 200 6 879

wasp wasp+dlv
Domain Problem Top Performer Score Time TO MO Mem Score Time TO MO Mem

Graph Colouring Decision lp2acycsat+clasp 50.0 2831.2 10 0 83.4 45.0 1818.6 11 0 136.4
Knight Tour with Holes Decision lp2acycsat+clasp 50.0 1381.6 10 0 338.6 50.0 1362.4 10 0 522.9
Labyrinth Decision me-asp 70.0 3492.3 6 0 462.9 70.0 3420.9 6 0 829.2
Stable Marriage Decision wasp+dlv* 75.0 9847.9 5 0 1622.9 80.0 10830.1 4 0 1650.2
Visit-all Decision lp2sat+lingeling* 40.0 378.1 12 0 878.5 40.0 354.9 12 0 2147.8
Combined Configuration Decision lp2normal+clasp* 5.0 784.7 19 0 563.7 5.0 792.2 19 0 1643.5
Consistent Query Answering Query wasp 90.0 5465.7 2 0 5275.3 90.0 5518.0 2 0 5268.9
Graceful Graphs Decision lp2acycsat+clasp* 15.0 897.9 17 0 361.3 15.0 881.8 17 0 953.9
Incremental Scheduling Decision lp2normal+clasp* 45.0 1394.2 10 1 3638.4 45.0 1440.1 10 1 3638.4
Nomystery Decision lp2sat+lingeling* 45.0 994.8 11 0 1081.9 45.0 1039.5 11 0 2512.5
Partner Units Decision lp2acycsat+clasp* 70.0 4400.2 6 0 454.6 70.0 4391.6 6 0 1373.3
Permutation Pattern Matching Decision wasp+dlv 100.0 2578.1 0 0 1181.2 100.0 2491.8 0 0 1179.8
Qualitative Spatial Reasoning Decision me-asp* 90.0 5236.6 2 0 3237.9 90.0 5286.6 2 0 3232.0
Reachability Query wasp+dlv* 0.0 − 0 20 12898.4 100.0 3470.2 0 0 6149.6
Ricochet Robots Decision lp2acycasp+clasp* 45.0 2675.9 11 0 331.3 45.0 2666.8 11 0 852.7
Sokoban Decision lp2sat+lingeling 55.0 2984.7 9 0 544.9 60.0 4082.1 8 0 1683.6
Connected Still Life Optimization lp2acycsat+glucose* 65.0 1251.5 7 0 92.8 75.5 10164.7 8 0 100.5
Crossing Minimization Optimization lp2mip* 95.0 647.8 1 0 67.2 96.5 1278.1 1 0 37.0
Maximal Clique Optimization lp2acycsat+glucose* 50.0 3788.2 10 0 891.7 74.0 14405.6 8 0 891.0
MaxSAT Optimization wasp+dlv* 93.5 1830.5 1 0 1074.1 96.0 3125.8 1 0 1059.6
Steiner Tree Optimization lp2normal+clasp* 59.5 14463.3 12 7 7282.8 59.5 14464.7 12 7 7308.6
System Synthesis Optimization wasp/wasp+dlv 96.5 24000.0 20 0 604.3 96.5 24000.0 20 0 605.2
Valves Location Optimization lp2normal+clasp* 93.0 5992.1 5 0 1301.9 91.0 6615.8 5 0 1303.7
Video Streaming Optimization lp2acycasp+clasp* 45.0 0.8 11 0 296.7 53.5 12000.7 11 0 308.7
Abstract Dialectical Frameworks Optimization lp2normal+clasp* 95.0 628.9 1 0 129.3 95.0 2612.6 2 0 138.3
Complex Optimization Decision lp2normal+clasp* 35.0 2234.6 13 0 1594.8 50.0 5378.8 10 0 1594.9
Minimal Diagnosis Decision me-asp 100.0 360.2 0 0 1419.7 100.0 372.0 0 0 1421.2
Strategic Companies Query wasp+dlv* 0.0 − 0 20 12607.4 100.0 851.5 0 0 19.1

Overall 1673 100542 211 48 2154 1938 145118 207 8 1734
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Table 6: Detailed results of the Sixth ASP Competition for the Marathon track.
The benchmark domains are subdivided by sub-track, and “Decision”, “Optimization”, and “Query”
entries in the Problem column denote computational tasks. The top-performing participant system
is reported for each domain, where an asterisk indicates that no other system obtained the same
score. Further columns provide the scores, cumulative CPU times for runs rewarded with positive
scores, numbers of time and memory outs, and average memory consumption (in megabytes) for
the systems LP2NORMAL+CLASP, ME-ASP, and WASP+DLV.

