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Abstract

The relation between answer set programming (ASP) and
propositional satisfiability (SAT) is at the center of many re-
search papers, partly because of the tremendous performance
boost of SAT solvers during last years. Various translations
from ASP to SAT are known but the resulting SAT formula ei-
ther includes many new variables or may have an unpractical
size. There are also well known results showing a one-to-one
correspondence between the answer sets of a logic program
and the models of its completion. Unfortunately, these results
only work for specific classes of problems.

In this paper we present a SAT-Based decision procedure for
answer set programming th@p deals with any (non disjunc-
tive) logic program{i) works on a SAT formula without ad-
ditional variables, andii:) is guaranteed to work in polyno-
mial space. Further, our procedure can be extended to com-
pute all the answer sets still working in polynomial space.
The experimental results of a prototypical implementation
show that the approach can pay off sometimes by orders of
magnitude when computing one solution, and it is competi-
tive when computing all solutions.

Introduction

Propositional satisfiability (SAT) is one of the most studied
fields in Artificial Intelligence and Computer Science. Also
motivated by the availability of efficient SAT solvers various
reductions from logic programs to SAT were introduced in
the past.

Fages (Fages 1994) showed that if a progtaim “tight”

Ben-Eliyahu and Dechter (Ben-Eliyahu & Dechter 1996)
gave a translation from a class of disjunctive logic programs
to SAT. However the translation may neédn?) new vari-
ables andO(n?) new clauses (where is the number of
atoms in the logic program). Janhunen (Janhunen 2003)
presented an optimized encoding of this translation, which
behaves subquadratic in both size and number of atoms. Lin
and Zhao (Lin & Zhao 2003) introduced a translation which
needs the introduction aP(n? + m) new variables and
O(n x m) new clauses. In practice the number of variables
or clauses in the resulting formula can be prohibitive.

A reduction to SAT which does not need extra variables
was proposed by Lin and Zhao (Lin & Zhao 2002). The
drawback of this reduction is that the resulting formula may
blow-up in space. Still systemssAT based on such reduc-
tion outperforms state-of-the-art ASP systems l&eoD-

ELS (Niemeh 1999; Simons 2000) andLv (Eiter et al.
1998) on many interesting problems.

In this paper the question that we positively answer is: Is
it possible to build an efficient SAT-Based answer set gener-
ator that(:) deals with any (non disjunctive) logic program,
(#4) works on a SAT formula without additional variables
except for those eventually introduced by the clause form
transformation, andiii) is guaranteed to work in polyno-
mial space? We present a procedure, called ASP-SAT, hav-
ing the above three but also other features. We integrated
ASP-SAT incMODELS? and ran a wide comparative anal-
ysis with other state-of-the-art systems. The results show
that our procedure has a clear edge over them when com-

then its answer sets (or stable models) are in one-to-one cor-puting one solution, and is competitive when computing all
respondence with the models of its completion (Clark 1978). solutions.

If the completion is converted to a set of clauSestate-of-

The paper is structured as follows. First we introduce

the-art SAT solvers can be used as answer set generatorssome necessary definitions and terminology. Second we

Since the size of is at most twice the size dff, and has
at mostm new variables (where: is the number of rules in

present the main ideas behind our procedure and some de-
tails for an effective implementation. We end the paper de-

the logic program) this is considered a viable and efficient scribing the integration itMODELS, the experimental re-
approach. Fages’ result was then generalised to include pro- sults, and the conclusions.

grams with infinitely many rules (Lifschitz 1996), programs
tight “on their completion model” (Babovich, Erdem, & Lif-

!Lin and Zhao (Lin & Zhao 2002) report that the grounding of a

schitz 2000), and programs with nested expressions in the r5qram corresponding to the computation of an Hamiltonian path

bodies of the rules (Erdem & Lifschitz 2003). Still these re-

in a complete graph with 50 nodes, produces a program with 5000

sults do not apply to the whole class of logic programs. Itis atoms and 240000 rules. For this problem, the new clauses will be
well known that each answer set corresponds to a model of more than a billion.

its completion, but the viceversa in general is not true.

2http://www.cs.utexas.edu/users/tag/cmodels



Formal Background
Let P be a set of atoms. Aule is an expression of the form

Ag — Aq, ... .,not Ay, (1)

whereAy € PU {1} (L is the logical symbol standing for
Falsg, and{A;,...,A,} € P (0 < m < n). Apisthe
head of the rule, A4, ..., Ay, not Apy1,. .., not A, is the
body. A (non disjunctive) logic program is a finite set of
rules.

