
Undefined 1 (2014) 1–5 1
IOS Press

Nurse (Re)scheduling Via Answer Set
Programming 1

Mario Alviano a, Carmine Dodaro b,∗ and Marco Maratea b

a Department of Mathematics and Computer Science, University of Calabria, Ponte P. Bucci Cubo 30B, 87036,
Arcavacata di Rende (CS), Italia
E-mail: alviano@mat.unical.it
b Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Viale F.
Causa 15, 16145, Genova (GE), Italia
E-mail: {dodaro,marco}@dibris.unige.it

Abstract. The goal of the Nurse Scheduling Problem is to find an assignment of nurses to shifts according to specific require-
ments. Frequently, a computed schedule may become not usable because of sudden absences of some nurses. In this cases, Nurse
Rescheduling amounts to the computation of a new schedule, which has to satisfy the original requirements and the new absences.
Additionally, a good solution to the Nurse Rescheduling Problem must be as similar as possible to the original schedule, which
practically means that the number of changes has to be minimized. This paper focuses on the requirements specified by an Italian
hospital, and recently addressed by an approach based on Answer Set Programming (ASP). Even if promising results have been
obtained with ASP, the original encoding presents some intrinsic weaknesses, which are identified and eventually circumvented
in this paper. The new encoding is designed by taking into account both intrinsic properties of Nurse Scheduling and internal
details of ASP solvers, such as cardinality and weight constraint propagators. The performance gain of CLINGO and WASP is
empirically verified on instances from ASP literature. As an additional contribution, the performance of CLINGO and WASP is
compared to other declarative frameworks, namely SAT and ILP; the best performance is obtained by CLINGO running the new
ASP encoding. The advanced ASP encodings are then extended to solve Nurse Rescheduling, and an empirical evaluation is
conducted with CLINGO and WASP.

1. Introduction

The Nurse Scheduling Problem (NSP) consists of
generating a schedule of working and rest days for
nurses employed in hospital units. The schedule should
determine the shift assignments of nurses for a pre-
determined window of time, and must satisfy require-
ments imposed by the Rules of Procedure of hospitals.
A proper solution to the NSP is crucial to guarantee
the high level of quality of health care, to improve the
degree of satisfaction of nurses, and the recruitment
of qualified personnel. Given its practical relevance of

1This paper includes parts and significantly extends our previous
work [7].

*Corresponding author. E-mail: dodaro@dibris.unige.it.

the quality of hospital structures, NSP has been widely
studied in the literature, and several variants have been
considered [16,20]. Such variants are usually grouped
according to several factors, as the planning period, the
different types of shifts considered, and requirements
on the preferences of hospitals and nurses.

The NSP variant considered in this paper concerns
a planning period fixed to one year with three differ-
ent types of shifts (morning, afternoon and night) and
requirements on nurses and hospitals provided by an
Italian hospital. Specifically, such requirements con-
cern restrictions to the number of working hours per
year and to the number of times nurses are assigned to
a specific shift.

However, in hospital units that operate 24 hours a
day, 7 days for week, it is frequent that one planned

0000-0000/14/$00.00 c© 2014 – IOS Press and the authors. All rights reserved

2 M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming

schedule cannot be fulfilled due to sudden absences
of nurses. The Nurse Rescheduling Problem (NRP),
instead, occurs when one or more nurses notify their
unavailability to attend one or more scheduled shifts,
and aims at finding a new schedule taking into such
unavailability, at the same time minimizing the differ-
ences with a previous computed schedule. It is impor-
tant to emphasize here that rescheduling is usually in-
dependent from the quality of the schedule, and it is
usually due to unpredictable events, e.g. illness of one
or more nurses. When a sudden absence occurs, the
planned schedule must be modified to ensure a good
quality of the health care service. On the other hand,
employees usually tend to organize their free time,
thus modifications of a previously announced schedule
may create personal inconveniences and may not be
very well accepted by the workforce. Therefore, typ-
ically the schedule cannot be completely rebuilt from
scratch. Instead, the goal should be to determine a new
feasible scheduling minimizing the number of shift
changes with respect to the previous schedule. More-
over, as argued in [21], rescheduling is a quite frequent
activity and often requires reactive and immediate de-
cisions. Thus, any approach aiming at solving the NRP
should consider this additional requirement of being
efficiently computed.

Complex combinatorial problems, such as NSP and
NRP, are usually the target for the application of
logic formalisms such as Answer Set Programming
(ASP) [15]. Its simple syntax [17] and the intuitive
semantics [31], combined with the availability of ro-
bust implementations (see, e.g. [3,28]), make ASP
an ideal candidate for addressing such problems. In-
deed, ASP has been already successfully used for
solving hard combinatorial and application problems
in several research areas, including Artificial Intel-
ligence [10,23], Bioinformatics [25,35], Hydroinfor-
matics [26], Databases [38], and also employed in in-
dustrial applications [1,24]. Recently, the aforemen-
tioned variant of NSP has been modeled by means
of an ASP encoding presented in [22]. The encod-
ing resulted to be natural and intuitive, in the sense
that it was designed by applying the standard mod-
eling methodology, yet obtaining reasonable perfor-
mance on solving the analyzed instances.

On the other hand, it turned out that the encoding
presented in [22] shows some limitations and intrin-
sic weaknesses, mainly due to aggregates [4], i.e. op-
erations on multi-sets of weighted literals that evalu-
ate to some value. Indeed, the encoding exploits some
aggregates with a quite large number of literals and

few different weights, resulting to be counterproduc-
tive for the performance of modern ASP solvers [29],
since they decrease their propagation power.

In this paper, we circumvented such limitations by
taking into account only combinations of values that
can lead to admissible schedules. Interestingly, the new
encoding did not require to significantly sacrifice read-
ability, as it remains intuitive and clear. Moreover, the
new encoding is used as basis for an ASP-based solu-
tion for NRP.

The performance of the ASP solvers executed on
the new encoding for NSP has been empirically evalu-
ated on the same data and settings used in [22], show-
ing a clear improvement in performance of state-of-
the-art ASP systems CLINGO [28] and WASP [5]. As
an additional contribution, the ASP-based approaches
have been compared to other declarative frameworks,
namely Propositional Logic Satisfiability (SAT) [8]
and Integer Linear Programming (ILP) [32]. Results
show that CLINGO and WASP executed on the new en-
coding outperform their counterparts executed on the
original encoding. In particular, CLINGO executed on
the new encoding is considerably faster than all other
tested approaches.

The encoding for NRP has been tested by consider-
ing one previous schedule, and simulating sudden ab-
sences for nurses. Results on 150 random scenarios
show that state-of-the-art ASP systems CLINGO and
WASP can compute a solution for the NRP in few sec-
onds.

The contributions of the paper can be summarized
as follows:

1. We formalize the variant of NSP considered in
[22] (Section 4.1).

2. We formalize the variant of NRP based on the
variant of NSP considered in this paper (Sec-
tion 4.2).

3. We propose a new ASP-based solution to the
NSP overcoming some limitations of the encod-
ing presented in [22] (Section 5.2).

4. We propose a new ASP-based solution to NRP
(Section 6).

5. We present an experimental analysis comparing
the basic and advanced ASP solutions as well as
with SAT and ILP based solutions (Section 7.1).
Results show a significant improvement of the
performance of ASP solvers and, specifically,
CLINGO performs better than all other alterna-
tives.

M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming 3

6. We present an evaluation of rescheduling, which
simulates sudden absences of nurses (Section 7.2).
Results show that ASP systems can compute a
solution for NRP in few seconds in our setting.

2. Preliminaries

We assume that the reader is familiar with basic
knowledges on Answer Set Programming and ASP-
CORE-2 input language specification [17]. Minimal
notions are anyhow introduced in this section in order
to ease the understanding of the encodings presented
in Sections 5–6.

The evaluation of an ASP program is usually made
in two steps, called grounding and solving. First,
the ASP program with variables is evaluated by the
grounder, which is responsible to produce its variable-
free (propositional) counterpart.

Example 2.1 (Grounding). Consider as example the
following rules:

a(1..6). b(1..10). c(1..3).
p : {out(X,Y, Z) : c(Z)} = 1 :- a(X), b(Y).
c : :- b(Y), c(Z), #count{X : out(X,Y,Z)} <= 1.
w : :∼ out(X,Y,Z). [Z@1,X,Y]

The grounding of p consists of 60 (i.e. 6 × 10) propo-
sitional rules of the following form:

p1 : {out(1,1,1); out(1,1,2); out(1,1,3)} = 1.
p2 : {out(1,2,1); out(1,2,2); out(1,2,3)} = 1.

.

.

.
p50 : {out(6,10,1); out(6,10,2); out(6,10,3)} = 1.

Intuitively, choice rule p1 enforces that exactly one
atom between out(1,1,1), out(1,2,1) and
out(1,3,1) must be true in an answer set. Similar
considerations hold for other ground rules generated.

The grounding of c consists of 30 (i.e. 10 × 3) (in-
tegrity) constraints of the following form:

c1 : :- #count{out(1,1,1); out(2,1,1);
out(3,1,1); out(4,1,1);
out(5,1,1); out(6,1,1)} <= 1.

c2 : :- #count{out(1,2,1); out(2,2,1);
out(3,1,1); out(4,2,1);
out(5,2,1); out(6,2,1)} <= 1.

.

.

.
c30 : :- #count{out(1,10,3); out(2,10,3);

out(3,10,3); out(4,10,3);
out(5,10,3); out(6,10,3)} <= 1.

As example, constraint c1 enforces that the count
of true atoms among out(1,1,1), out(2,1,1),

out(3,1,1), out(4,1,1), out(5,1,1), and
out(6,1,1) must be greater than or equal to 2.

Finally, the grounding of w consists of 180 (i.e. 6×
10× 3) weak constraints of the following form:

w1 : :∼ out(1,1,1). [1@1]
w2 : :∼ out(1,1,2). [2@1]

.

.

.
w180 : :∼ out(6,10,3). [3@1]

Weak constraints are used to express conditions that
should be satisfied. Thus, they may be violated, and
their semantics involves minimizing the number of vi-
olations. For instance, the informal meaning of w1 is
“out(1,1,1) should preferably be false”. In addition,
each weak constraint is associated to a weight and to a
priority level (defined by the syntax [weight@level]).
Optimal answer sets are those minimizing the sum of
weights of the violated weak constraints at the highest
priority level and, among them, those which minimize
the sum of weights of the violated weak constraints in
the next lower level. The process is applied recursively
until the lowest level. �

The propositional program produced by the grounder
is evaluated by the solver, whose role is to produce
an answer set. Modern ASP solvers implement the al-
gorithm CDCL [29], which is based on the pattern
choose-propagate-learn. Intuitively, the idea is to build
an answer set step-by-step by starting from an empty
interpretation, i.e. all atoms are initially undefined.
Then, the algorithm heuristically chooses an undefined
atom to be true in the answer set, and the deterministic
consequences of this choice are propagated, i.e. new
atoms are derived true or false in the answer set can-
didate. The propagation may lead to a conflict, i.e. an
atom is true and false at the same time. In this case,
the conflict is analyzed and a new constraint is added
to the propositional program (learning). The conflict
is then repaired, i.e. choices leading to the conflict are
retracted and a new undefined atom is heuristically se-
lected. The algorithm then iterates until no undefined
atoms are left, i.e. an answer set is produced, or the in-
coherence of the propositional program is proved, i.e.
no answer sets are admitted.

Example 2.2 (Propagation). Consider the proposi-
tional rule p1 reported in Example 2.1 and assume that
atoms out(1,1,1) and out(1,1,2) have been
heuristically assigned to false. Then, the solver derives
out(1,1,3) to true because it is the only way to sat-
isfy rule p1. �

4 M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming

In presence of weak constraints, modern solvers
apply a strategy based on the so-called unsatisfiable
cores. In particular, such an algorithm starts by search-
ing an answer set satisfying all weak constraints,
which would be therefore optimal. On the other hand,
if there is no an answer set of this kind, a subset of
the weak constraints that cannot be jointly satisfied is
identified. Such a set is called unsatisfiable core, and
essentially evidences that any optimal answer set must
sacrifice at least one of the desiderata expressed by the
weak constraints. Moreover, the program can be mod-
ified by replacing the weak constraints in the unsatis-
fiable core with new weak constraints that essentially
express a preference for optimum answer sets satisfy-
ing all but one of the original weak constraints, and
anyhow the largest number of them, so that the process
can be reiterated.

3. Problems Description

We start this section by providing a description of
the Nurse Scheduling Problem as posed by an Italian
hospital (Section 3.1). In the description we identify
elements that allow to reuse the proposed solution even
if part of the specification given by the hospital will
change. After that, we describe the Nurse Reschedul-
ing Problem as posed by the same Italian hospital (Sec-
tion 3.2).

3.1. Nurse Scheduling Problem

NSP amounts to the totalization of partial schedules
assigning nurses to working and rest days over a pre-
determined period of time, which is fixed to one year
in this paper. Usually, partial schedules to be totalized
involve few data concerning already authorized vaca-
tions. Admissible schedules must satisfy a set of re-
quirements dictated by the rules of the hospital units.
In the following, we report the requirements specified
by an Italian hospital.

Hospital requirements. For every working day, nurses
can be assigned to exactly one of the following shifts:
morning (7 A.M. – 2 P.M.), afternoon (2 P.M. – 9
P.M.), night (9 P.M. – 7 A.M.). Thus, the morning and
the afternoon shifts last 7 hours, whereas the night shift
lasts 10 hours. In order to ensure the best assistance
program for patients, the number of nurses in every
shift x ∈ {morning, afternoon, night} must range
from xnursemin to xnursemax .

Nurses requirements. In order to guarantee a fair
workload, each nurse must work a number of hours
ranging from workmin to workmax. Additional re-
quirements are also imposed to ensure an adequate rest
period to each nurse: (a) nurses are legally guaranteed
30 days of paid vacation; (b) the starting time of a shift
must be at least 24 hours later than the starting time of
the previous shift; and (c) each nurse has at least two
ordinary rest days for every window of fourteen days.
In addition, nurses working on two consecutive nights
deserve one special rest day in addition to the ordinary
rest days.

Balance requirements. The number of morning, af-
ternoon and night shifts assigned to every nurse should
range over a set of acceptable values, that is, from xdaymin

to xdaymax for each x ∈ {morning, afternoon, night}.

Optimal balance requirements. In addition to the
above requirements, the hospital reported some fur-
ther requirements to guarantee a balance in the assign-
ment of shifts. Indeed, the number of morning, after-
noon and night shifts assigned to every nurse should
be preferably fixed to some desired values, that is, xday

for each x ∈ {morning, afternoon, night}.

3.2. Nurse Rescheduling Problem

NRP addresses situations where an already com-
puted schedule is not usable because of sudden ab-
sences of some nurses. Stated differently, nurses are
following a previously computed schedule, and some
of them report impossibility to work on some future
days, for example because of health problems or per-
sonal issues. In such cases, the previously computed
schedule has to be changed starting from a future
day that must not follow any reported absence. The
new schedule must clearly satisfy all requirements de-
scribed in Section 3.1, with the exception that any ab-
sence due to health problems must not be rescheduled.
Additionally, the new schedule must minimize the dif-
ferences with the previous schedule, and such a mini-
mization has priority over any other optimality require-
ments.

4. Problems Formalization

The computational problems described in the pre-
vious section, namely the Nurse Scheduling Problem
and the Nurse Rescheduling Problem, are formalized
in Section 4.1 and 4.2, respectively. The formalization

M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming 5

takes into account all parameters identified in the pre-
vious section, which are properly represented as part
of the input.

4.1. Nurse Scheduling Problem

According to the requirements described in Sec-
tion 3.1, we define the following decisional problem
NSP d: Given a set N of nurses, a set S={morning,
afternoon, night, special-rest, rest, vacation} of
shifts, a set Sw = {morning, afternoon, night} of
working shifts, a partial schedule

s′ : N × [1..365] 7→ S, (1)

natural numbers workmin, workmax, and xnursemin ,
xnursemax , xdaymin, xdaymax for x ∈ Sw, checks the existence of
a schedule

s : N × [1..365]→ S (2)

extending s′ and satisfying the following conditions:

|{n ∈ N : s(n, d) = x}|∈ [xnursemin ..xnursemax] (3)

for all x ∈ Sw, and all d ∈ [1..365];

7· | {d ∈ [1..365] : s(n, d) ∈ {morning,

afternoon}} | +10· | {d ∈ [1..365] :

s(n, d) = night} | ∈ [workmin..workmax]

(4)

| {d ∈ [1..365] : s(n, d) = vacation} |= 30 (5)

| {d ∈ [2..365] : s(n, d) = morning,

s(n, d − 1) ∈ {afternoon, night}} |= 0

| {d ∈ [2..365] : s(n, d) = afternoon,

s(n, d − 1) = night} |= 0

(6)

for all n ∈ N;

| {d′ ∈ [d..d + 13] : s(n, d′) = rest} |≥ 2 (7)

for all n ∈ N, and all d ∈ [1..352];

s(n, d) = special-rest if and only if

s(n, d − 1) = night and s(n, d − 2) = night

(8)

for all n ∈ N, and all d ∈ [3..365];

|{d ∈ [1..365] : s(n, d) = x}|∈ [xdaymin ..x
day
max] (9)

for all n ∈ N, and x ∈ Sw.

Actually, NSP d does not take into account the op-
timal balance requirements. To cover such require-
ments, we define the following optimization problem
NSP o: Given a set N of nurses, a set S = {morning,
afternoon, night, special-rest, rest, vacation} of
shifts, a set Sw = {morning, afternoon, night}
of working shifts, a partial schedule s′ of the form
(1), natural numbers workmin, workmax, and xnursemin ,
xnursemax , xday , xdaymin, xdaymax for x ∈ Sw, compute a sched-
ule s of the form (2) satisfying (3)–(9), and minimizing

∑
x∈Sw, n ∈ N

abs(xday− | daysn
x |) (10)

where

daysn
x := {d ∈ [1..365] : s(n, d) = x}. (11)

4.2. Nurse Rescheduling Problem

According to the requirements described in Sec-
tion 3.2, we define two optimization problems, namely
NRP d and NRP o, where the second also takes
into account the optimal balance requirements, which
are instead not part of the first computational prob-
lem. Specifically, NRP d is the following problem:
Given a set N of nurses, a set S = {morning,
afternoon, night, special-rest, rest, vacation,
health-problem, personal-problem, morninghp,
afternoonhp, nighthp} of shifts, a set Sw =
{morning, afternoon, night} of working shifts, nat-
ural numbers workmin, workmax, and xnursemin , xnursemax ,
xdaymin, xdaymax for x ∈ Sw, a (previously computed) sched-
ule s of the form (2), a partial schedule s′ of the form
(1), and a day start-date ∈ [1..365], compute a sched-
ule s′′ satisfying (3), (5)–(9), and the following condi-
tions:

7· | {d ∈ [1..365] : s(n, d) ∈ {morning,

afternoon,morninghp, afternoonhp}} |

+ 10· | {d ∈ [1..365] : s(n, d) ∈ {night,

nighthp}} | ∈ [workmin..workmax]

(12)

6 M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming

for all n ∈ N;

if s′(n, d) ∈ S \ {health-problem}

then s′′(n, d) = s′(n, d)
(13)

if s′(n, d) = health-problem

then s′′(n, d) = s(n, d)hp
(14)

for all n ∈ N, and for all d ∈ [1..365]; and minimizing

|{(n, d)∈N×[1..365] : s(n, d) 6= s′(n, d)}| . (15)

Similarly, NRP o is the following computational
problem: Given a set N of nurses, a set S = {morning,
afternoon, night, special-rest, rest, vacation,
personal-problem, health-problem, morninghp,
afternoonhp, nighthp} of shifts, a set Sw={morning,
afternoon, night} of working shifts, natural numbers
workmin, workmax, and xnursemin , xnursemax , xday , xdaymin,
xdaymax for x ∈ Sw, a (previously computed) schedule s
of the form (2), a partial schedule s′ of the form (1),
and a day start-date ∈ [1..365], compute a schedule
s′′ satisfying (3), (5)–(9), (12)–(14), and minimizing
(15) and (10), in this order. Stated differently, quantity
(15) is minimized first, and ties are possibly broken by
minimizing (10).

5. Nurse Scheduling via ASP

In this section, after recalling an existing encoding
from the literature [22] (Section 5.1), we present the
new advanced encoding (Section 5.2).

5.1. Existing Encoding

Instances of NSP d and NSP o are represented by
means of ASP facts and constants. Specifically, the
interval [1..365] of days is encoded by facts of the
form day(d), for all d ∈ [1..365], and the num-
ber of days is fixed by the fact days(365). The
nurses are encoded by facts of the form nurse(n),
for all n ∈ N. Available shifts are encoded by facts
of the form shift(idx,x,h), where idx ∈ [1..6]
is a numerical identifier of the shift x ∈ {morning,
afternoon, night, special-rest, rest, vacation},
and h is the number of working hours associated
to the shift. Natural numbers xnursemin , xnursemax for
x ∈ {morning, afternoon, night} are repre-

sented by facts of the form nurseLimits(idx,
xnursemin ,xnursemax), where idx is the identifier of the
shift x. Natural numbers xday, xdaymin, xdaymax for x ∈
{morning, afternoon, night} are represented by
dayLimits(idx, xday, xdaymin, xdaymax), while num-
bers workmin and workmax are represented by in-
stances of workLimits(workmin, workmax).
Hence, according to the specification given by the hos-
pital, the following facts and constants are considered
in our setting:

day(1..365). days(365). nurses(1..41).
shift(1,morning,7).
shift(2,afternoon,7).
shift(3,night,10).
shift(4,specialrest,0).
shift(5,rest,0).
shift(6,vacation,0).
nurseLimits(1,6,9).
nurseLimits(2,6,9).
nurseLimits(3,4,7).
dayLimits(1,78,74,82).
dayLimits(2,78,74,82).
dayLimits(3,60,58,61).
workLimits(1687,1692).

The computed schedule is encoded by atoms of the
form assign(n, x, d), representing that nurse n is
assigned shift x on day d, that is, s(n, d) = x. The same
predicate assign is used to specify the partial sched-
ule s′ in input.

The ASP encoding introduced in [22] is reported in
Figure 1. It implements the Guess&Check program-
ming methodology: Choice rule r1 is used to guess the
schedule s : N × [1..365] → [1..6] extending s′ and
assigning each day of each nurse to exactly one shift,
and rules r2–r13 are used to discard schedules not sat-
isfying some of the desired requirements. Specifically,
hospital requirements, formalized as property (3), are
enforced by the integrity constraints r2 and r3, which
filter out assignments exceeding the limits. Regard-
ing nurse requirements, property (4) is enforced by in-
tegrity constraints r4 and r5, property (5) by integrity
constraint r6, property (6) by integrity constraint r7,
property (7) by integrity constraint r8, and property
(8) by integrity constraint r9–r11. Note that r7 takes
advantage of the numerical identifiers associated with
shifts, and in particular by the fact that morning has id
1, afternoon has id 2, and night has id 3. Concerning
balance requirements, formalized as property (9), they
are enforced by integrity constraints r12 and r14. Rules
r1–r13 encode NSP d, while for NSP o we also need

M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming 7

% Choose an assignment for each day and for each nurse.
r1 : {assign(N,X,D) : shift(X,Name,H)} = 1 :- day(D), nurse(N).

% Limits to nurses that must be present for each shift.
r2 : :- day(D), #count{N : assign(N,X,D)} > Max, nurseLimits(X,Min,Max).
r3 : :- day(D), #count{N : assign(N,X,D)} < Min, nurseLimits(X,Min,Max).

% Each nurse works at least Min and at most Max hours per year.
r4 : :- nurse(N), #sum{H,D : assign(N,X,D), shift(X,Na,H)} > Max, workLimits(Min,Max).
r5 : :- nurse(N), #sum{H,D : assign(N,X,D), shift(X,Na,H)} < Min, workLimits(Min,Max).

% Exactly 30 days of holidays. The ID 6 corresponds to the vacation.
r6 : :- nurse(N), #count{D : assign(N,6,D)} != 30.

% Each nurse cannot work twice in 24 hours (based on the order on the IDs).
r7 : :- nurse(N), assign(N,X1,D), assign(N,X2,D+1), X2 < X1, X1 <= 3.

% At least 2 rest days each 14 days. The ID 5 is associated to rest.
r8 : :- nurse(N), day(D), days(DAYS), D <= DAYS-13,

#count{D1 : assign(N,5,D1), D1 >= D, D1 <= D+13} < 2.

% After two consecutive nights there is one rest day.
% The ID 3 is associated to the shift night, while 4 is associated to special rest.

r9 : :- not assign(N,4,D), assign(N,3,D-2), assign(N,3,D-1).
r10 : :- assign(N,4,D), not assign(N,3,D-2).
r11 : :- assign(N,4,D), not assign(N,3,D-1).

% Balance requirements.
r12 : :- nurse(N), #count{D : assign(N,X,D)} > Max, dayLimits(X,T,Min,Max).
r13 : :- nurse(N), #count{D : assign(N,X,D)} < Min, dayLimits(X,T,Min,Max).

% Added only in the optimization variant.
r14 : :∼ nurse(N), V=#count{D : assign(N,X,D)}, dayLimits(X,T,Min,Max),

V >= Min, V <= Max. [|V-T|@1,N]

Fig. 1. ASP encoding introduced in [22] for NSP o (and for NSP d if r14 is removed).

weak constraint r14: It assigns a cost to each admissi-
ble schedule measured according to function (10). Op-
timum schedules are those minimizing such a cost.

5.2. Advanced Encoding

The aim of this section is to introduce a new en-
coding, shown in Figure 2, which improves the en-
coding reported in the previous section. First of all,
it has to be noted that many constraints of the en-
coding in Figure 1 only involve assignments to work-
ing shifts, that is, morning, afternoon and night. The
Guess part of the encoding (i.e. rule r1) can thus be re-
placed by two different choice rules, r′1a and r′1b, where
r′1a guesses among one of the working shifts or other-
wise marks nurses as not working, and r′1b eventually
guesses among rest, special-rest and vacation for each
nurse marked as not working. To achieve such a behav-
ior, an additional meta-shift is added to the set of facts,
namely shift(7,notworking,0).

A second improvement is obtained by combining
the knowledge represented by (4) and (9) with some
observations on how rules r4 and r5 are evaluated. In
fact, during the solving phase, rules obtained by in-

stantiating r4 and r5 comprise aggregates with rela-
tively large aggregation sets and few different weights.
Specifically to our setting, where morning and af-
ternoon shifts are fixed to 7 hours, and night shifts
to 10 hours, each aggregation set contains 365 ele-
ments with weight 7, and 365 elements with weight
10. It turns out that several schedules result into ex-
actly the same sum value. The question is now how
many of these schedules actually satisfy both (4) and
(9). Restricting to the specification given by the hos-
pital, that is, morningdaymin = afternoonday

min = 74,
morningdaymax = afternoonday

max = 82, nightdaymin =

58, and nightdaymax = 61, the possible sum values are
those reported in Table 1, where we also highlight ad-
missible values in the interval [workmin..workmax] =

[1687..1692]. The new encoding therefore determines
the admissible pairs of the form (N,M + A), where
M,A,N are the number of morning, afternoon and
nights assigned to a given nurse, by means of rule r′15.
These pairs are then used to check whether the assign-
ment of working shifts is valid for each nurse by means
of rules r′4 and r′5.

8 M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming

% Choose an assignment for each day and for each nurse.
r′1a : {assign(N,X,D):shift(X,Name,H), X != 4, X != 5, X != 6} = 1 :- day(D), nurse(N).
r′1b : {assign(N,X,D):shift(X,Name,H), X >= 4, X <= 6} = 1 :- day(D), nurse(N), assign(N,7,D).

% Limits to nurses that must be present for each shift.
r′2 : :- day(D), #count{N : assign(N,X,D)} > Max, nurseLimits(X,Min,Max).
r′3 : :- day(D), #count{N : assign(N,X,D)} < Min, nurseLimits(X,Min,Max).

% Nurses requirements.
r′4 : valid(Nu) :- nurse(Nu), admissible(N,M+A),

countGE(1,Nu,M), not countGE(1,Nu,M+1),
countGE(2,Nu,A), not countGE(2,Nu,A+1),
countGE(3,Nu,N), not countGE(3,Nu,N+1).

r′5 : :- nurse(N), not valid(N).

% Exactly 30 days of holidays. The id 6 corresponds to the vacation.
r′6 : :- nurse(N), #count{D : assign(N,6,D)} != 30.

% Each nurse cannot work twice in 24 hours (based on the order on the IDs).
r′7 : :- nurse(N), assign(N,X1,D), assign(N,X2,D+1), X2 < X1, X1 <= 3.

% At least 2 rest days each 14 days. The id 5 is associated to rest.
r′8 : :- nurse(N), day(D), days(DAYS), D <= DAYS-13,

#count{D1 : assign(N,5,D1), D1 >= D, D1 <= D+13} < 2.

% After two consecutive nights (ID 3) there is one rest day (ID 4).
r′9 : :- not assign(N,4,D), assign(N,3,D-2), assign(N,3,D-1).
r′10 : :- assign(N,4,D), not assign(N,3,D-2).
r′11 : :- assign(N,4,D), not assign(N,3,D-1).

% A nurse should be assigned to the shift X at least Min and at most Max days.
r′12 : :- dayLimits(X,T,Min,Max), nurse(N), not countGE(X,N,Min).
r′13 : :- dayLimits(X,T,Min,Max), nurse(N), countGE(X,N,Max+1).

% Added only in the optimization variant. The ID 7 corresponds to notworking.
r′14 : :∼ nurse(N), countGE(X,N,V), not countGE(X,N,V+1),

dayLimits(X,T,Min,Max), X != 7, D= |V-T|. [D@1,N,X]

% Admissible pairs of nights and morning+afternoon shifts, and limits for nonworking days.
r′15 : admissible(N,M+A) :-

dayLimits(1,T1,MinM,MaxM), dayLimits(2,T2,MinA,MaxA), dayLimits(3,T3,MinN,MaxN),
M = MinM..MaxM, A = MinA..MaxA, N = MinN..MaxN,
V = 7*(M+A) + 10*N, workLimits(MinW, MaxW), MinW <= V, V <= MaxW.

r′16 : dayLimits(7,null,Min,Max) :- days(DAYS), Min = #min{DAYS-MA-N : admissible(N,MA)},
Max = #max{DAYS-MA-N : admissible(N,MA)}.

% countGE(S,N,V) is derived when a nurse N is assigned to the shift X at least V days.
r′17 : countGE(X,N,V) :- nurse(N), dayLimits(X,T,Min,Max), V = Min..Max+1,

#count{D : assign(N,X,D)} >= V.

% The derivation of countGE(X,N,V) implies the derivation of countGE(X,N,V-1).
r′18 : :- dayLimits(X,T,Min,Max), V > Min, countGE(X,N,V), not countGE(X,N,V-1).

Fig. 2. Advanced ASP encoding for NSP o (and for NSP d if r′14 is removed).

N
M + A

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
58 1616 1623 1630 1637 1644 1651 1658 1665 1672 1679 1686 1693 1700 1707 1714 1721 1728
59 1626 1633 1640 1647 1654 1661 1668 1675 1682 1689 1696 1703 1710 1717 1724 1731 1738
60 1636 1643 1650 1657 1664 1671 1678 1685 1692 1699 1706 1713 1720 1727 1734 1741 1748
61 1646 1653 1660 1667 1674 1681 1688 1695 1702 1709 1716 1723 1730 1737 1744 1751 1758

Table 1

Number of working hours assigned to nurse n, that is, 7 · (M + A) + 10 · N, where M =| {d ∈ [1..365] : s(n, d) = morning} |,
A =| {d ∈ [1..365] : s(n, d) = afternoon} |, and N =| {d ∈ [1..365] : s(n, d) = night} |. Admissible values, that is, those in the interval

[1687..1692], are emphasized in bold

M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming 9

Actually, rules r′4 and r′5 take advantage from a third
improvement of the advanced encoding. The num-
ber of morning, afternoon and night shifts that can
be assigned to a nurse must adhere to (9), and are
therefore limited to a few different values. The pos-
sible values of these aggregations are therefore en-
coded by means of atoms of the form countGE(x, n, v),
being true whenever | daysn

x |≥ v, where daysn
x

is (11). It turns out that any answer set satisfies
the following property: For each shift x and for
each nurse n, there is exactly one value v such that
countGE(x, n, v), not countGE(x, n, v + 1) is true. In
the advanced encoding, predicate countGE is defined
by rule r′17. Moreover, rule r′18 is used to enforce truth
of countGE(x, n, v − 1) whenever countGE(x, n, v) is
true; it is not required for correctness, but convenient
to prune the search space in case countGE(x, n, v)
is assigned to true during the computation even if
| daysn

x |≥ v does not yet hold (for example, in case
countGE(x, n, v) is selected as a branching literal). In
addition, since rules r12–r14 aggregate on sets daysn

x
for x ∈ {morning, afternoon, night}, it is con-
venient to rewrite these rules in terms of predicate
countGE, hence obtaining rules r′12–r′14.

In the previous optimization, note that conjunc-
tion countGE(x, n, v), not countGE(x, n, v +
1) in rule r′4 represents the aggregate #count{D
: assign(n,x,D)} = v. A predicate countEQ
has not been used because predicate countGE is also
used in rules r′12 and r′13, where the encoded aggregates
are respectively #count{D : assign(n,x,D)}
≤ vmin, and #count{D : assign(n,x,D)} ≥
vmax. Moreover, the knowledge encoded by predicate
countGE allows for the introduction of rule r′18,
which as already explained further prunes the search
space; such a rule is similar to the order encoding used
by SMT solvers to handle integer constants [?].

Finally, a further improvement is obtained by check-
ing the number of nonworking days assigned to each
nurse. For the specification given by the hospital it
must range between 149 and 150, and in general the
admitted range can be determined by rule r′16. The
check itself is then performed by rules r′12 and r′13 (for
S being 7). Note that also this last check is not required
to guarantee correctness of the encoding, but instead to
further prune the search space.

6. Nurse Rescheduling via ASP

The aim of this section is to introduce an encoding,
shown on Figure 3, for updating a given schedule due

to a sudden absence of one or more nurses. In partic-
ular, the absence of nurses is encoded by atoms of the
form unavailable(n, d, d, t), representing that
nurse n is absent from the day d1 to day d2 (d1 ≤ d2)
due to reason t, where t can be health problem or
personal problem . A solution of NSP d (NSP o),
i.e. the schedule to update, is represented by atoms of
the form previous assign(n, x, d), representing
that nurse n was assigned shift x on day d.

The idea is to compute a new schedule, taking into
account the unavailability of some nurses, such that
differences with the previous schedule are minimized.
To this end, rules s2 and s3 are used to compute the
days for which the schedule of an unavailable nurse
must be changed, corresponding to all working days
between the range of unavailability provided by the
nurse. Schedules for the days before starting date are
not changed (rule s4). Then, nurses that are absent due
to health problems cannot be assigned to other shifts
(rules s5–s7), whereas nurses that are absent for per-
sonal problems are assigned to the shift rest (rules s8
and s9). The differences between the new schedule and
the previous one are minimized by means of the weak
constraint s10. The correctness of the new schedule is
then checked using a slight different variant of the en-
coding reported in Figure 2, where the only differences
are in rule r′1a, r′1b, and r′17, which are substituted with
r′′1a, r′′1b, and r′′17. The new version takes also into ac-
count the days in which a nurse is unavailable due to
health problems.

7. Empirical Evaluation

In this section the results of the empirical evaluation
is reported. The experiments take into account both
the problem of generating a schedule, and the problem
of repair a schedule to sudden absences. Both experi-
ments were executed on the same computer equipped
with four core Intel Xeon CPU X3430 2.4 GHz and 16
GB of RAM, running Debian Linux. Time and mem-
ory were limited to 1 hour and 8 GB, respectively.
All ASP material can be found at http://www.star.dist.
unige.it/~marco/Data/material.zip.

7.1. Nurse Scheduling

The experiments consider real data provided by
the Italian hospital unit, which comprises a set of 41
nurses and holidays selected using the preferences of
nurses of the year 2015. Moreover, the scalability of

10 M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming

% A nurse is unavailable in a day if he/she was working.
s1 : working(N,X,D) :- previous_assign(N,X,D), X=1..3.
s2 : health_problem(N,X,D) :- unavailable(N,D1,D2,health_problem), D >= D1, D <= D2, working(N, X, D).
s3 : personal_problem(N,D) :- unavailable(N,D1,D2,personal_problem), D >= D1, D <= D2, working(N,X,D).

% Assignments of previous days are not modified.
s4 : assign(N,X,D) :- previous_assign(N,X,D), D < D1, start_date(D1).

% Assign nurses with health problems.
s5 : assign(N,health_problem(X),D) :- health_problem(N,X,D).
s6 : assign(N,health_problem(X),D) :- previous_assign(N,health_problem(X),D).

% Nurses with health problems cannot be assigned to other shifts.
s7 : unavailable(N,D) :- assign(N,health_problem(X),D), X=1..3.

% Nurses with personal problems are assigned to shift rest.
s8 : assign(N,5,D) :- personal_problem(N,D).
s9 : assign(N,7,D) :- personal_problem(N,D).

% Minimize the differences between the new schedule and the previous one.
s10 : :∼ assign(N,X,D), not previous_assign(N,X,D). [1@2, N,X,D]

% Guess an assignment for all the days after the first day.
r′′1a : {assign(N,X,D) : shift(X,Name,H), X != 4, X != 5, X != 6} = 1 :- day(D), nurse(N),

start_date(D1), D >= D1, not unavailable(N,D).
r′′1b : {assign(N,X,D) : shift(X,Name,H), X >= 4, X <= 6} = 1 :- day(D), nurse(N),

start_date(D1), D >= D1, assign(N,7,D).

% countGE(X,N,V) is derived when a nurse N is assigned to the shift X at least V days.
r′′17 : countGE(X,N,V) :- nurse(N), dayLimits(X,T,Min,Max), V = Min..Max+1,

#count{D : assign(N,X,D); D1: assign(N,health_problem(X),D1)} >= V.

% Rules from r′2 to r′16, and r′18 are included

Fig. 3. ASP encoding for rescheduling NRP o (and for NRP d if r′14 is removed).

the approach has been evaluated by considering dif-
ferent number of nurses. In particular, an additional
experiment was run by considering 10, 20, 41, 82
and 164 nurses without fixed holidays. Both the deci-
sional (NSP d) and the optimization (NSP o) variants
of NSP were considered. Concerning the decisional
variant, the ASP-based approaches are compared to so-
lutions based on SAT and on ILP.

The ASP encodings have been tested using the sys-
tem CLINGO (version 5.1.0) [30] and the system WASP

(version 996bfb3) [5] combined with the grounder
GRINGO [27], both configured with the core-based
algorithms [3] for NSP o. Solvers LINGELING (ver-
sion bbc-9230380-160707) [14], GLUCOSE (version
4.1) [8] and CLASP (v. 3.2.2) have been executed on
the SAT encoding, while the commercial tool GUROBI

(version 7.0.2) [32] on the ILP encoding. Concern-
ing the optimization variant, the same tools for ASP
and ILP have been used, whereas LINGELING and
GLUCOSE have been replaced by the MaxSAT tools
MSCG [40] and MAXINO [6], both binaries taken from
MaxSAT Competition 2016.

In order to test SAT and ILP solutions, a pseudo-
Boolean formula based on the ideas of the advanced
ASP encoding is created. The pseudo-Boolean formula
was represented using the OPB format, which is parsed
by the tool GUROBI. Concerning the SAT-based solu-
tions, the state-of-the-art tool PBLIB [45] has been used
to convert the pseudoBoolean formula into a CNF. The
running time of PBLIB has not been included in the
analysis.

Results. The results of the instance with parameters
provided by the Italian hospital are reported in Table 2.
The best result overall is obtained by CLINGO exe-

Table 2
Results of the experiment with 41 nurses and fixed holidays

NSP d NSP o

Solver Time (s) Solver Time (s)
CLINGO (ORIG ENC) 1352 CLINGO (ORIG ENC) 431
CLINGO (ADV ENC) 43 CLINGO (ADV ENC) 70
WASP (ORIG ENC) - WASP (ORIG ENC) -
WASP (ADV ENC) - WASP (ADV ENC) -
GLUCOSE (SAT ENC) - MSCG (MAXSAT ENC) -
LINGELING (SAT ENC) - MAXINO (MAXSAT ENC) -
CLASP (SAT ENC) - CLASP (MAXSAT ENC) -
GUROBI (ILP ENC) 1018 GUROBI (ILP ENC) 1073

M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming 11

cuted on the advanced encoding for both NSP d and
NSP o, which is able to find a schedule in 42 and 70
seconds, respectively. This is a clear improvement with
respect to the original encoding. Indeed, CLINGO exe-
cuted on the original encoding was able to find a sched-
ule in 22 and 7 minutes for the decisional and opti-
mization variant, respectively. However, the advanced
encoding does not help the ASP solver WASP: Its bad
performance seems related to the branching heuristic,
which is not effective on this particular domain. In-
deed, WASP often selects atoms which do not appear
in the aggregates, and this strategy seems to be in-
effective for solving such instances. SAT-based (and
MaxSAT-based) approaches are also not able to find
a schedule within the allotted time and memory. In
this case their performance can be explained by look-
ing at the large size of the formula to evaluate (ap-
proximately 65 millions of clauses), which makes the
solvers exceed the allotted memory. The tool GUROBI
obtained good performance on both NSP d and NSP o

instances. In particular for NSP d GUROBI is faster
than CLINGO executed on the original encoding. On
the contrary, GUROBI is slower than CLINGO on the
NSP o instance.

Scalability. A further analysis about the scalability of
the encoding, considering different numbers of nurses,
is reported in the following. In particular, for both
NSP d and NSP o, five instances are considered, con-
taining 10, 20, 41, 82 and 164 nurses, respectively. For
each instance, the number of working nurses during
each shift is proportionally scaled and holidays are ran-
domly generated, whereas other requirements are not
modified. Results are reported in Table 3.

Table 3
Scalability of the approach. Solving time (s) for each solver

Solver Nurses
10 20 41 82 164

N
S
P

d

CLINGO (ORIG ENC) 155 117 738 1486 2987
CLINGO (ADV ENC) 4 9 70 351 1291
WASP (ORIG ENC) - - - - -
WASP (ADV ENC) 5 20 - - -
GLUCOSE (SAT ENC) - - - - -
LINGELING (SAT ENC) - - - - -
CLASP (SAT ENC) - - - - -
GUROBI (ILP ENC) 62 172 1018 - -

N
S
P

o

CLINGO (ORIG ENC) 37 94 339 798 1689
CLINGO (ADV ENC) 4 13 72 482 1590
WASP (ORIG ENC) - - - - -
WASP (ADV ENC) 4 - - - -
MSCG (MAXSAT ENC) - - - - -
MAXINO (MAXSAT ENC) - - - - -
CLASP (MAXSAT ENC) - - - - -
GUROBI (ILP ENC) 113 411 2004 - -

The best results overall is obtained again by CLINGO
executed on the advanced encoding, which outper-
forms all other tested approaches. Concerning ASP-
based approaches, their performance is much better
when they are executed on the advanced encoding. In-
deed, the running time of CLINGO considerably de-
creases for all tested instances in both NSP d and
NSP o. As a possible explanation for this behavior,
Figure 4 shows a comparison among the number of
conflicts found by CLINGO executed on the original
and on the advanced encodings. The new encoding
takes advantage of the better propagations, thus it is
able to find a solution with a smaller number of con-
flicts. Concerning NSP o, it can also be observed that
the performance of the two versions of CLINGO are
comparable on the instance with 164 nurses, even if
the number of conflicts are much lower when CLINGO
is executed on the advanced encoding. To explain this
discrepancy we analyzed the number of branching
choices performed by CLINGO, which are around 128
millions for the original encoding, and around 300 mil-
lions for the advanced encoding. Thus, for this specific
instance, the branching heuristic of CLINGO seems to
be more effective when the original encoding is con-
sidered. Moreover, WASP executed on the advanced en-
coding is able to find a schedule for NSP d when 10
and 20 nurses are considered, whereas WASP executed
on the original one does not terminate the computa-
tion in 1 hour. The performance of SAT (and MaxSAT)
solvers are also in this case not satisfactory since they
cannot solve any of the tested instances. In this case,
when 10 nurses are considered the size of the for-
mula is not prohibitive (approximately 15 millions of
clauses), however all the SAT solvers were not able to
find a solution within the allotted time. GUROBI can
solve instances up to 41 nurses, whereas it is not able
to find a schedule when 82 and 164 nurses are consid-
ered.

7.2. Nurse Rescheduling

The experiments for rescheduling consider the sched-
ule computed by CLINGO when 41 nurses. Then, ab-
sences of nurses were randomly generated, consider-
ing three different sets of instances, i.e. short, mid and
long term absences. For each set, 50 instances were
generated.

Absences ranging from 1 to 7 days are considered
short; from 8 to 30 days are considered mid and from
30 days to one year are considered long. For each test,
a random number of absent nurses is generated and for

12 M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming

10 20 41 82 164
0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

18 000

Number of nurses

E
xe

cu
tio

n
tim

e
(s

)

NSP d

CLINGO (ORIG ENC)
CLINGO (ADV ENC)

10 20 41 82 164
Number of nurses

NSP o

CLINGO (ORIG ENC)
CLINGO (ADV ENC)

Fig. 4. Comparison of the number of conflicts (in thousands) of CLINGO executed on the original and on the advanced encodings for both NSP d

and NSP o with different number of nurses.

each nurse a range of unavailability is also randomly
generated. In short term instances, the number of ab-
sent nurses is limited to 3, while for mid term and long
term instances it is limited to 2 and 1, respectively.
Moreover, short term instances include both health and
personal problems, while mid term and long term in-
clude only health problems. An example of a short
term instance is the following:

unavailable(12,303,305,personal_problem).
unavailable(9,304,306,health_problem).
start_date(303).

representing that nurses with ids 12 and 9 are not avail-
able for 3 days due to personal problems and health
problems, respectively.

Since ASP has been shown to be the best solution
for NSP , here we consider only this approach. The
encodings have been tested using the system CLINGO

(version 5.1.0) [30] and the solver WASP [5] combined
with the grounder GRINGO [27], both configured with
the core-based algorithms [3].

Results. The results of the experiments are reported
in Table 4. First of all, both CLINGO and WASP are able
to solve all the instances within the time limit. Con-
cerning CLINGO, its average running time is approxi-
mately 7 and 26 seconds for NRP d and NRP o, re-
spectively. Concerning WASP, its running time is also
satisfactory since it is on average 48 and 65 seconds
for NRP d and NRP o, respectively. The running time
does not depend on the length of the absence, instead
we observed that both solvers needed more time to
find a solution on instances including absences due to

personal problems. As example, short term instance
number 14 comprises only absences related to personal
problems and it is solved in approximately 4 minutes
by CLASP and in approximately 6 minutes by WASP.
Moreover, we report that CLINGO is able to find a so-
lution within 10 seconds for the 97% of the considered
NRP d and NRP o instances.

8. Related Work

In recent years, several approaches to solve NSP
have been proposed. The main differences concern (i)
the planning periods; (ii) the different type of shifts;
(iii) the requirements related to the coverage of shifts,
i.e. the number of personnel needed for every shift; and
(iv) other restrictions on the rules of nurses (see [16]
for more detailed information). In this paper a one-year
window of time has been considered as in [19], where
however the same requirements on nurses and hospi-
tals were not reported. Concerning the shifts, we con-
sidered three different shifts (morning, afternoon and
night) with no overlapping among shifts, whereas in
the literature other approaches are based on one single
shift only (see e.g. [39]). Other requirements depend

Table 4
Average solving time (s) for CLASP and WASP

Absences NRP d NRP o

CLINGO WASP CLINGO WASP

Short term 14 61 69 87
Mid term 3 10 3 10
Long term 5 73 5 100

M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming 13

on the different policies of the considered hospitals.
Thus, this makes the different strategies not directly
comparable with each other.

Concerning other solving technologies reported in
the literature, they range from mathematical to meta-
heuristics approaches, including solutions based on
integer programming [9,11], genetic algorithms [2],
fuzzy approaches [47], and ant colony optimization al-
gorithms [33], to mention a few. Detailed and compre-
hensive surveys on NSP can be found in [16,20].

As far as the relation between the basic and ad-
vanced encodings, the two encodings mainly differ
with respect to how the constraints related to hospi-
tal and balance requirements are modeled. Indeed, the
new encoding takes into account only combinations of
parameters values that can lead to a valid schedule.

As argued in two recent surveys [21,43], NRP is
considered strategic in many hospitals, since reschedul-
ing is an almost daily activity and any change to previ-
ous schedule usually face unexpected resistance. Thus,
most of the approaches are based on minimizing the
changes with the previous schedule as also considered
in this paper.

Many solutions have been proposed in the litera-
ture [21,43], including heuristic approaches [34,36,
44], genetic algorithms [42], parallel algorithms [13],
artificial immune systems [37], and integer multicom-
modity flow formulations [41].

In [12], authors considered the possibility of hiring
temporary staff, called travelers, for dealing with sud-
den absences of nurses. It turns out that this approach
is needed in hospitals facing a chronic nursing short-
age, i.e. when permanent nurses cannot fulfill the re-
quirements imposed by the hospital, which is not the
case of the hospital considered here.

Finally, ASP encodings have been proposed for
scheduling problems other than NSP and NRP: Incre-
mental Scheduling Problem [18], where the goal is to
assign jobs to devices such that their executions do not
overlap one another; and Team Building Problem [46],
where the goal is to allocate the available personnel of
a seaport for serving the incoming ships. However, to
the best of our knowledge, the only ASP encodings for
NSP and NRP are those shown in Sections 5.1, 5.2 and
6.

9. Conclusion

In this paper an advanced ASP encoding for ad-
dressing a variant of NSP has been proposed. The new

encoding overcomes the limitations of the one pro-
posed in [22] by taking into account intrinsic prop-
erties of NSP and internal details of ASP solvers.
The new NSP encoding has been used as basis for an
ASP-based solution for solving NRP. The ASP-based
approach to NSP has been compared with the basic
one [22] and with other declarative approaches on real
setting provided by an Italian hospital. Results clearly
show that CLINGO executed on the new encoding out-
performs all alternatives, being able to solve all in-
stances within 30 minutes, even with more than 100
nurses. Concerning NRP solution, it has been tested
by simulating sudden absences for nurses along the
year. Results on 150 random scenarios are quite good:
CLINGO and WASP are able to compute a solution for
NRP within few seconds.

Acknowledgments.
We would like to thank Nextage srl for provid-

ing support for this work. Mario Alviano has been
partially supported by the Italian Ministry for Eco-
nomic Development (MISE) under project “PIUCul-
tura – Paradigmi Innovativi per l’Utilizzo della Cul-
tura” (n. F/020016/01-02/X27), and under project
“Smarter Solutions in the Big Data World (S2BDW)”
(n. F/050389/01-03/X32) funded within the call “HORI-
ZON2020” PON I&C 2014-2020, and by Gruppo
Nazionale per il Calcolo Scientifico (GNCS-INdAM).

References

[1] Michael Abseher, Martin Gebser, Nysret Musliu, Torsten
Schaub, and Stefan Woltran. Shift design with answer set pro-
gramming. Fundam. Inform., 147(1):1–25, 2016. doi: 10.3233/
FI-2016-1396. URL https://doi.org/10.3233/FI-2016-1396.

[2] Uwe Aickelin and Kathryn A. Dowsland. An indirect genetic
algorithm for a nurse-scheduling problem. Computers & OR,
31(5):761–778, 2004. doi: 10.1016/S0305-0548(03)00034-0.
URL https://doi.org/10.1016/S0305-0548(03)00034-0.

[3] Mario Alviano and Carmine Dodaro. Anytime answer set op-
timization via unsatisfiable core shrinking. TPLP, 16(5-6):
533–551, 2016. doi: 10.1017/S147106841600020X. URL
https://doi.org/10.1017/S147106841600020X.

[4] Mario Alviano and Wolfgang Faber. The complexity boundary
of answer set programming with generalized atoms under the
FLP semantics. In LPNMR, volume 8148 of LNCS, pages 67–
72. Springer, 2013. doi: 10.1007/978-3-642-40564-8_7. URL
http://dx.doi.org/10.1007/978-3-642-40564-8_7.

[5] Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco
Ricca. Advances in WASP. In LPNMR, volume
9345 of LNCS, pages 40–54. Springer, 2015. doi: 10.
1007/978-3-319-23264-5_5. URL https://doi.org/10.1007/
978-3-319-23264-5_5.

14 M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming

[6] Mario Alviano, Carmine Dodaro, and Francesco Ricca. A
MaxSAT Algorithm Using Cardinality Constraints of Bounded
Size. In IJCAI 2015, pages 2677–2683. AAAI Press, 2015.

[7] Mario Alviano, Carmine Dodaro, and Marco Maratea. An ad-
vanced answer set programming encoding for nurse schedul-
ing. In AI*IA, volume to appear, 2017.

[8] Gilles Audemard and Laurent Simon. Extreme cases in SAT
problems. In Nadia Creignou and Daniel Le Berre, editors,
SAT, volume 9710 of LNCS, pages 87–103. Springer, 2016.
doi: 10.1007/978-3-319-40970-2_7. URL https://doi.org/10.
1007/978-3-319-40970-2_7.

[9] M. Naceur Azaiez and S. S. Al Sharif. A 0-1 goal programming
model for nurse scheduling. Computers & OR, 32:491–507,
2005. doi: 10.1016/S0305-0548(03)00249-1. URL https://doi.
org/10.1016/S0305-0548(03)00249-1.

[10] Marcello Balduccini, Michael Gelfond, Richard Watson, and
Monica Nogueira. The USA-advisor: A case study in answer
set planning. In LPNMR, volume 2173 of LNCS, pages 439–
442. Springer, 2001. doi: 10.1007/3-540-45402-0_39. URL
https://doi.org/10.1007/3-540-45402-0_39.

[11] Jonathan F. Bard and Hadi W. Purnomo. Preference scheduling
for nurses using column generation. European Journal of Op-
erational Research, 164(2):510–534, 2005. doi: 10.1016/j.ejor.
2003.06.046. URL https://doi.org/10.1016/j.ejor.2003.06.046.

[12] Jonathan F. Bard and Hadi W. Purnomo. Incremental
changes in the workforce to accommodate changes in demand.
Health Care Management Science, 9(1):71–85, 2006. doi:
10.1007/s10729-006-6281-y. URL https://doi.org/10.1007/
s10729-006-6281-y.

[13] Zdenek Bäumelt, Jan Dvorák, Premysl Sucha, and Zdenek
Hanzálek. A novel approach for nurse rerostering based on a
parallel algorithm. European Journal of Operational Research,
251(2):624–639, 2016. doi: 10.1016/j.ejor.2015.11.022. URL
https://doi.org/10.1016/j.ejor.2015.11.022.

[14] Armin Biere and Andreas Fröhlich. Evaluating CDCL variable
scoring schemes. In SAT, volume 9340 of LNCS, pages 405–
422. Springer, 2015. doi: 10.1007/978-3-319-24318-4_29.
URL https://doi.org/10.1007/978-3-319-24318-4_29.

[15] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski.
Answer set programming at a glance. Commun. ACM, 54(12):
92–103, 2011. doi: 10.1145/2043174.2043195. URL http://
doi.acm.org/10.1145/2043174.2043195.

[16] Edmund K. Burke, Patrick De Causmaecker, Greet Vanden
Berghe, and Hendrik Van Landeghem. The state of the art
of nurse rostering. J. Scheduling, 7(6):441–499, 2004. doi:
10.1023/B:JOSH.0000046076.75950.0b. URL https://doi.org/
10.1023/B:JOSH.0000046076.75950.0b.

[17] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovam-
battista Ianni, Roland Kaminski, Thomas Krennwallner, Nicola
Leone, Francesco Ricca, and Torsten Schaub. ASP-Core-2 In-
put Language Format, 2013. URL https://www.mat.unical.it/
aspcomp2013/files/ASP-CORE-2.01c.pdf.

[18] Francesco Calimeri, Martin Gebser, Marco Maratea, and
Francesco Ricca. Design and results of the Fifth Answer
Set Programming Competition. Artif. Intell., 231:151–181,
2016. doi: 10.1016/j.artint.2015.09.008. URL https://doi.org/
10.1016/j.artint.2015.09.008.

[19] Peter Chan and Georges Weil. Cyclical staff schedul-
ing using constraint logic programming. In PATAT, vol-
ume 2079 of LNCS, pages 159–175. Springer, 2000. doi:
10.1007/3-540-44629-X_10. URL https://doi.org/10.1007/

3-540-44629-X_10.
[20] Brenda Cheang, Haibing Li, Andrew Lim, and Brian Ro-

drigues. Nurse rostering problems - a bibliographic survey.
European Journal of Operational Research, 151(3):447–460,
2003. doi: 10.1016/S0377-2217(03)00021-3. URL https:
//doi.org/10.1016/S0377-2217(03)00021-3.

[21] Alistair Clark, Pam Moule, Annie Topping, and Martin Serpell.
Rescheduling nursing shifts: scoping the challenge and exam-
ining the potential of mathematical model based tools. Journal
of Nursing Management, 23(4):411–420, 2015. doi: 10.1111/
jonm.12158. URL http://dx.doi.org/10.1111/jonm.12158.

[22] Carmine Dodaro and Marco Maratea. Nurse schedul-
ing via answer set programming. In LPNMR, volume
10377 of LNCS, pages 301–307. Springer, 2017. doi: 10.
1007/978-3-319-61660-5_27. URL https://doi.org/10.1007/
978-3-319-61660-5_27.

[23] Carmine Dodaro, Nicola Leone, Barbara Nardi, and Francesco
Ricca. Allotment problem in travel industry: A solution based
on ASP. In RR, volume 9209 of LNCS, pages 77–92. Springer,
2015. doi: 10.1007/978-3-319-22002-4_7. URL https://doi.
org/10.1007/978-3-319-22002-4_7.

[24] Carmine Dodaro, Philip Gasteiger, Nicola Leone, Benjamin
Musitsch, Francesco Ricca, and Konstantin Schekotihin. Com-
bining answer set programming and domain heuristics for solv-
ing hard industrial problems (application paper). TPLP, 16(5-
6):653–669, 2016. doi: 10.1017/S1471068416000284. URL
https://doi.org/10.1017/S1471068416000284.

[25] Esra Erdem and Umut Öztok. Generating explanations
for biomedical queries. TPLP, 15(1):35–78, 2015. doi:
10.1017/S1471068413000598. URL https://doi.org/10.1017/
S1471068413000598.

[26] Marco Gavanelli, Maddalena Nonato, and Andrea Peano. An
ASP approach for the valves positioning optimization in a wa-
ter distribution system. J. Log. Comput., 25(6):1351–1369,
2015. doi: 10.1093/logcom/ext065. URL https://doi.org/10.
1093/logcom/ext065.

[27] Martin Gebser, Roland Kaminski, Arne König, and Torsten
Schaub. Advances in gringo series 3. In LPNMR, volume
6645 of LNCS, pages 345–351. Springer, 2011. doi: 10.
1007/978-3-642-20895-9_39. URL https://doi.org/10.1007/
978-3-642-20895-9_39.

[28] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max
Ostrowski, Torsten Schaub, and Marius Thomas Schneider.
Potassco: The potsdam answer set solving collection. AI Com-
mun., 24(2):107–124, 2011. doi: 10.3233/AIC-2011-0491.
URL https://doi.org/10.3233/AIC-2011-0491.

[29] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub.
Conflict-driven answer set solving: From theory to practice.
Artif. Intell., 187:52–89, 2012. doi: 10.1016/j.artint.2012.04.
001. URL https://doi.org/10.1016/j.artint.2012.04.001.

[30] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max
Ostrowski, Torsten Schaub, and Philipp Wanko. Theory solv-
ing made easy with clingo 5. In ICLP TCs, volume 52 of
OASICS, pages 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016. doi: 10.4230/OASIcs.ICLP.2016.2.
URL https://doi.org/10.4230/OASIcs.ICLP.2016.2.

[31] Michael Gelfond and Vladimir Lifschitz. Classical Negation in
Logic Programs and Disjunctive Databases. New Generation
Comput., 9(3/4):365–386, 1991.

[32] Gurobi. The website of gurobi, 2017. URL http://www.gurobi.
com.

M. Alviano et al. / Nurse (Re)scheduling Via Answer Set Programming 15

[33] Walter J. Gutjahr and Marion S. Rauner. An ACO algorithm
for a dynamic regional nurse-scheduling problem in austria.
Computers & OR, 34(3):642–666, 2007. doi: 10.1016/j.cor.
2005.03.018. URL https://doi.org/10.1016/j.cor.2005.03.018.

[34] Manabu Kitada and Kazuko Morizawa. A Heuristic Method
for Nurse Rerostering Problem with a Sudden Absence for
Several Consecutive Days. International Journal of Emerging
Technology and Advanced Engineering, 3(11):353–361, 2013.

[35] Laura Koponen, Emilia Oikarinen, Tomi Janhunen, and Laura
Säilä. Optimizing phylogenetic supertrees using answer
set programming. TPLP, 15(4-5):604–619, 2015. doi:
10.1017/S1471068415000265. URL https://doi.org/10.1017/
S1471068415000265.

[36] Broos Maenhout and Mario Vanhoucke. An evolutionary ap-
proach for the nurse rerostering problem. Computers & OR, 38
(10):1400–1411, 2011. doi: 10.1016/j.cor.2010.12.012. URL
https://doi.org/10.1016/j.cor.2010.12.012.

[37] Broos Maenhout and Mario Vanhoucke. An artificial immune
system based approach for solving the nurse re-rostering prob-
lem. In EvoCOP 2013, volume 7832 of LNCS, pages 97–108.
Springer, 2013. doi: 10.1007/978-3-642-37198-1_9. URL
https://doi.org/10.1007/978-3-642-37198-1_9.

[38] Mónica Caniupán Marileo and Leopoldo E. Bertossi. The
consistency extractor system: Answer set programs for con-
sistent query answering in databases. Data Knowl. Eng., 69
(6):545–572, 2010. doi: 10.1016/j.datak.2010.01.005. URL
https://doi.org/10.1016/j.datak.2010.01.005.

[39] Holmes E. Miller, William P. Pierskalla, and Gustave J. Rath.
Nurse scheduling using mathematical programming. Opera-
tions Research, 24(5):857–870, 1976. doi: 10.1287/opre.24.5.
857. URL https://doi.org/10.1287/opre.24.5.857.

[40] António Morgado, Carmine Dodaro, and Joao Marques-Silva.
Core-Guided MaxSAT with Soft Cardinality Constraints. In
CP, volume 8656 of LNCS, pages 564–573. Springer, 2014.
doi: 10.1007/978-3-319-10428-7_41. URL https://doi.org/10.

1007/978-3-319-10428-7_41.
[41] Margarida Moz and Margarida Vaz Pato. Solving the prob-

lem of rerostering nurse schedules with hard constraints: New
multicommodity flow models. Annals OR, 128(1-4):179–197,
2004. doi: 10.1023/B:ANOR.0000019104.39239.ed. URL
https://doi.org/10.1023/B:ANOR.0000019104.39239.ed.

[42] Margarida Moz and Margarida Vaz Pato. A genetic algorithm
approach to a nurse rerostering problem. Computers & OR,
34(3):667–691, 2007. doi: 10.1016/j.cor.2005.03.019. URL
https://doi.org/10.1016/j.cor.2005.03.019.

[43] Michael Mutingi and Charles Mbohwa. The nurse rerostering
problem: An explorative study. In International Conference on
Industrial Engineering and Operations Management (IEOM),
2017. URL http://ieomsociety.org/ieom2017/papers/563.pdf.

[44] Margarida Vaz Pato and Margarida Moz. Solving a bi-
objective nurse rerostering problem by using a utopic pareto
genetic heuristic. J. Heuristics, 14(4):359–374, 2008. doi:
10.1007/s10732-007-9040-4. URL https://doi.org/10.1007/
s10732-007-9040-4.

[45] Tobias Philipp and Peter Steinke. Pblib - A library for en-
coding pseudo-boolean constraints into CNF. In SAT, vol-
ume 9340 of LNCS, pages 9–16. Springer, 2015. doi: 10.
1007/978-3-319-24318-4_2. URL https://doi.org/10.1007/
978-3-319-24318-4_2.

[46] Francesco Ricca, Giovanni Grasso, Mario Alviano, Marco
Manna, Vincenzino Lio, Salvatore Iiritano, and Nicola Leone.
Team-building with answer set programming in the gioia-
tauro seaport. TPLP, 12(3):361–381, 2012. doi: 10.
1017/S147106841100007X. URL https://doi.org/10.1017/
S147106841100007X.

[47] Seyda Topaloglu and Hasan Selim. Nurse scheduling using
fuzzy modeling approach. Fuzzy Sets and Systems, 161(11):
1543–1563, 2010. doi: 10.1016/j.fss.2009.10.003. URL http:
//dx.doi.org/10.1016/j.fss.2009.10.003.

