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Abstract. The Operating Room Scheduling (ORS) problem is the task
of assigning patients to operating rooms, taking into account different
specialties, lengths and priority scores of each planned surgery, oper-
ating room session durations, and the availability of beds for the entire
length of stay both in the Intensive Care Unit and in the wards. A proper
solution to the ORS problem is of utmost importance for the quality
of the health-care and the satisfaction of patients in hospital environ-
ments. In this paper we present an improved solution to the problem
based on Answer Set Programming (ASP) that, differently from a re-
cent one, takes explictly into account beds management. Results of an
experimental analysis, conducted on benchmarks with realistic sizes and
parameters, show that ASP is a suitable solving methodology for solving
also such improved problem version.

1 Introduction

The Operating Room Scheduling (ORS) [1, 8, 25, 26] problem is the task of as-
signing patients to operating rooms, taking into account different specialties,
surgery durations, and the availability of beds for the entire length of stay (LOS)
both in the Intensive Care Unit (ICU) and in the wards. Given that patients
may have priorities, the solution has to find an accommodation for the patients
with highest priorities, and then to the other with lower priorities, if space is
still available, at the same time taking into proper account beds availability.
Recently, a solution based on Answer Set Programming (ASP) [21, 22, 27, 10, 11]
was proposed and proved to be effective for solving ORS problems [15]. Nonethe-
less, such solution does not take into account beds management. In most modern
hospitals, very long surgical waiting list are present and often worsened, if not
altogether caused, by inefficiencies in operating room planning, and the avail-
ability of beds in the wards and, if necessary, in the Intensive Care Unit (ICU)
for each patient for the entire duration of their stay, is a very important factor
for such inefficiencies.
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In this paper we thus propose an improved solution based on ASP that takes
explicitly into account beds management. In such solution, problem specifica-
tions related to beds management are modularly added as ASP rules to the
previous encoding of the basic version of the problem where beds management
was not considered, and then efficient ASP solvers are used to solve the result-
ing ASP program. We have then generated ORS benchmarks with realistic sizes
and parameters inspired by those of small-medium Italian hospitals, and run an
experimental analysis on such benchmarks using the ASP solver clingo [19].
Benchmarks have been organized in two scenarios: a first scenario is characterized
by an abundance of available beds, so that the constraining resource becomes
the OR time, while for the second scenario the number of beds is the constrained
resource. Overall, results show that ASP is a suitable solving methodology for
ORS also when beds management is taken into account, on both scenario, given
that our solution is able to utilize efficiently whichever resource is more con-
strained; moreover, this is obtained in short timings in line with the needs of the
application.

To summarize, the main contributions of this paper are the following:

• We provide an ASP encoding for solving the complete ORS problem (Sec-
tion 4 and 5).
• We run an experimental analysis assessing the good performance of our ASP

solution (Section 6).
• We analyze related literature (Section 7), with focus on beds management.

The paper is completed by Section 2, which contains needed preliminaries
about ASP, by an informal description of the ORS problem in Section 3, and by
conclusions and possible topics for future research in Section 8.

2 Background on ASP

Answer Set Programming (ASP) [11] is a programming paradigm developed in
the field of nonmonotonic reasoning and logic programming. In this section we
overview the language of ASP. More detailed descriptions and a more formal
account of ASP, including the features of the language employed in this paper,
can be found in [11, 13]. Hereafter, we assume the reader is familiar with logic
programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings
starting with uppercase letter and constants are non-negative integers or strings
starting with lowercase letters. A term is either a variable or a constant. A
standard atom is an expression p(t1, . . . , tn), where p is a predicate of arity n and
t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants.
A ground set is a set of pairs of the form 〈consts :conj〉, where consts is a list of
constants and conj is a conjunction of ground standard atoms. A symbolic set
is a set specified syntactically as {Terms1 : Conj1; · · · ;Termst : Conjt}, where
t > 0, and for all i ∈ [1, t], each Termsi is a list of terms such that |Termsi| =
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k > 0, and each Conji is a conjunction of standard atoms. A set term is either a
symbolic set or a ground set. Intuitively, a set term {X :a(X, c), p(X);Y :b(Y,m)}
stands for the union of two sets: the first one contains the X-values making the
conjunction a(X, c), p(X) true, and the second one contains the Y -values making
the conjunction b(Y,m) true. An aggregate function is of the form f(S), where
S is a set term, and f is an aggregate function symbol. Basically, aggregate
functions map multisets of constants to a constant. The most common functions
implemented in ASP systems are the following:

• #count , number of terms;
• #sum, sum of integers.