In order to give the definition of an answer set we con-
sider first the special case in which the progrAndoes not
contain the negation as failure operatart (i.e. for each
rule (1) inIl, n = m). LetII be such a program and l&t
be a set of atoms. We say that is closed underIl if for
every rule (1) inll, Ao € X whenevel 4;,..., A} C X.
We say thatX is ananswer set for IT if X is the smallest set
closed undefl.

Now consider an arbitrary prograhh. Let X be a set of
atoms. Theeduct I1X of II relative toX is the set of rules

A0<—A1,...7Am
for all rules (1) inII such thatX N {4,411, ...

s Apmynot Ay, .

where\/ L denotes the disjunction of the elementdirand
similarly for\/ R(L). For instance, the only loop formula of
the program{p <« p,p < not q} isp D —g.

Proposition 1 (Lin & Zhao 2002) LetIl be a program,
Comg1I) its completion, andLF(IT) be the set of loop
formulas associated with the loops Ih For each set of
atoms X, X is an answer set ofl iff X is a model of
ComgII) U LF(II).

SAT-Based Answer Set Solvers

Consider a prograril. Given Proposition 1 it is clear that
if the dependency graph &f has no cycles (in this case we
say thafll is tight) then the models a€omgII) are also an-
swer sets ofl. Thus for tight programs answer set systems
can use SAT solvers as “black-box” search engimesoD-
ELS used this approach to compute answer sets for tight pro-
grams.

If IT is non tight, Lin and Zhao (Lin & Zhao 2002) pre-
sented the following proceduieZ (IT) which still uses SAT
solver as black-boxes:

1. ComputeComgII) and convert it to a set of clausEs

ThusII¥X is a program without negation as failure. We say 2. Find a modelX of I' by using a SAT solver. Exit with

that X is ananswer set for I if X is an answer set fdiX.

Our next step is to introduce the relation between the an- 3,

swer sets ofl and the models of its completion. In the fol-
lowing we represent an interpretation in the sense of propo-
sitional logic as the set of atonTsuein it. With this con-

an interpretation.
If Ay is an atom or the symbal, the completion of 11
relative to Ag CompII, Ay) is the formula

AoE\/(Al/\---/\Am/\ﬂAerl/\-~-/\ﬂAn)

where the disjunction extends over all rules (1)[irwith
headAy. The completion ComfII) of II consists of the
formulasComy(II, Ay), one for each symbol, in PU{_L}.

It is well known that if X is an answer set dfl then X
satisfiesComyII) while the converse is not necessarily true.
Lin and Zhao (Lin & Zhao 2002) proved that to have a one-
to-one correspondence between the answer sel$ arfid
the models of its completion we have to consider the loop
formulas ofIl. To state this formally we need the following
definitions.

The dependency graph of a programll is the directed
graphG such that the vertexes 6f are the atoms ifil, and
G has an edge fromly to A4, ..., A, for each rule (1) in
IT with Ag # L. A loop of IT is a setL of atoms such that
for each paird, A’ of atoms inL there is a path from! to
A’ in the dependency graph Bf whose intermediate nodes
belong toL.

Given a loopL, we defineR(L) to be the set of formulas

AN A AR A=Apg1 Ao A=Ay

for all rules (1) inII, with Ay € Land{A;,..., A,}NL =
(). Theloop formula associated with L is

\/ L>\/R(L)

4.

vention a set of atom& can denote both an answer set and 5.

failure if no such model exists.

Compute the set of atondé~ = X — Cons(I1¥X), where
Cons(IT%) is the smallest set of atoms closed unfer.

If X— =0, then returnX.

Otherwise, add the clauses corresponding to the loop for-
mulas of all the maximal (under subset inclusion) loops in
X~ toT', and go to step 2.

LZ(1I) either returns an answer set for, or failure if II
does not have answer sets. In their article Lin and Zhao
showed thanssAT, a system implementing the above pro-
cedure, can outperform rival systems often by orders of mag-
nitude. Still, LZ(II) has the following two drawbacks:

1. Itis not guaranteed to work in polynomial space. In fact,
IT can have exponentially many loops: If we assume that
each loop formula is not redundant (i.e., that it is not en-
tailed by the rest of the formula under consideration), then

If I has an answer set thdrZ (IT) blows up in space

in the worst case, while

If IT has no answer set thérZ (IT) is bound to blow up

in space: InLZ(II) adding and keeping loop formulas

is essential to guarantee that the SAT solver does not
return previously computed models, and ultimately to
guarante@SSAT termination.

2. Considering two successive calls of the SAT solver, the
computation done for finding the first model is completely
discarded. Thus some branches of the search tree may get
computed many times.

These drawbacks can be eliminated if we do not use a
SAT solver as a black-box. Instead we can take advantage
that state-of-the-art complete SAT solvers are based on the
Davis-Logemann-Loveland procedurep(L) (Davis, Lo-
gemann, & Loveland 1962). The basic observation is that



pPLL(T, S)
if I' = () then return Trueg
if @ € I then return False
if {i} € I"then return pPLL(assign(l,T),S U {i});
A := an atom occurring if";
return DPLL(assign(A,T),SU{A}) or
DPLL(assign(—A,T),SU{-A4}).

Figure 1: The DPLL procedure

DPLL can easily work as a SAT enumerator. We can thus
computeComgII) and then

e generatemodels ofComgII), and
o testwhether the generated models are answer sdis of

ConsiderppLL as in Figure 1, wheré denotes a literal;
I' a set of clausesS an assignment, i.e. a consistent set
of literals. Given an atormH, assign(A,T') is the set of
clauses obtained frofi by removing the clauses to which
A belongs, and by removingA from the other clauses in
T. assign(—A,T) is defined similarly. In the initial call to
DPLL I' is the set of clauses of which we compute a model
andS is the empty seDPLL(T, @) returnsTruewheneverl
is satisfiable, anéfalseotherwise.

GivenDPLL, we can obtain a SAT-Based answer set gen-
erator forll by

1. Modifying the first line ofbpLL in the figure by substitut-
ing “return True with “return tes{.S,II)", a new func-
tion which

e prints the seatomgS) = S N P and returnsTrue, if
atomg.S) is an answer set df, and

e returnsFalse otherwise.

. Defining a function ASP-SATY), that callsppLL(T', ()
wherel is a set of clauses correspondingdomgII). I’
can be computed in many ways. Here, our only assump-
tions are thati) T signature extend®, and(i:) for each
set X of atoms inI" signature,X satisfiesl" iff X N P
satisfiesCompgII). Standard conversion methods satisfy
such conditions.

Notice that the sef' in tes(S,II) may be non maximal
wrt P, i.e., for some atomd in P, both A and—A may not
belong toS. Thus,S U {A} entailsCom{II) and in princi-
ple we also need to checkatomsgS U {A}) is an answer
set ofII. However, this additional check is not needed, as
established by the following proposition.

Proposition 2 LetIT be a program,X, X’ be two sets of
atoms satisfying Confpl). If X C X’ then X’ is not an
answer set.

From the above proposition, and the fact that each answer

set is also a model cEomgTII) it follows the correctness
and completeness of ASP-SATY.

Proposition 3 Given a programll, ASP-SAT(II) returns
True if and only ifll has an answer set.

Moreover ASP-SATIl) (i) performs the search on
ComgII) and thus does not introduce any extra variables
except for those eventually needed by the clause form trans-
formation; (i) is guaranteed to work in polynomial space;
(#i7) can deal with both tight and non tight programs. Fur-
ther,

In the case of tight problems each generated model
of ComgIl) corresponds to an answer set and thus
ASP-SAT(I) behaves as a standard SAT solver run on
ComgII).

ASP-SAT(I) can be easily modified for printing all the
answer sets ofl: It is enough to modifytes{.S,II) in
order to returnFalse also whenatomg.S) is an answer
set.

Compared tassAT, ASP-SAT is guaranteed to work in
polynomial space and no computation is ever repeated, also
when computing all answer sets. Compared to other answer
set solvers likessmoDELSandDLv, ASP-SAT has the ad-
vantage of being SAT-Based and thus it can leverage on the
great amount of knowledge available in SAT.

Still, most of the state-of-the-art SAT solvers based on
DPLL, e.g. MCHAFF (Moskewiczet al. 2001), use learning
when backtracking. With learning, whenevealse is re-
turned, a “reason” for the failure has to be computed. Intu-
itively, a reason is a subsst of the assignment such that
any assignment extendingf will fail. In order to use SAT
solvers with learning, it is thus not enough fes{( S, II) to
returnFalsewhen.S is not an answer set. Indeed, it has also
to compute a reason for such failure, i.e., a suls8eif S
such that for any maximal assignme#it (i) extendingS’
and(i7) entailingComg1lI), atomg.S”) is not an answer set
of II. One such set i§ itself. However in order to try to
maximize the advantages of learning, it is important tfat
be as small as possible. Thus, for computing sfththe
tes(S, IT) procedure

1. computes the loop formulas associated with the loops in
atomg.S) — Cons(I1#toms(5)),

2. determines a subset Sfwhich falsifies one of the loop
formulas computed in the previous step.

In our experiments, with such a simple procedure, we are
able to compute reasons which are often less than 1% of
the size ofS. Of course, the above method for computing
reasons, cannot be applied when returritatseif the goal

is to determine all the answer sets @tdmg.5) is an answer
set. In this case, by Proposition 2, theaimg.S) can work

as reason.

In the SAT literature, it is well known that learning can
produce exponential speed-ups. We now show that ASP-
SAT with learning and the method for computing reasons
based on loop formulas, may invokes{S,II) exponen-
tially fewer times than ASP-SAT without learning.

Assume the prograifi consists of the two rulés

Aj — Ay Ajpr — Ay

3In this paragraph for simplicity we assume that the clauses
corresponding to the reasons returnedest.S, IT) are stored and
never deleted.



for eachi € {0,2,...,2k}. Then Comp(II) includes
A; = Ay (0 €{0,2,...,2k}) and we can assume that its
clausificationI" consists of the two clausésA; V A;11),
(A;V—=A4;11), foreachi € {0,2,...,2k}. T has2* models
while the only answer set di is the empty set:

e ASP-SAT without learning or with learning but in which
tes(S,I1) computesatomg.S) as reason whels' is not
an answer set, may generat€ assignments entailing
Comp(1I).

e ASP-SAT with learning and in whicltes{(S,II) com-
putes as reason the subsetSofalsifying one of the loop

formulas inatomg.S) — Cons(I1%°™*(%)) may generate
at mostk assignments entailing'omp(II).

Still, for such a simple program, the generation and testing
of k£ assignments seems an overkill. Indeed, for progrims
without negation as failure, we know that there exists exactly
one answer sey'ons(II). For such programs, ASP-SAT

4. Forms the program’s completion (see (Lloyd & Topor
1984) for the definition of completion of a program with
nested expressions) and calls a SAT solver.

ForcmoDELSthe integration implied calling ASP-SAT in-
stead of the SAT solver. As for ASP-SAT we had to take
into account that programs with nested expressions do not
satisfy Proposition 2. For instance, the program

A« notnot A (2)
(corresponding to the translation of the choice rule
“{A} <) has two answer setd), {A}. The violation of
Proposition 2 implied two modifications in our procedure.
Consider a program with nested expressibhnsWhen we

are interested in computing all solutions, we have to guar-
antee that each se& of literals intes(S,II) is maximal.
Assuming that the input set of clauses is satisfiableio
always returns maximal assignments but in the signature of

can be easily tuned to directly compute such answer set by the set of clauses resulting af®mo preprocessing. How-

first assigning the atoms iff to Falsewhile branching. It
can be proved that with this modification and for progrdins
without negation as failure, the first invocationtes( S, I1)
hasS = Cons(II).

Integration in CMODELS

ASP-SAT was implemented on top of th®&mo sys-
tem (Giunchiglia, Maratea, & Tacchella 2003) and inte-
grated incMODELS(Lierler & Maratea 2004) by the last two
authors.siMO is aMCHAFF-like SAT solver (Moskewiczt
al. 2001), and features two-literal watching data structure,
1-UIP learning, and VSIDS heuristics. However, it does not
feature the low level optimizations efcHAFF and thus it is
within a factor of 3 slower thamcHAFF. Our implementa-
tion of ASP-SAT incorporates all the techniques presented
in previous section, including the idea to assign atoms first
to Falsewhile branching.