lp2normal+clasp me-asp wasp+dlv
Domain Problem Top Performer Score Time TO MO Mem Score Time TO MO Mem Score Time TO MO Mem

Graph Colouring Decision lp2normal+clasp 95.0 11987.0 1 0 16.7 95.0 12858.8 1 0 25.4 75.0 20027.1 5 0 136.4
Knight Tour with Holes Decision me-asp 55.0 1103.7 9 0 344.1 55.0 990.7 9 0 352.0 55.0 8014.1 9 0 522.9
Labyrinth Decision lp2normal+clasp 100.0 18312.3 0 0 287.5 100.0 18687.4 0 0 294.9 90.0 15690.7 2 0 829.2
Stable Marriage Decision wasp+dlv 30.0 8756.8 0 14 12229.3 95.0 23162.5 1 0 1615.1 95.0 16672.2 1 0 1650.2
Visit-all Decision lp2normal+clasp 100.0 13409.4 0 0 177.7 100.0 15340.6 0 0 125.4 70.0 40486.7 6 0 2147.8
Combined Configuration Decision lp2normal+clasp* 60.0 17974.1 8 0 369.0 45.0 19058.6 11 0 1216.5 10.0 6853.4 18 0 1643.5
Consistent Query Answering Query wasp+dlv* − − − − − 0.0 − 12 8 2218.7 100.0 8837.0 0 0 5268.9
Graceful Graphs Decision me-asp 65.0 6715.8 7 0 49.7 65.0 6660.8 7 0 102.8 30.0 15665.7 14 0 953.9
Incremental Scheduling Decision lp2normal+clasp* 75.0 3337.4 4 1 3179.8 70.0 2908.3 6 0 3029.0 55.0 9946.4 8 1 3638.4
Nomystery Decision me-asp* 50.0 6210.2 10 0 1640.9 55.0 13946.4 9 0 1383.6 50.0 4616.6 10 0 2512.5
Partner Units Decision me-asp 75.0 4021.2 5 0 152.9 75.0 3201.7 5 0 179.0 75.0 6505.8 5 0 1373.3
Permutation Pattern Matching Decision wasp+dlv 40.0 997.5 0 12 8458.1 100.0 2779.5 0 0 1191.2 100.0 2491.8 0 0 1179.8
Qualitative Spatial Reasoning Decision me-asp 100.0 20875.2 0 0 2379.8 100.0 2544.5 0 0 811.9 100.0 9045.6 0 0 3232.0
Reachability Query wasp+dlv* − − − − − 90.0 2713.4 0 2 3022.4 100.0 3470.2 0 0 6149.6
Ricochet Robots Decision me-asp* 85.0 32802.2 3 0 129.4 100.0 25180.4 0 0 73.8 70.0 23694.0 6 0 852.7
Sokoban Decision me-asp 60.0 13948.7 8 0 314.1 65.0 3236.2 7 0 742.0 65.0 10742.9 7 0 1683.6
Connected Still Life Optimization wasp+dlv* 93.3 63000.0 5 0 36.8 78.3 79829.6 7 0 34.8 96.7 46193.5 1 0 171.2
Crossing Minimization Optimization me-asp 90.0 46859.0 3 0 27.3 100.0 3205.3 0 0 8.3 100.0 8309.0 0 0 64.9
Maximal Clique Optimization me-asp* 80.0 118558.7 10 0 508.8 93.3 50023.6 4 0 203.0 86.7 56145.5 4 0 1086.7
MaxSAT Optimization wasp+dlv* 73.3 109258.1 10 0 462.9 83.3 54318.2 5 0 603.1 100.0 4583.5 0 0 1059.6
Steiner Tree Optimization lp2normal+clasp* 91.7 184257.6 17 0 3443.8 50.0 124359.7 8 11 10027.3 53.3 123660.7 11 8 8011.7
System Synthesis Optimization me-asp* 35.0 216000.0 20 0 372.6 85.0 117067.7 8 0 327.5 81.7 208624.5 19 0 864.4
Valves Location Optimization lp2normal+clasp* 100.0 26067.5 2 0 553.7 85.0 73475.9 5 0 512.4 93.3 32057.2 2 0 1467.4
Video Streaming Optimization lp2normal+clasp* 98.3 55773.3 5 0 53.6 73.3 118800.0 11 0 1035.3 68.3 108000.7 11 0 800.5
Abstract Dialectical Frameworks Optimization lp2normal+clasp 100.0 140.9 0 0 16.6 96.7 11712.4 1 0 30.3 100.0 7020.5 0 0 165.6
Complex Optimization Decision lp2normal+clasp* 100.0 4027.5 0 0 476.1 35.0 459.4 13 0 303.7 80.0 21194.7 4 0 1594.9
Minimal Diagnosis Decision me-asp 100.0 281.8 0 0 264.8 100.0 188.7 0 0 278.3 100.0 372.0 0 0 1421.2
Strategic Companies Query wasp+dlv − − − − − 100.0 13879.1 0 0 24.0 100.0 851.5 0 0 19.1

Overall 1952 984676 127 27 1438 2190 800589 130 21 1063 2200 819773 143 9 1804

Table 7: Detailed comparison between original and alternative encodings for new domains.
The benchmark domains are subdivided by domains, and “Decision”, “Optimization”, and “Query”
entries in the Problem column denote computational tasks. Further columns provide the number of
solutions found, cumulative CPU times for runs in which some solution was found, and numbers of
time and memory outs for the systems LP2NORMAL+CLASP, ME-ASP, and WASP+DLV.

lp2normal+clasp me-asp wasp+dlv
Domain Problem Encoding Sol Time TO MO Sol Time TO MO Sol Time TO MO
Combined Configuration Decision Original 7 1347.9 13 0 6 2756.3 14 0 1 792.2 19 0
Combined Configuration Decision Alternative 16 2133.3 4 0 16 1517.6 4 0 9 4615.8 11 0
MaxSAT Optimization Original 20 13258.1 10 0 20 6318.2 5 0 20 3125.8 1 0
MaxSAT Optimization Alternative 20 12233.3 10 0 20 6139.8 5 0 20 835.2 0 0
Steiner Tree Optimization Original 19 19857.6 17 0 20 22801.8 19 0 13 14464.7 12 7
Steiner Tree Optimization Alternative 20 18060.4 15 0 20 17341.0 14 0 20 19200.9 16 0
System Synthesis Optimization Original 20 24000.0 20 0 20 18532.6 13 0 20 24000.0 20 0
System Synthesis Optimization Alternative 20 24000.0 20 0 20 15651.4 12 0 20 24000.0 20 0
Video Streaming Optimization Original 20 7773.3 5 0 20 13200.0 11 0 19 12000.7 11 0
Video Streaming Optimization Alternative 13 4826.2 10 0 17 9605.4 11 0 13 6008.2 11 0
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Janhunen, T., Niemelä, I., & Sevalnev, M. (2009). Computing stable models via reductions to differ-
ence logic. In Erdem, E., Lin, F., & Schaub, T. (Eds.), Proceedings of the Tenth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09), Vol. 5753
of Lecture Notes in Computer Science, pp. 142–154. Springer.

Janota, M., & Marques-Silva, J. (2011). On deciding MUS membership with QBF. In Lee, J.
(Ed.), Proceedings of the Seventeenth International Conference on Principles and Practice
of Constraint Programming (CP’11), Vol. 6876 of Lecture Notes in Computer Science, pp.
414–428. Springer.

Kaufmann, B., Leone, N., Perri, S., & Schaub, T. (2016). Grounding and solving in answer set
programming. AI Magazine, 37(3), 25–32.

Koch, C., Leone, N., & Pfeifer, G. (2003). Enhancing disjunctive logic programming systems by
SAT checkers. Artificial Intelligence, 15(1-2), 177–212.
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Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2), 181–234.

SMT-Comp. Annual SMT Competition. http://smtcomp.sourceforge.net.

Susman, B., & Lierler, Y. (2016). SMT-based constraint answer set solver EZSMT. In Carro, M.,
& King, A. (Eds.), Technical Communications of the Thirty-second International Conference
on Logic Programming (ICLP’16), Vol. 52 of Open Access Series in Informatics. Schloss
Dagstuhl.

Sutcliffe, G. (2009). The TPTP problem library and associated infrastructure. Journal of Automated
Reasoning, 43(4), 337–362.

94



THE SIXTH ANSWER SET PROGRAMMING COMPETITION

Sutcliffe, G. (2016). The 8th IJCAR automated theorem proving system competition – CASC-J8.
AI Communications, 29(5), 607–619.

Syrjänen, T. (2001). Omega-restricted logic programs. In Eiter, T., Faber, W., & Truszczyński,
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