An aggregate atom is of the form f(S) ≺ T , where f(S) is an aggregate function,
≺ ∈ {<,≤, >,≥, 6=,=} is a comparison operator, and T is a term called guard.
An aggregate atom f(S) ≺ T is ground if T is a constant and S is a ground
set. An atom is either a standard atom or an aggregate atom. A rule r has the
following form:

a1 ∨ . . . ∨ an :– b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bk are atoms, bk+1, . . . , bm are stan-
dard atoms, and n, k,m ≥ 0. A literal is either a standard atom a or its negation
not a. The disjunction a1 ∨ . . . ∨ an is the head of r, while the conjunction
b1, . . . , bk, not bk+1, . . . , not bm is its body. Rules with empty body are called
facts. Rules with empty head are called constraints. A variable that appears
uniquely in set terms of a rule r is said to be local in r, otherwise it is a global
variable of r. An ASP program is a set of safe rules, where a rule r is safe if the
following conditions hold: (i) for each global variable X of r there is a positive
standard atom ` in the body of r such that X appears in `; and (ii) each lo-
cal variable of r appearing in a symbolic set {Terms : Conj} also appears in a
positive atom in Conj .

A weak constraint [12] ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w@l]

where w and l are the weight and level of ω, respectively. (Intuitively, [w@l] is
read “as weight w at level l”, where weight is the “cost” of violating the condition
in the body of w, whereas levels can be specified for defining a priority among
preference criteria). An ASP program with weak constraints is Π = 〈P,W 〉,
where P is a program and W is a set of weak constraints.

A standard atom, a literal, a rule, a program or a weak constraint is ground
if no variables appear in it.

Semantics. Let P be an ASP program. The Herbrand universe UP and the
Herbrand base BP of P are defined as usual. The ground instantiation GP of
P is the set of all the ground instances of rules of P that can be obtained by
substituting variables with constants from UP .
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An interpretation I for P is a subset I of BP . A ground literal ` (resp.,
not `) is true w.r.t. I if ` ∈ I (resp., ` 6∈ I), and false (resp., true) otherwise. An
aggregate atom is true w.r.t. I if the evaluation of its aggregate function (i.e.,
the result of the application of f on the multiset S) with respect to I satisfies
the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t.
I whenever all conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all rules of a program. Given a
ground program GP and an interpretation I, the reduct [17] of GP w.r.t. I is the
subset GIP of GP obtained by deleting from GP the rules in which a body literal
is false w.r.t. I. An interpretation I for P is an answer set (or stable model) for
P if I is a minimal model (under subset inclusion) of GIP (i.e., I is a minimal
model for GIP ) [17].

Given a program with weak constraints Π = 〈P,W 〉, the semantics of Π
extends from the basic case defined above. Thus, let GΠ = 〈GP , GW 〉 be the
instantiation of Π; a constraint ω ∈ GW is violated by an interpretation I if all
the literals in ω are true w.r.t. I. An optimum answer set for Π is an answer set
of GP that minimizes the sum of the weights of the violated weak constraints in
GW in a prioritized way.

Syntactic shortcuts. In the following, we also use choice rules of the form {p},
where p is an atom. Choice rules can be viewed as a syntactic shortcut for the
rule p∨p′, where p′ is a fresh new atom not appearing elsewhere in the program,
meaning that the atom p can be chosen as true.

3 Problem Description

In this section we provide an informal dsecription of the ORS problem and its
requirements.

As we already said in the introduction, most modern hospitals are charac-
terized by a very long surgical waiting list, often worsened, if not altogether
caused, by inefficiencies in operating room planning. A very important factor
is represented by the availability of beds in the wards and, if necessary, in the
Intensive Care Unit for each patient for the entire duration of their stay.

This means that hospital planners have to balance the need to use the OR
time with the maximum efficiency with an often reduced beds availability.

In this paper, the elements of the waiting list are called registrations. Each
registration links a particular surgical procedure, with a predicted surgery du-
ration and length of stay in the ward and in the ICU, to a patient.

The overall goal of the ORS problem is to assign the maximum number of
registrations to the operating rooms (ORs), taking into account the availability
of beds in the associated wards and in the ICU. This approach entails that the
resource optimized is the one, between the OR time and the beds, that represents
the bottleneck in the particular scenario analyzed.
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As first requirement of the ORS problem, the assignments must guarantee
that the sum of the predicted duration of surgeries assigned to a particular OR
session does not exceed the length of the session itself: this is referred in the
following as surgery requirement. Moreover, registrations are not all equal: they
can be related to different medical conditions and can be in the waiting list for
different periods of time. These two factors are unified in one concept: prior-
ity. Registrations are classified according to three different priority categories,
namely P1, P2 and P3. The first one gathers either very urgent registrations or
the ones that have been in the waiting list for a long period of time; it is required
that these registrations are all assigned to an OR. Then, the registrations of the
other two categories are assigned to the top of the ORs capacity, prioritizing the
P2 over the P3 ones (minimization).

Regarding the bed management part of the problem, we have to ensure that
a registration can be assigned to an OR only if there is a bed available for
the patient for the entire LOS. In particular, we have considered the situation
where each specialty is related to a ward with a variable number of available
beds exclusively dedicated to the patients associated to the specialty. This is
referred in the following as ward bed requirement. The ICU is a particular type
of ward that is accessible to patients from any specialty. However, only a small
percentage of patients is expected to need to stay in the ICU. This requirement
will be referred as the ICU bed requirement. Obviously, during their stay in the
ICU, the patient does not occupy a bed in the specialty’s ward.

In our model, a patient’s LOS has been subdivided in the following phases:

• a LOS in the ward before surgery, in case the admission is programmed a
day (or more) before the surgery takes place;

• the LOS after surgery, which can be further subdivided into the ICU LOS
and the following ward LOS.

The encoding described in Sections 4 and 5 supports the generation of an
optimized schedule of the surgeries either in the case where the bottleneck is
represented by the OR time or by the beds availability.

4 ASP Encoding for the basic ORS problem

Starting from the specifications in the previous section, in this section the
scheduling problem, limited to the assignments of the registrations to the ORs,
is described in the ASP language, in particular following the input language of
clingo.

4.1 OR scheduling

Data Model. The input data is specified by means of the following atoms:

• Instances of registration(R,P,SU,LOS,SP,ICU,A) represent the registrations,
characterized by an id (R), a priority score (P ), a surgery duration (SU) in
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{x(R,P,O, S,D)} :– registration(R,P, , , SP, , ),mss(O,S, SP,D). (r1)

:– x(R,P,O, S1, ), x(R,P,O, S2, ), S1! = S2. (r2)

:– x(R,P,O1, , ), x(R,P,O2, , ), O1! = O2. (r3)

surgery(R,SU,O, S) :– x(R, ,O, S, ), registration(R, , SU, , , , ). (r4)

:– x( , , O, S, ), duration(N,O, S),

#sum{SU,R : surgery(R,SU,O, S)} > N (r5)

:– N = totRegsP1 −#count{R : x(R, 1, , , )}, N > 0. (r6)

:∼ N = totRegsP2 −#count{R : x(R, 2, , , )}. [N@3] (r7)

:∼ N = totRegsP3 −#count{R : x(R, 3, , , )}. [N@2] (r8)

Fig. 1. ASP encoding of the ORS problem, excluding the bed management

minutes, the overall length of stay both in the ward and the ICU after the
surgery (LOS) in days, the id of the specialty (SP ) it belongs to, a length
of stay in the ICU (ICU) in days, and finally a parameter representing the
number of days in advance (A) the patient is admitted to the ward before
the surgery. It must be noted that the variables LOS, ICU and A become
relevant for the beds management (see Section 5).

• Instances of mss(O,S,SP,D) link each operating room (O) to a session (S) for
each specialty and planning day (D) as established by the hospital Master
Surgical Schedule (MSS).

• The OR sessions are represented by the instances of the predicate dura-
tion(N,O,S), where N is the session duration.

The output is an assignment represented by atoms of the form x(R,P,O,S,D),
where the intuitive meaning is that the registration R with priority P is assigned
to the OR O during the session S and the day D.

Encoding. The related encoding is shown in Figure 1, and is described in the
following. Rule (r1) guesses an assignment for the registrations to an OR in a
given day and session among the ones permitted by the MSS for the particular
specialty the registration belongs to.

The same registration should not be assigned more than once, in different
OR or sessions. This is assured by the constraints (r2) and (r3). Note that in our
setting there is no requirement that every registration must actually be assigned.

Surgery requirement. With rules (r4) and (r5), we impose that the total length
of surgery durations assigned to a session is less than or equal to the session
duration.

Minimization. We remind that we want to be sure that every registration having
priority 1 is assigned, then we assign as much as possible of the others, giving
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precedence to registrations having priority 2 over those having priority 3. This
is accomplished through constraint (r6) for priority 1 and the weak constraints
(r7) and (r8) for priority 2 and 3, respectively, where totRegsP1, totRegsP2 and
totRegsP3 are constants representing the total number of registrations having
priority 1, 2 and 3, respectively.

Minimizing the number of unassigned registrations could cause an implicit
preference towards the assignments of the registrations with shorter surgery du-
rations. To avoid this effect, one can consider to minimize the idle time, however
this is in general slower from a computational point of view and often unneces-
sary, since the preference towards shorter surgeries is already mitigated by our
three-tiered priority schema.

5 ASP Encoding for ORS with Beds Management

This section is devoted to the beds management task of the ORS problem; the
ASP rules and data model described here are added to those presented in the
previous section.

5.1 OR scheduling with beds

Data Model. In order to deal with the beds management for the wards and the
ICU, the data model outlined in Section 4.1 must be supplemented to include
data about the availability of beds in each day of the planning and for each ward
associated to the specialties and the ICU.

Instances of beds(SP,AV,D) represent the number of available beds (AV ) for
the beds associated to the specialty SP in the day D. The ICU is represented
by giving the value 0 to SP .

Encoding. The related encoding is shown in Fig 2, and is described in the
following. Rule (r9) assigns a bed in the ward to each registration assigned to an
OR, for the days before the surgery. Rule (r10) assigns a ward bed for the period
after the patient was dismissed from the ICU and transferred to the ward. Rule
(r11) assigns a bed in the ICU.

Ward bed requirement. Rule (r12) ensures that the number of patients occupying
a bed in each ward for each day is never larger than the number of available beds.

ICU bed requirement. Finally, rule (r13) performs a similar check as the one in
rule (r12), but for the ICU.

Remark. We note that, given that the MSS is fixed, our problem and encoding
can be decomposed by considering each specialty separately in case the beds
are not a constrained resource, as will be the case for one of our scenario. We
decided not to use this property because (i) this is the description of a practical
application that is expected to be extended over time and to correctly work
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stay(R,D −A..D − 1, SP ) :– registration(R, , , LOS, SP, , A),

x(R, , , ,D), A > 0. (r9)

stay(R,D + ICU..D + LOS − 1, SP ) :– registration(R, , , LOS, SP, ICU, ),

x(R, , , ,D), LOS > ICU. (r10)

stayICU (R,D..ICU + D − 1) :– registration(R, , , , , ICU, ),

x(R, , , ,D), ICU > 0. (r11)

:– #count{R : stay(R,D, SP )} > AV,

SP > 0, beds(SP,AV,D). (r12)

:– #count{R : stayICU (R,D)} > AV,

beds(0, AV,D). (r13)

Fig. 2. ASP encoding of the bed management portion of the ORS problem

Table 1. Beds availability for each specialty and in each day in scenario A.

Specialty Monday Tuesday Wednesday Thursday Friday

0 (ICU) 40 40 40 40 40
1 80 80 80 80 80
2 58 58 58 58 58
3 65 65 65 65 65
4 57 57 57 57 57
5 40 40 40 40 40

even if the problem becomes non-decomposable, e.g. a (simple but significant)
extension in which a room is shared among specialties brings to a problem which
is not anymore decomposable in all cases, and (ii) it is not applicable to all of
our scenarios. Additionaly, even not considering this property at the level of
encoding, the experimental analysis that we will present is already satisfying for
our use case.

6 Experimental Results

In this section we report about the results of an empirical analysis of the ORS
problem. Data have been randomly generated but having parameters and sizes
inspired by real data. Both experiments were run on a Intel Core i7-7500U
CPU @ 2.70GHz with 7.6 GB of physical RAM. The ASP system used was
clingo [18], version 5.5.2.

6.1 ORS benchmarks

The final encoding employed in our analysis is composed by the ASP rules
(r1), . . . , (r13). The test cases we have assembled are based on the requirements
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Table 2. Beds availability for each specialty and in each day in scenario B.

Specialty Monday Tuesday Wednesday Thursday Friday

0 (ICU) 4 4 5 5 6
1 20 30 40 45 50
2 10 15 23 30 35
3 10 14 21 30 35
4 8 10 14 16 18
5 10 14 20 23 25

Table 3. Parameters for the random generation of the scheduler input.

Specialty Reg. ORs
Surgery Duration (min)

mean (std)
LOS (d)

mean (std)
ICU %

ICU LOS (d)
mean (std)

LOS (d)
before surgery

1 80 3 124 (59.52) 7.91 (2) 10 1 (1) 1
2 70 2 99 (17.82) 9.81 (2) 10 1 (1) 1
3 70 2 134 (25.46) 11.06 (3) 10 1 (1) 1
4 60 1 95 (19.95) 6.36 (1) 10 1 (1) 0
5 70 2 105 (30.45) 2.48 (1) 10 1 (1) 0

Total 350 10

of a typical small-medium size Italian hospital, with five surgical specialties to be
managed over the widely used 5-days planning period. Two different scenarios
were assembled. The first one (scenario A) is characterized by an abundance of
available beds, so that the constraining resource becomes the OR time. For the
second one (scenario B), we severely reduced the number of beds, in order to
test the encoding in a situation with plenty of OR time but few available beds.
Each scenario was tested 10 times with different randomly generated inputs. The
characteristics of the tests are the following:

• 2 different benchmarks, comprising a planning period of 5 working days, and
different numbers of available beds, as reported in Table 1 and Table 2 for
scenario A and B, respectively;

• 10 ORs, unevenly distributed among the specialties;
• 5 hours long morning and afternoon sessions for each OR, summing up to a

total of 500 hours of ORs available time for the 2 benchmarks;
• 350 generated registrations, from which the scheduler will draw the assign-

ments. In this way, we simulate the common situation where a hospital man-
ager takes an ordered, w.r.t. priorities, waiting list and tries to assign as many
elements as possible to each OR.

The surgery durations have been generated assuming a normal distribution,
while the priorities have been generated from a uneven distribution of three pos-
sible values (with weights respectively of 0.20, 0.40 and 0.40 for registrations
having priority 1, 2 and 3, respectively). The lengths of stay (total LOS after
surgery and ICU LOS) have been generated using a truncated normal distribu-
tion, in order to avoid values less than 1. In particular for the ICU, only a small
percentage of patients have been generated with a predicted LOS while the large
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Table 4. Scheduling results for the scenario A benchmark.

Assigned Registrations
OR time
Efficiency

Bed Occupation
Efficiency

Priority 1 Priority 2 Priority 3 Total

62 / 62 132 / 150 72 / 138 266 / 350 96.6% 52.0%
72 / 72 128 / 145 64 / 133 264 / 350 95.6% 51.0%
71 / 71 132 / 132 69 / 147 272 / 350 96.7% 53.0%
66 / 66 138 / 142 57 / 142 261 / 350 96.2% 50.7%
79 / 79 119 / 130 67 / 141 265 / 350 96.0% 51.9%
67 / 67 131 / 131 66 / 152 264 / 350 96.6% 53.8%
66 / 66 121 / 132 69 / 152 256 / 350 96.0% 49.8%
69 / 69 130 / 135 68 / 146 267 / 350 96.8% 51.6%
60 / 60 139 / 153 59 / 137 258 / 350 96.0% 50.8%
68 / 68 138 / 142 57 / 139 263 / 350 95.2% 51.3%

Table 5. Scheduling results for the scenario B benchmark.

Assigned Registrations
OR time
Efficiency

Bed Occupation
Efficiency

Priority 1 Priority 2 Priority 3 Total

62 / 62 106 / 150 13 / 138 181 / 350 66.3% 92.7%
72 / 72 77 / 145 43 / 133 192 / 350 67.5% 94.2%
71 / 71 80 / 132 38 / 147 189 / 350 68.2% 96.1%
66 / 66 81 / 142 41 / 142 188 / 350 71.4% 93.4%
79 / 79 90 / 130 20 / 141 189 / 350 69.0% 94.1%
67 / 67 95 / 131 25 / 152 187 / 350 66.5% 93.9%
66 / 66 92 / 132 30 / 152 188 / 350 71.8% 94.1%
69 / 69 84 / 135 36 / 146 189 / 350 68.7% 92.7%
60 / 60 91 / 153 34 / 137 185 / 350 69.7% 94.1%
68 / 68 82 / 142 35 / 139 185 / 350 69.3% 95.1%

majority do not need to pass through the ICU and their value for the ICU LOS
is fixed to 0. Finally, since the LOS after surgery includes both the LOS in the
wards and in the ICU, the value generated for the ICU LOS must be less than
or equal to the total LOS after surgery. The parameters of the test have been
summed up in Table 3. In particular, for each specialty (1 to 5), we reported the
number of registrations generated, the number of ORs assigned to the specialty,
the mean duration of surgeries with its standard deviation, the mean LOS after
the surgery with its standard deviation, the percentage of patients that need
to stay in the ICU, the mean LOS in the ICU with its standard deviation and,
finally, the LOS before the surgery (i.e. the number of days, constant for each
specialty, the patient is admitted before the planned surgery is executed).

6.2 Results

Results of the experiments are reported for scenario A in Table 4 and for scenario
B in Table 5, respectively. A time limit of 60 seconds was given in view of a
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practical use of the program, each scenario was run 10 times with different input
registrations. For each of the 10 runs executed, the tables report in the first
three columns the number of the assigned registrations out of the generated
ones for each priority, and in the remaining two columns a measure of the total
time occupied by the assigned registrations as a percentage of the total OR time
available (indicated as OR time Efficiency in the Table) and the ratio between
the beds occupied after the planning to the available ones before the planning
(labeled as Bed Occupation Efficiency in the tables). As a general observation,
these results show that our solution is able to utilize efficiently whichever resource
is more constrained: scenario A runs manage to reach a very high efficiency, over
95%, in the use of OR time, while scenario B achieves an efficiency of bed
occupation between 92% and 95%. Note that to better be able to confront the
results, for each run the bed configurations of the two scenarios were applied
to the same generated registrations. Taking into consideration a practical use of
this solution, the user would be able to individuate and quantify the resources
that are more constraining and take the appropriate actions. This means that
the solution can also be used to test and evaluate ”what if” scenarios.

Finally, in Figure 3 we (partially) present the results achieved on one instance
(i.e., the first instance of Table 4 and Table 5) with 350 registrations for 5 days.
Each bar represents the total number of available beds for specialty 1, as reported
in Table 1 for the plot at the top and Table 2 for the bottom one, for each day of
the week, from Monday through Friday. The colored part of the bars indicates
the amount of occupied beds while the gray part the beds left unoccupied by
our planning.

7 Related Work

In this section we review related literature, organized into two paragraphs. The
first paragraph is devoted to outlining different techniques for solving the ORS
problem, with focus on the inclusion of beds management, while in the second
paragraph we report about other scheduling problems where ASP has been em-
ployed.

Solving ORS problems. Aringhieri et al. [8] addressed the joint OR planning
(MSS) and scheduling problem, described as the allocation of OR time blocks to
specialties together with the subsets of patients to be scheduled within each time
block over a one week planning horizon. They developed a 0-1 linear program-
ming formulation of the problem and used a two-level meta-heuristic to solve it.
Its effectiveness was demonstrated through numerical experiments carried out
on a set of instances based on real data and resulted, for benchmarks of 80-100
assigned registrations, in a 95-98% average OR utilization rate, for a number
of ORs ranging from 4 to 8. The execution times were around 30-40 seconds.
In [25], the same authors introduced a hybrid two-phase optimization algorithm
which exploits neighborhood search techniques combined with Monte Carlo sim-
ulation, in order to solve the joint advance and allocation scheduling problem,
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Fig. 3. Example of bed occupation of the ward corresponding to specialty 1 for 5 days
scheduling. The plot on the top corresponds to the first instance of scenario A, while
the one on the bottom to the first instance of scenario B.
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taking into account the inherent uncertainty of surgery durations. In both the
previous works, the authors solve the beds management problem limited to week-
end beds, while assuming that each specialty has its own post-surgery beds from
Monday to Friday with no availability restriction. In [9], some of the previous
authors face the beds management problem for all the days of the week, with
the aim to level the post-surgery ward bed occupancies during the days, using a
Variable Neighbourhood Search approach.

Other relevant approaches are: Abedini et al. [1], that developed a bin packing
model with a multi-step approach and a priority-type-duration rule; Molina-
Pariente et al. [26], that tackled the problem of assigning an intervention date
and an operating room to a set of surgeries on the waiting list, minimizing access
time for patients with diverse clinical priority values; and Zhang et al. [29], that
addressed the problem of OR planning with different demands from both elective
patients and non-elective ones, with priorities in accordance with urgency levels
and waiting times. However, beds management is not considered in this last
three mentioned approaches.

ASP in scheduling problems. We already mentioned in the introduction that
ASP has been already successfully used for solving hard combinatorial and appli-
cation problems in several research areas. Concerning scheduling problems other
than ORS, ASP encodings were proposed for the following problems: Incremen-
tal Scheduling Problem [14, 20], where the goal is to assign jobs to devices such
that their executions do not overlap one another; Team Building Problem [28],
where the goal is to allocate the available personnel of a seaport for serving
the incoming ships; and Nurse Scheduling Problem [2, 16, 3], where the goal is to
create a scheduling for nurses working in hospital units. Other relevant problems
are Interdependent Scheduling Games [5], which requires interdependent services
among players, that control only a limited number of services and schedule inde-
pendently, the Conference Paper Assignment Problem [7], which deals with the
problem of assigning reviewers in the PC to submitted conference papers, and
the Stable Roommates Problem [6], which is a modified version of the well-known
Stable Marriage Problem.

8 Conclusions

In this paper we have employed ASP for solving to the ORS problem with
beds management, given ASP has already proved to be a viable tool for solving
scheduling problems due to the readability of the encoding, and availability of
efficient solvers. Specifications of the problem are modularly expressed as rules
in the ASP encoding, and ASP solver clingo has been used. We finally pre-
sented the results of an experimental analysis on ORS benchmarks with realistic
sizes and parameters on two scenario, that reveal that our solution is able to
utilize efficiently whichever resource is more constrained, being either the OR
time or the beds. Moreover, for the planning length of 5 days usually used in
small-medium Italian hospitals, this is obtained in short timings in line with
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the needs of the application. Future work includes the design and analysis of a
re-scheduling solution, in case the off-line solution proposed in this paper can
not be fully implemented for circumstances such as canceled registrations, and
the evaluation of heuristics and optimization techniques (see, e.g., [23, 24, 4]) for
further improving the effectiveness of our solution.
All materials presented in this work, including benchmarks, encodings and re-
sults, can be found at: http://www.star.dist.unige.it/~marco/RuleMLRR19/
material.zip.
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heuristic for the operating room scheduling and assignment problem. Computers
& Operations Research 54, 21–34 (2015)
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15. Dodaro, C., Galatà, G., Maratea, M., Porro, I.: Operating room scheduling via an-
swer set programming. In: AI*IA. LNCS, vol. 11298, pp. 445–459. Springer (2018)

16. Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: LP-
NMR. LNCS, vol. 10377, pp. 301–307. Springer (2017)

17. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175(1), 278–298 (2011)

18. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: ICLP (Technical Communications).
OASICS, vol. 52, pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016)

19. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artif. Intell. 187, 52–89 (2012)

20. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competi-
tion. Journal of Artificial Intelligence Research 60, 41–95 (2017)

21. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Proceedings of the Fifth International Conference and Symposium , Seattle,
Washington, August 15-19, 1988 (2 Volumes). pp. 1070–1080. MIT Press (1988)

22. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Comput. 9(3/4), 365–386 (1991)

23. Giunchiglia, E., Maratea, M., Tacchella, A.: Dependent and independent variables
in propositional satisfiability. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.)
JELIA. Lecture Notes in Computer Science, vol. 2424, pp. 296–307. Springer (2002)

24. Giunchiglia, E., Maratea, M., Tacchella, A.: (In)Effectiveness of look-ahead tech-
niques in a modern SAT solver. In: Rossi, F. (ed.) CP. Lecture Notes in Computer
Science, vol. 2833, pp. 842–846. Springer (2003)

25. Landa, P., Aringhieri, R., Soriano, P., Tànfani, E., Testi, A.: A hybrid optimization
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