Still, the integration of ASP-SAT ircMODELS posed
some challenges related GODELS expressivity. CMOD-
ELS usesLPARSEas frontend and thus its input may contain
cardinality expressions (also called “constraint literals” in
LPARSE manuat) and choice rules, two constructs widely
used in answer set programmin@perationallycMODELS
performs the following steps:

1. Simplifies the givemPARSE program performing prepro-
cessing similar to those involved 8MODELS.

. Eliminates cardinality expressions by introducing auxil-
iary atoms and rules. Eliminates choice rules in favor
of nested expressions in the sense of (Lifschitz, Tang, &
Turner 1999). This is done using a procedure defined in
(Ferraris & Lifschitz 2003).

. Verifies that the resulting program with nested expres-
sions is tight: the definition of tightness is generalized to
such programs in (Erdem & Lifschitz 2003).

*http://www.tcs.hut.fi/Software/smodels/Iparse.ps.gz

5The input can also contain general weight expressions
(“weight literals”) However, optimize statements (SEPARSE
manual) are not allowed.

ever SIMO removes tautological clauses in the preprocess-
ing. Tautological clauses can naturally arise during the com-
pletion process and removing them may cause the genera-
tion of non maximal (wrt the signature of the input program)
assignments. By Proposition 2, this is not a proble if
does not have nested expressions; it may be a problem oth-
erwise. For instance, the completion of the program (2) is
A =--A. (AV —A) is the tautological clause correspond-
ing to this completion. After the preprocessing, the set of
clauses corresponding to the program is empty, and ASP-
SAT would not find the answer sétd}. Therefore, we
modified ASP-SAT preprocessing in order to keep tautolog-
ical clauses. The second modification involved the function
tes{S,II). It considers loop formulas as defined in (Lee &
Lifschitz 2003) for nested programs. In the casemgsS)

is an answer set and we are interested in finding all answer
sets offI, tes{.S, IT) returns the entire sétas a reason since
any superset or subset of the atomsimay be an answer

set ofIl.

Experimental Results

CMODELS2 was comparatively tested against other state-of-
the-art systems on a variety of benchmarks. Some of the
benchmarks we considered include cardinality constraints
and choice rules, and will be called “extended”. The sys-
tems we considered aBMODELSVersion 2.27 ASSAT ver-
sion 1.52 runninguCHAFF as SAT solverpLv release of
2003-05-16. It worths remarking that whigsODELS As-
SAT andCMODELS2 UseLPARSE as preprocessor, and thus
can be run on the same problensy does not. This ex-
plains whybLv appears only in few tables. FurthessaT
cannot deal with extended programs. Finally, fav we
have to mention that it is a system specifically designed for
disjunctive logic programs, and that very different results
can be obtained depending on the specific encoding being
used.

All the tests were run on a Pentium IV PC, with 1.8GHz
processor, 512MB RAM DDR 266MHz, running Linux.
For SMODELS ASSAT and CMODELS?2, the time taken by



LPARSE is not counted. Further, each system was stopped | | SMODELS| ASSAT [ DLV | CMODELS? |

after 3600 seconds of CPU time on an instance, or when it [ mutex4 33.02 0)0.62 | 840.60] (0)0.68
exceeded all the available memory: In the tables, these case§™ phi4 0.24 (168)2.98 1.44 TIME
are denoted with “TIME” and “MEM" respectively. Other- > 7 =
wise, the tables report the CPU times in seconds needed by mutex 0.09 (88)1.78 (0)0.

h solver t Ive th bl "t denot b mutex3 229.57 MEM (0)24.16
each solver to solve the problem, or-a™to denote an ab- ohi3 587 (704)236.91 57301

normal exit of the program. Finally, we run many more ex-
amples than those showed: We report here only the results
for the instances in which at least one of the systems solved Table 3: Checking requirements in a deterministic automa-
it and in more than 1 second. ton. bLv was not run on the last 3 instances.

Finding one answer set . . . .

CMODELS2 times out on one instance that is easily solved by
We start our analysis considering blocks world planning all the other solvers. This is due to the dimension of the re-
problems, encoded as both standard and extended logic pro-|ated propositional formula. On the other hand, for any other
grams, the latter formulation due to Erdem (Erdem 2002). solver, there are one/two instances on whiskDDELS is at
The results are represented in Table 1. In the tafsjethe least 1 order of magnitude faster. InterestinglysaT blows
column “#b” represents the number of blockKs;) an “” up in memory on one instance (and also on other instances,
in the “#s” (standing for “number of steps”) column means  on which the other systems time out).

that the instance corresponds to the problem of finding aplan  Non tight, extended real-world problems corresponding
in “¢" steps, where ