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An ASP-based framework for operating
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Abstract. The Operating Room Scheduling (ORS) problem is the task of assigning patients to operating rooms, taking into
account different specialties, the surgery and operating room session durations, and different priorities. Given that Answer Set
Programming (ASP) has been recently employed for solving real-life scheduling and planning problems, in this paper we first
present an off-line solution based on ASP for solving the ORS problem. Then, we present techniques for re-scheduling on-line
in case the off-line schedule can not be fully applied. Results of an experimental analysis conducted on benchmarks with
realistic sizes and parameters show that ASP is a suitable solving methodology also for the ORS problem. This analysis has
been performed with a web framework for managing ORS problems via ASP that allows a user to insert the main parameters
of the problem, solve a specific instance, and show results graphically in real-time.

1. Introduction

The Operating Room Scheduling (ORS) [1, 13, 40,
43] problem is the task of assigning patients to oper-
ating rooms, taking into account different specialties,
surgery durations, and operating room session dura-
tions. Given that patients may have priorities, the
solution has to find an accommodation for the patients
with highest priorities, and then to the other with
lower priorities if space is still available. A proper
solution to the ORS problem is crucial for improving
the whole quality of the health-care and the satisfac-
tion of patients. Indeed, modern hospitals are often
characterized by long surgical waiting lists, which are
caused by inefficiencies in operating room planning,
leading to an obvious dissatisfaction of patients.

Complex combinatorial problems, possibly involv-
ing optimizations, such as the ORS problem,
are usually the target applications of knowledge
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representation and reasoning formalisms such as
Answer Set Programming (ASP). Indeed, its sim-
ple but rich syntax [18], which includes optimization
statements as well as powerful database-inspired
constructs like aggregates, and its intuitive seman-
tics, combined with the readability of specifications
(always appreciated by users) and availability of effi-
cient solvers (see, e.g., [4, 8, 31, 42]), make ASP
an ideal candidate for addressing such problems, as
witnessed by the ASP Competition series (see [19,
30, 32–35, 41] for the last editions). Indeed, ASP has
been already successfully employed for solving hard
combinatorial and application problems in several
research areas, including Artificial Intelligence [11,
14, 22], Bioinformatics [25], Hydroinformatics [29],
Game theory [12], Knowledge management on the
Web [3], and also employed in industrial applications
(see, e.g., [2, 23]).

In this paper we first present an off-line solu-
tion schedule based on ASP for solving the ORS
problem, where problem specifications are modu-
larly expressed as ASP rules, and ASP solvers are
used to solve the resulting ASP program. Then, we
also present techniques for re-scheduling on-line in
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case the off-line solution can not be fully applied
given, e.g., some patients could not be operated in
their assigned slot and have to be reallocated; in this
case, the aim is of minimizing the changes needed
to accommodate the new situation. Again, the re-
scheduling is specified by modularly adding ASP
rules to (part of) the (updated) original ASP encod-
ing. We have then run a wide experimental analysis
on ORS benchmarks with realistic sizes and parame-
ters inspired from data of a hospital in the north-east
of Italy. We have also performed a scalability analysis
on the performance of the employed ASP solver and
encoding for the scheduling problem w.r.t. schedule
length. Overall, results show that ASP is a suitable
solving methodology also for ORS, given that a high
efficiency, defined as occupation of rooms, can be
achieved in short timings in line with the need of the
application. Additionally, we have also designed and
implemented a web framework for managing ORS
problems via ASP that allows a user to insert the main
parameters of the problem, solve a specific instance,
and show results graphically in real-time, and where
the analysis mentioned before was indeed run.

To summarize, the main contributions of this paper
are the following:

– We provide a formal mathematical description of
the ORS problem (Section 4).

– We solve the ORS problem using an ASP encod-
ing (Section 5).

– We report on an experimental analysis assess-
ing the good performance of our ASP solution
(Section 6).

– We describe a Graphical User Interface (GUI)
which uses our ASP solution to produce a real-
time scheduling of operating rooms (Section 7).

The paper is completed by Section 2, which con-
tains needed preliminaries about ASP, Section 3,
which describes the problem informally, Section 8,
which analyzes related literature, and by conclusions
in Section 9.

2. Background on ASP

Answer Set Programming (ASP) [15] is a pro-
gramming paradigm developed in the field of
nonmonotonic reasoning and logic programming. In
this section we overview the language of ASP. More
detailed descriptions and a more formal account of
ASP, including the features of the language employed
in this paper, can be found in [15, 18]. Hereafter, we

assume the reader is familiar with logic programming
conventions.

Syntax. The syntax of ASP is similar to the one
of Prolog. Variables are strings starting with upper-
case letter and constants are non-negative integers
or strings starting with lowercase letters. A term is
either a variable or a constant. A standard atom is
an expression p(t1, . . . , tn), where p is a predicate of
arity n and t1, . . . , tn are terms. An atom p(t1, . . . , tn)
is ground if t1, . . . , tn are constants. A ground set is a
set of pairs of the form ⟨consts :conj⟩, where consts is
a list of constants and conj is a conjunction of ground
standard atoms. A symbolic set is a set specified syn-
tactically as {Terms1 : Conj1; · · · ; Termst : Conjt},
where t > 0, and for all i ∈ [1, t], each Termsi is a
list of terms such that |Termsi| = k > 0, and each
Conji is a conjunction of standard atoms. A set term
is either a symbolic set or a ground set. Intuitively, a
set term {X :a(X, c), p(X); Y :b(Y, m)} stands for the
union of two sets: the first one contains the X-values
making the conjunction a(X, c), p(X) true, and the
second one contains the Y -values making the con-
junction b(Y, m) true. An aggregate function is of the
form f (S), where S is a set term, and f is an aggre-
gate function symbol. Basically, aggregate functions
map multisets of constants to a constant. The most
common functions implemented in ASP systems are
the following:

– #count, number of terms;
– #sum, sum of integers.

An aggregate atom is of the form f (S) ≺ T ,
where f (S) is an aggregate function, ≺∈ {<, ≤, >,

≥, /= , =} is a comparison operator, and T is a term
called guard. An aggregate atom f (S) ≺ T is ground
if T is a constant and S is a ground set. An atom is
either a standard atom or an aggregate atom. A rule
r has the following form:

a1 ∨ . . . ∨ an :– b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bk

are atoms, bk+1, . . . , bm are standard atoms, and
n, k, m ≥ 0. A literal is either a standard atom aor its
negation not a. The disjunction a1 ∨ . . . ∨ an is the
head of r, while the conjunction b1, . . . , bk, not bk+1,

. . . , not bm is its body. Rules with empty body are
called facts. Rules with empty head are called con-
straints. A variable that appears uniquely in set terms
of a rule r is said to be local in r, otherwise it is
a global variable of r. An ASP program is a set of
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safe rules, where a rule r is safe if both the following
conditions hold: (i) for each global variable X of r

there is a positive standard atom ℓ in the body of r

such that X appears in ℓ; and (ii) each local variable
of r appearing in a symbolic set {Terms :Conj } also
appears in Conj .

A weak constraint [16] ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w@l]

where w and l are the weight and level of ω, respec-
tively. (Intuitively, [w@l] is read “as weight w at level
l”, where weight is the “cost” of violating the condi-
tion in the body of w, whereas levels can be specified
for defining a priority among preference criteria). An
ASP program with weak constraints is # = ⟨P, W⟩,
where P is a program and W is a set of weak con-
straints.

A standard atom, a literal, a rule, a program or a
weak constraint is ground if no variables appear in it.

Semantics. Let P be an ASP program. The Herbrand
universe UP and the Herbrand base BP of P are
defined as usual. The ground instantiation GP of P

is the set of all the ground instances of rules of P

that can be obtained by substituting variables with
constants from UP .

An interpretation I for P is a subset I of BP . A
ground literal ℓ (resp., not ℓ) is true w.r.t. I if ℓ ∈ I

(resp., ℓ /∈ I), and false (resp., true) otherwise. An
aggregate atom is true w.r.t. I if the evaluation of its
aggregate function (i.e., the result of the application
of f on the multiset S) with respect to I satisfies the
guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom
in the head is true w.r.t. I whenever all conjuncts of
the body of r are true w.r.t. I.

A model is an interpretation that satisfies all rules
of a program. Given a ground program GP and an
interpretation I, the reduct [26] of GP w.r.t. I is the
subset GI

P of GP obtained by deleting from GP the
rules in which a body literal is false w.r.t. I. An inter-
pretation I for P is an answer set (or stable model)
for P if I is a minimal model (under subset inclusion)
of GI

P (i.e., I is a minimal model for GI
P ) [26].

Given a program with weak constraints # =
⟨P, W⟩, the semantics of # extends from the basic
case defined above. Thus, let G# = ⟨GP, GW ⟩ be the
instantiation of #; a constraint ω ∈ GW is violated
by an interpretation I if all the literals in ω are true
w.r.t. I. An optimum answer set for # is an answer
set of GP that minimizes the sum of the weights of

the violated weak constraints in GW in a prioritized
way.

Syntactic shortcuts. In the following, we also use
choice rules of the form {p}, where p is an atom.
Choice rules can be viewed as a syntactic shortcut
for the rule p ∨ p′, where p′ is a fresh new atom not
appearing elsewhere in the program, meaning that the
atom p can be chosen as true.

3. Problem description

Most modern hospitals are characterized by a very
long surgical waiting list, often worsened, if not alto-
gether caused, by inefficiencies in operating room
planning. In this paper, the elements of the waiting list
are called registrations. Each registration links a par-
ticular surgical procedure, with a predicted duration,
to a patient.

The overall goal of the ORS problem is to assign
the maximum number of registrations to the operating
rooms (ORs). As first requirement, the assignments
must guarantee that the sum of the predicted dura-
tion of surgeries assigned to a particular OR session
does not exceed the length of the session itself: this
is referred in the following as surgery requirement.
Moreover, registrations are not all equal: they can
be related to different medical conditions and can
be in the waiting list for different periods of time.
These two factors can be unified in a singular con-
cept: priority. Registrations are classified according
to three different priority categories, namely P1, P2
and P3. The first one gathers either very urgent reg-
istrations or the ones that have been in the waiting
list for a long period of time; it is required that these
registrations are all assigned to an OR. Then, the reg-
istrations of the other two categories are assigned to
the top of the ORs capacity, prioritizing the P2 over
the P3 ones (minimization).

However, in hospital units it is frequent that one
planned assignment of ORs cannot be fulfilled due to
complications or conflicts that may occur either dur-
ing the surgery or before. In particular, surgeries may
last longer than expected or some patients may delete
the registration. Therefore, in such cases it is required
to compute a new schedule which reallocates the ORs
and, at the same time, minimizes the differences with
a previously computed schedule. This problem is usu-
ally referred to as rescheduling. In our case of study,
it often occurs that a registration is delayed and must
be reassigned to a later session. The choice of the ses-
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sion where the delayed registration is to be included
is done by a health-care operator and is part of the
input of our problem. Our framework reacts to this
decision and computes a new scheduling for accom-
modating the preference expressed by the operator,
starting from the first day touched by the changes. It
is important to emphasize here that such situations are
usually independent from the quality of the original
schedule, indeed they are often due to unpredictable
events.

The ORS problem we deal with entails two sub-
problems: (i) the computation of an initial schedule
for a given planning period (usually one week in
hospitals, which is thus our target), and (ii) the
rescheduling, i.e., the generation of an altered sched-
ule based on complications or conflicts that require
changes in the initial schedule.

The implementation described in Section 5 sup-
ports both the generation of an optimized initial
schedule of the surgeries and its alteration and rear-
rangement in case of needed rescheduling, where the
case of delayed registrations is considered.

4. Mathematical formulation

In this section we proceed by expressing the ORS
problem in a more rigorous mathematical formula-
tion.

The first step is to describe more rigorously the
elements we are dealing with. Let

– R be a set of registrations,
– S be a set of specialties,
– K be a set of operating rooms,
– T be the set of sessions in the planning period,
– D be the set of days in the planning period.

An OR time block within the planning horizon is
a pair of indices (k, t), k ∈ K and t ∈ T , representing
the OR and the session when the block is scheduled,
respectively.

We are ready to define the functions that can help
establish the relations between the elements of the
ORS problem.

Definition 4.1. (ORS problem) Let

– p : R → {1, 2, 3} be a function associating each
registration to a priority,

– δ : R → N be a function associating each regis-
tration to a duration,

Table 1
The MSS schema shows the specialty assigned to each OR and
session combination (in this example, numbers from 1 to 5). nD

and nT represent the total number of days and sessions,
respectively.

Day (d) 1 2 ... nD

Session (t) 1 2 3 4 ... nT

1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 2 2 2 2 2 2

OR 5 2 2 2 2 2 2
(k) 6 3 3 3 3 3 3

7 3 3 3 3 3 3
8 4 4 4 4 4 4
9 5 5 5 5 5 5
10 5 5 5 5 5 5

– % : K × T → N be a function associating each
OR block to a duration,

– σ : R × S → {0, 1} be a function such that
σ(r, s) = 0 if the registration r is associated to the
specialty s, and 1 otherwise,

– τ : S × K × T → {0, 1} be a function such that
τ(s, k, t) = 0 if the OR k is reserved to the
specialty s during the planning period t, and
1 otherwise. Note that function τ represents a
cyclic timetable referred to as the Master Surgi-
cal Schedule (MSS). An example of a MSS is
reported in Table 1.

Let x: R × K × T → {0, 1} be a function such
that x(r, k, t) = 0 if the registration r is assigned to
the (k, t) block, and 1 otherwise. Moreover, for a
scheduling x let Ax = {(r, k, t) | x(r, k, t) = 0} and
R∗

x = {r | x(r, k, t) = 0, r ∈ R, k ∈ K, t ∈ T }. Then,
given sets R, S, K, T , D, and functions p, δ,%, σ, τ,
the ORS problem is defined as the problem of finding
a scheduling x, such that

(c1) |{(k, t) | x(r, k, t) = 0, k ∈ K, t ∈ T }| ≤
1 ∀r ∈ R;

(c2) τ(s, k, t) + σ(r, s) = 0 ∀ s ∈ S, (r, k, t) ∈ Ax;
(c3)

∑
r∈R,x(r,k,t)=0

δ(r) ≤ %(k, t) ∀ k ∈ K, t ∈ T ;

(c4) {r | r ∈ R, p(r) = 1} ⊆ R∗
x.

Condition (c1) assures that each registration can be
assigned at most once.

Condition (c2) ensures the respect of the MSS.
Condition (c3) excludes all cases where the sum

of registration durations assigned to an OR block
exceeds the duration of the block itself.

Finally, condition (c4) imposes all priority 1 regis-
trations to be assigned.
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A solution ψ is a scheduling xthat satisfies (c1),
(c2), (c3), and (c4).

Definition 4.2. (Unassigned registrations) Given a
scheduling solution ψ, let R

pr
ψ = {r | r ∈ R, p(r) =

pr, r /∈ R∗
ψ}. Intuitively, Rpr

ψ represents the set of reg-
istrations of priority pr that were not assigned to any
operating room.

Definition 4.3. (Minimal scheduling solution) A
scheduling solution ψ is said to dominate a schedul-
ing solution ψ′ if |R2

ψ| < |R2
ψ′ |, or if |R2

ψ| = |R2
ψ′ |

and |R3
ψ| < |R3

ψ′ |. A scheduling solution is minimal,
if it is not dominated by any other scheduling solu-
tions.

In the rescheduling problem we start from a subset
of a previously calculated schedule for the registra-
tions associated to specialty s∗, interrupted during its
implementation at a given session t∗. In particular,
we took into account the case where some patients
could not be operated in their assigned slot and must
be reallocated in one of the slots in the remaining
part of the original planning period. The remaining
part of the schedule is then disrupted, for example
by introducing other registrations with assignments
forced manually by the user, and must be replaced
with new assignments. It is important to notice that
usually the disruption can be confined to the schedule
of the single specialty s∗. This is the case we ana-
lyzed in the current work, however the formulas can
be easily generalized in case the disruption affects the
schedule of several specialties. In order to free time
for the reallocated registrations, it may be necessary
to exclude some registrations assigned toward the
end of the disrupted schedule. Since this is a particu-
larly sensitive decision that can involve many factors
besides the ones treated in this work, the choice of
the excluded registrations has been left to the user. In
order to formalize the rescheduling part of the ORS
problem, we need to define some additional functions
and sets.

Definition 4.4. (Rescheduling problem) Let

– s∗ be a specialty in S,
– t∗ be a session in T ,
– γ : T → {0, 1} be a function such that γ(t) = 1 if

t ≤ t∗ (i.e. the "past" with respect to the disrup-
tion), and 0 otherwise,

– π : R → {0, 1} be a function such that π(r) = 1
if the registration r has been removed from the
old schedule by the user, and 0 otherwise,

– ϵ : T × D → {0, 1} be a function such that
ϵ(t, d) = 0 if the session t is planned in the day d,
and 1 otherwise,

– R′ = {r | x(r, k, t) = 0, τ(s∗, k, t) + σ(r, s∗) +
γ(t) = 0,π(r) = 0, r ∈ R, ∀k ∈ K, t ∈ T } be
the subset of registrations belonging to the old
schedule that we need to reschedule. Note that
here x(r, k, t) refers to the assignments of the old,
disrupted schedule.

Let now y: R′ × K × T → {0, 1} be a function such
that y(r, k, t) = 0 if the registration r is assigned to
the (k, t) block, and 1 otherwise. Then, given t∗, s∗,
sets R′, K, T , D, and functions δ,%, σ, τ, γ , π, ϵ, the
ORS rescheduling problem is defined as the problem
of finding a scheduling y, such that

(c5) |{(k, t) | y(r, k, t) = 0, k ∈ K, t ∈ T }| =
1 ∀r ∈ R′;

(c6) τ(s∗, k, t) + γ(t) = 0 ∀ k ∈ K, t ∈ T ;
(c7)

∑
r∈R′,y(r,k,t)=0

δ(r) ≤ %(k, t) ∀ k ∈ K, t ∈ T .

Condition (c5) ensures that each registration to
be rescheduled is assigned once. Condition (c6)
assures that the MSS is respected and that only the
"future" (i.e. the sessions with t > t∗) is resched-
uled. Finally, condition (c7), analogously to (c3),
does not allow the overrun of the (k, t) blocks. A
solution φ is a scheduling y that satisfies (c5), (c6),
and (c7).

Definition 4.5. (Temporal difference)
Given a rescheduling solution φ, let us define the
temporal difference between the assignments of the
disrupted schedule and the associated rescheduled
assignments as -φ =

∑
r∈R′

θ(r), where θ : R′ → N is

a function such that
θ(r) =

∑
k,k′∈K,t,t′∈T,d,d′∈D

| d − d′ |
(
1 − x(r, k, t)

)(
1 − y(r, k′, t′)

)
(
1 − ϵ(t, d)

)(
1 − ϵ(t′, d′)

)
.

Definition 4.6. (Minimal rescheduling solution)
A rescheduling solution φ is said to be closer to
the disrupted schedule than another solution φ′ if
-φ < -φ′ . A rescheduling solution is minimal, if no
other rescheduling solution is closer to the disrupted
schedule.

5. ASP encoding

In this section the scheduling and rescheduling
problems are described in the ASP language, in
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particular following the ASP-Core-2 input language
specification [18], in two separate sub-sections.

5.1. OR scheduling

5.1.1. Data model
The input data is specified by means of the follow-

ing atoms:

– Instances of registration(R,P,SU,SP) represent
the registrations, characterized by an id (R), a pri-
ority score (P), a surgery duration (SU) and the
id of the specialty (SP) it belongs to.

– Instances of mss(O,S,SP,D) link each operating
room (O) to a session (S) for each specialty and
planning day (D) as established by the hospital
MSS.

– The OR sessions are represented by the instances
of the predicate duration(N,O,S), where N is the
session duration.

The output is an assignment represented by atoms
of the form x(R,P,O,S,D), where the intuitive meaning
is that the registration R with priority P is assigned
to the operating room O during the session S and the
day D.

5.1.2. Encoding
Following the schema of the mathematical formu-

lation in the previous section, rule (r1) guesses an
assignment for the registrations to an OR in a given
day and session among the ones permitted by the MSS
for the particular specialty the registration belongs to.

The same registration should not be assigned more
than once, in different OR or sessions. This is assured
by the constraints (r2) and (r3). Note that in our setting
there is no requirement that every registration must
actually be assigned.

Surgery requirement. With rules (r4) and (r5), we
impose that the total length of surgery durations
assigned to a session is less than or equal to the session
duration.

Minimization. We remind that we want to be sure
that every registration having priority 1 is assigned,
then we assign as much as possible of the others, giv-
ing precedence to registrations having priority 2 over
those having priority 3. This is accomplished through
constraint (r6) for priority 1 and the weak con-
straints (r7) and (r8) for priority 2 and 3, respectively.
Note that in this encoding totRegsP1, totRegsP2 and
totRegsP3 are constants representing the total number
of registrations having priority 1, 2 and 3, respec-
tively.

Minimizing the number of unassigned registra-
tions could cause an implicit preference towards the
assignments of the registrations with shorter surgery
durations. To avoid this effect, one can consider
to minimize the idle time, however this is in gen-
eral slower from a computational point of view and
unnecessary, since the shorter surgeries preference is
already mitigated by our three-tiered priority schema.

5.2. Rescheduling

We now formulate the rescheduling in ASP.

5.2.1. Data model
The input data is specified by means of the follow-

ing atoms:

– The old planning is encoded through facts repre-
sented by instances of the predicate x(R,P,O,S,D).

– MSS, registrations and sessions are described by
the same predicates as in the previous section.

Fig. 1. ASP encoding of the ORS problem (scheduling)
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Fig. 2. ASP encoding of the ORS problem (rescheduling)

The output is a new assignment, represented by atoms
of the form y(R,P,O,S,D).

5.2.2. Encoding
The new encoding is reported in Fig. 2. It basi-

cally includes only rules (r1), (r2), (r3), (r4), and (r5)
from the previous encoding, where atoms over the
predicate xare replaced with y, respectively. Addi-
tionally, the constraint (r9) must be added to ensure
that for every single registration in the old schedule
(x predicate) there is an assignment in the new one
(y predicate).

As we have seen, the main objective of the
scheduling was to assign the largest possible num-
ber of registrations to the OR sessions, while in the
rescheduling problem the objective is to reassign all
the previously allocated registrations and the reallo-
cated ones with the least possible disruption to the old
schedule. The computation and minimization of the
difference in days between the new and old assign-
ments for each registration is done by replacing rules
(r6), (r7) and (r8) by the rules (r10) and (r11).

6. Experimental results

In this section we report about the results of an
empirical analysis of the scheduling and reschedul-
ing problems. For the initial scheduling problem, data
have been randomly generated but having parame-
ters and sizes inspired by real data, then a part of the
results of the planning has been used as input for the
rescheduling (as we will detail later). Both experi-
ments were run on a Intel Core i7-7500U CPU @
2.70GHz with 7.6 GB of physical RAM. The ASP
system used was clingo [31], version 5.5.2.

6.1. ORS

The test cases we have assembled for the initial
planning is based on the requirements of a typical
middle sized hospital, with five surgical specialties
to be managed. To test scalability, other than the 5-
days planning period, which is the one that is widely
used in Italian hospital units, seven benchmarks of
different dimension were created. Each benchmark
was tested 10 times with different randomly gen-
erated input. The characteristics of the tests are the
following:

– 7 different benchmarks, comprising a planning
period of 15, 10, 7, 5, 3, 2 and 1 work days,
respectively;

– 10 ORs (that can represent a hospital of small-
medium size), unevenly distributed among the
specialties;

– 5 hours long morning and afternoon sessions for
each operating room, summing up to a total of
respectively 1500, 1000, 700, 500, 300, 200 and
100 hours of ORs available time for the 7 bench-
marks;

– for each benchmark, we generated 1050, 700,
490, 350, 210, 140 and 70 registrations, respec-
tively, from which the scheduler will draw the
assignments. Registrations are characterized by
a surgery duration, a specialty and a priority. In
this way, we simulate the common situation where
a hospital manager takes an ordered, w.r.t. pri-
orities, waiting list and tries to assign as many
elements as possible to each OR.

The surgery durations have been generated assuming
a normal distribution, while the priorities have been
generated from a quasi-uniform distribution of three
possible values (with weights respectively of 0.30,
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Table 2
Parameters for the random generation of the scheduler input

Specialty Registrations ORs Avg. Surgery Coefficient
15-day 10-day 7-day 5-day 3-day 2-day 1-day Duration (min) of Variation

1 240 160 112 80 48 32 16 3 124 48%
2 210 140 98 70 42 28 14 2 99 18%
3 210 140 98 70 42 28 14 2 134 19%
4 180 120 84 60 36 24 12 1 95 21%
5 210 140 98 70 42 28 14 2 105 29%
Total 1050 700 490 350 210 140 70 10

0.33 and 0.37 for registrations having priority 1, 2
and 3, respectively). The parameters of the test have
been summed up in Table 2. In particular, for each
specialty (1 to 5), we reported the number of regis-
trations generated for each benchmark (15-, 10-, 7-,
5-, 3-, 2- and 1-day), the number of ORs assigned to
the specialty, the average duration of surgeries, and
the coefficient of variation (defined as the standard
deviation over the mean), respectively.

Results of the experiment are reported in Table 3,
as the average of 10 runs for each benchmark. Table 3
reports, for each benchmark, the average number of
assigned registrations (shown as assigned/generated
ratio). The efficiency column shows the percentage
of the total OR time occupied by the assigned reg-
istrations. A time limit of 20 seconds was given in
view of a practical use of the program: on the tar-
get 5-days planning length, an efficiency of the 95%
was reached. As a general observation, we report that
with all the considered benchmarks, except with the
one having planning length of 15-day, we obtained
an efficiency greater than or equal to 90%. The 1-day
test managed to converge after around 10 seconds.

A more detailed analysis of the performance is
reported in Table 4 for the target 5-day planning
period. In particular, for each of the 10 runs exe-
cuted, Table 4 reports the number of the assigned
registrations out of the generated ones for each prior-
ity, and a measure of the total time occupied by the
assigned registrations as a percentage of the total OR
time available. In this case, it is possible to observe
that the efficiency is always greater or equal to 95%,
but for an instance having efficiency of 92%.

Finally, in 5 plots of Fig. 3 we (partially) present the
results achieved on one instance (i.e., the first instance
of Table 4) with 350 registrations for 5 days. Each
colored block in the respective plots corresponds to
a registration assigned to one of the 10 ORs. The
remaining space up to the 300 minutes limit repre-
sents the idle time of the OR. Only the data about
the morning assignments are showed: the ones for
the afternoon are (qualitatively) similar. The bottom-

right plot shows, instead, the evolution of the solution
quality when 600 seconds are granted to the same
instance: we can notice that after around 10 seconds
the number of assigned registrations does not change
significantly.

6.2. Rescheduling

The rescheduling is applied to a previously planned
schedule in the case this could not be carried on to
the end. Once planned, a specialty schedule does not
normally influence the other specialties, thus it makes
sense to re-schedule one specialty at a time.

To test the rescheduler we have defined three
different scenarios. Considering the target planning
schedule of 5-day, we assumed that in the second
day a number of surgeries in specialty 1 had to be
postponed to the next day. This number was set to
1 (scenario A), 3 (scenario B) or 6 (scenario C),
respectively. Thus, we have to re-schedule the three
remaining days of the planning.

In order to be able to insert the postponed registra-
tions, we have to make sure that the starting schedule
leaves enough available OR time by removing the
necessary registrations from the old schedule, begin-
ning from the last day of the period and from the
registrations in the priority 3 category. In an actual
hospital, this action would be performed by a health-
care operator according to criteria that may vary from
the one we chose to follow.

The three tests performed had the following
characteristics: (i) in all scenarios the postponed
registrations have been generated with an average
surgery duration of 100 minutes, (ii) the postponed
registrations were manually inserted in the first slot
available (i.e. the morning of the third day) of one
(scenarios A and B) or two (scenario C) ORs, (iii) the
number of registrations present in the old schedule is
43, (iiii) 0, 1 and 4 priority 3 old schedule registra-
tions had to be removed from the last planning day in
scenarios A, B and C, respectively.
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Table 3
Averages of the results for the 15, 10, 7, 5, 3, 2 and 1-day benchmarks

Benchmark Priority 1 Priority 2 Priority 3 Total Efficiency

15 days 319 / 319 169 / 342 42 / 389 530 / 1050 66%
10 days 210 / 210 201 / 229 81 / 261 492 / 700 90%
7 days 147 / 147 152 / 166 55 / 177 353 / 490 92%
5 days 106 / 106 102 / 113 50 / 130 258 / 350 95%
3 days 62 / 62 62 / 67 35 / 81 159 / 210 94%
2 days 42 / 42 40 / 46 22 / 52 104 / 140 95%
1 day 21 / 21 20 / 23 12 / 26 53 / 70 96%

Table 4
Scheduling results for the 5-day benchmark

Assigned Registrations OR time
Priority 1 Priority 2 Priority 3 Total Efficiency

103 out of 103 104 out of 121 61 out of 126 268 out of 350 96%
114 out of 114 90 out of 94 54 out of 142 258 out of 350 95%
102 out of 102 116 out of 116 43 out of 123 261 out of 350 95%
112 out of 112 90 out of 102 50 out of 136 252 out of 350 95%
103 out of 103 95 out of 107 35 out of 140 233 out of 350 92%
99 out of 99 99 out of 122 66 out of 129 264 out of 350 95%
101 out of 101 108 out of 110 44 out of 139 253 out of 350 95%
114 out of 114 115 out of 124 41 out of 112 270 out of 350 96%
114 out of 114 114 out of 129 34 out of 107 262 out of 350 96%
98 out of 98 91 out of 108 73 out of 144 262 out of 350 95%

Table 5
Results for the three rescheduling scenarios

Scenario Postponed Old Total
Registrations Registrations Displacements

(Days)

A 1 43 3
B 3 42 4
C 6 39 6

The results are summarized in Table 5, where
we report the scenario, the number of registra-
tions that were inserted in each scenario (Postponed
Registrations), the number of registrations com-
ing from the old schedule (Old Registrations), and
the total displacement, calculated as shown in rule
(r12), showing the sum of all day displacements
the old registrations were subject to in the resulting
new schedule.

7. Application of our ASP solution

Our ASP solution presented in this paper is part
of a more general real-life application that we are
developing. The application can be accessed through
a web-interface where the parameters of the prob-
lem can be specified (see Subsection 7.1). Moreover,

the interface allows the user to interact with the ASP
encoding by offering web forms for adding the so
called “customizable constraints”, that express user
requirements and preferences.

7.1. Web application

We have wrapped the ASP encoding and the
clingo solver inside a Node.js architecture and, at
the same time, we have created a graphical user inter-
face (GUI) for it. This solution allows the solver to be
embedded inside an easily reachable and usable web
application, removing the hurdle that installing and
managing the solver may represent for a non-expert
user. The application includes:

– a registration and authentication process,
– a database for storing and retrieving previous test

data, and
– a GUI to easily create and customize new test

scenarios or load pre-made ones.

While we are still at an early stage of develop-
ment, the user can already freely set the parameters
for the generator through an Input screen (see Fig. 4).
In this picture two tables are shown: the right side
one is used to manage the bed usage in the wards
after the surgery through encodings not included
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Fig. 3. Example of scheduling with 350 registrations for 5 days, and time scale (bottom-right)

in this work. In the left table the user can set
the parameters for the generator. From left to right
these are:

– the specialty names;

– the number of registrations we aim to assign for
each specialty;

– the parameters (mean and coefficient of varia-
tion) of the Gaussian distribution used to generate
the predicted length of stay (LOS) in the ward
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after the surgery, necessary for the bed manage-
ment part;

– the parameters (mean and coefficient of variation)
of the Gaussian distribution used to generate the
predicted surgery durations;

– the ratio of patients predicted to need a place in
the intensive care (IC) ward;

– the parameters (mean and coefficient of variation)
of the Gaussian distribution used to generate the
predicted LOS in the IC ward after the surgery,
necessary for the bed management part.

We stress again that our paper focuses on the case
where issues related to beds management are not
taken into account.

We have, then, a Results screen (see Fig. 5) where
the user can monitor in real-time the evolution of the
process and, finally, read the final results.

– At the top of the screen there are three cards
containing the number of assigned registrations
out of the total, arranged according to their pri-
ority class, for each solution found by the solver
engine. Each number is continuously updated dur-
ing the execution whenever a new solution is
found. The percentage of assigned registrations
is represented by a progress bar at the bottom of
each card.

– At the bottom we summarize the final results at the
end of the execution. In particular the OR time out
of the total available is reported, both in numbers
and as a percentage through a progress bar.

The last screen we want to show (see Fig. 6)
contains a graphical representation of each OR occu-
pancy for each session of the planning period, through
a carousel of stacked bar graphs.

7.2. Customizable constraints

The customizable constraints are not strictly
required for the correctness of the program but allow
the users to guide the final results as they prefer. We
have identified different constraints that combined
together cover most user needs; note that such cus-
tomizable constraints can be used for both scheduling
and rescheduling. Each of these constraints can be
activated at runtime for multiple registrations and can
involve different selection of days, ORs, and sessions.
The set of all constraints that can be added is listed
in Fig. 7.

In particular, given a set of n registrations, defined
by the user and characterized by the ids regi , i =

1, .., n, constraints (r12) and (r13) impose that such
registrations can be assigned only in a chosen period,
defined as all the operating room sessions between
the initial (init) and the final (fin) days, where i and
f are parameters provided by the user.

Constraint (r14) can be used to forbid a specific
session s to the chosen registrations.

Constraints (r15) and (r16) allow the user to forbid
or enforce the use of a specific OR o for a set of
registrations, respectively.

Finally, rules (r17) and (r18) can be used if the user
wants to assign a set of registrations as temporally
close as possible to a specific OR session, without
actually enforcing it. This can be accomplished by
defining a predicate (distance(N,R)) that computes
the distance (N) between the assigned (S) and sug-
gested (represented by the parameter prefS ) sessions
and tries to minimize it.

All these rules can be applied to different sets of
registrations at the same time, using different param-
eters.

8. Related work

A preliminary version of this paper was presented
at the 17th International Conference of the Italian
Association for Artificial Intelligence (AI*IA 2018)
[24]. Compared to such conference version, this paper
adds (i) a mathematical formalization of the ORS
problem, which is independent from the employed
solving methodology, (ii) a description of a graphical
user interface for producing a real-time scheduling
of operating rooms, and (iii) a more detailed and
improved related work.

We are not aware of any previous attempt to solve
the ORS problem using ASP algorithms (other than
the mentioned previous version [24]); however, an
extensive literature approaching this problem with
different techniques has been developed.

Solving ORS problems. Aringhieri et al. [13]
addressed the joint OR planning (MSS) and schedul-
ing problem, described as the allocation of OR time
blocks to specialties together with the subsets of
patients to be scheduled within each time block
over a one week planning horizon. They developed
a 0-1 linear programming formulation of the prob-
lem and used a two-level meta-heuristic to solve it.
Its effectiveness was demonstrated through exten-
sive numerical experiments carried out on a set of
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Fig. 4. Input screen for the registration generator parameters.

Fig. 5. Results screen.

instances based on real data and resulted, for bench-
marks of 80-100 assigned registrations, in a 95-98%
average OR utilization rate, for a number of ORs
ranging from 4 to 8. The execution times were around
30-40 seconds. In [40], the same authors introduced
a hybrid two-phase optimization algorithm which
exploits neighborhood search techniques combined
with Monte Carlo simulation, in order to solve the
joint advance and allocation scheduling problem, tak-
ing into account the inherent uncertainty of surgery
durations. Abedini et al. [1] developed a bin packing
model with a multi-step approach and a priority-type-
duration rule. The model maximizes utilization and

minimizes the idle time, which consequently affects
the cost at the planning phase and was programmed
using MATLAB. Five hundred elective surgeries
were generated for a week and a 90% average OR
utilization rate was reached. Molina-Pariente et al.
[43] tackled the problem of assigning an intervention
date and an operating room to a set of surgeries on
the waiting list, minimizing access time for patients
with diverse clinical priority values. The algorithms
used to allocate surgeries were various bin pack-
ing operators. They adapted existing heuristics to the
problem and compared them to their own heuristics.
The tests were performed with the software Gurobi.
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Fig. 6. Graphical representation of the results.

Fig. 7. Customizable constraints

The authors used four, two and one week planning
horizons, with benchmarks of 50 to 182 registrations
and 3 or 9 ORs. They reached an efficiency between
87% and 91%.

The rescheduling problem was addressed by Shu
et al. [47], using an extension of the Longest Pro-
cessing Time algorithm, which was used to solve
the atomic job shop scheduling problem. Zhang et
al. [48] addressed the problem of OR planning with
different demands from both elective patients and
non-elective ones, with priorities in accordance with
urgency levels and waiting times. This problem is for-
mulated as a penalty stochastic shortest-path Markov
Decision Process with dead ends, and solved using
MATLAB by the method of asynchronous value
iteration.

ASP in scheduling problems. We already mentioned
in the introduction that ASP has been already suc-
cessfully used for solving hard combinatorial and

application problems in several research areas. Con-
cerning scheduling problems other than ORS, ASP
encodings were proposed for the following prob-
lems: Incremental Scheduling Problem [19], where
the goal is to assign jobs to devices such that
their executions do not overlap one another; Team
Building Problem [45], where the goal is to allo-
cate the available personnel of a seaport for serving
the incoming ships; Nurse Scheduling Problem [5, 6,
21], where the goal is to create a scheduling for nurses
working in hospital units, and also Interdependent
Scheduling Games [10], Conference Paper Assign-
ment Problem [11], and Stable Roommates Problem
[9].

GUI to support ASP at work. In the recent
years, several tools have been proposed for sim-
plifying the design of ASP applications. Among
them, Integrated Development Environments (IDEs),
such as aspide [27] and sealion [17], support
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the user during the life-cycle of development by
combining a collection of tools for developing, test-
ing and debugging ASP programs. A web-based
programming environment for the idp system is
presented in [20], which also features supporting
tools for developing and debugging logic programs.
In [45], the Team Building Problem was solved
by means of an ASP encoding and a java-based
GUI was presented for the interaction with users.
Other GUIs were presented for E-Tourism [44] and
E-Learning [28, 39].

9. Conclusions

In this paper we presented an ASP encoding to
provide a solution to the ORS problem, where spec-
ifications of the problem are modularly expressed as
ASP rules. Then, we also presented techniques for re-
scheduling on-line in case the off-line solution can
not be fully applied given, e.g., canceled registra-
tions. In this case, the goal is to minimize the changes
needed to accommodate the new situation. Again, the
re-scheduling is specified by modularly adding ASP
rules to (part of) the (updated) original ASP program.
Finally, we presented the results of an experimen-
tal analysis on ORS benchmarks with realistic sizes
and parameters showing that our scheduling solution
obtains around 95% of efficiency after few seconds
of computation on planning length of 5 days usu-
ally used in Italian hospitals. Our solution also enjoys
good scalability property, having an efficiency over or
equal to 90% for planning periods up to 10 days, i.e.,
double w.r.t. the target period. Also our reschedul-
ing solution reached positive results. Future work
includes the analysis of preference-based heuristics
(see, e.g. [7, 36–38, 46]) to further improve perfor-
mance and scalability.
All benchmarks and encodings employed in this
work can be found at: http://www.star.dist.unige.
it/∼marco/AIIA2018/material.zip , while our web
application can be reached out at http://aidemo.
surgiq.com.
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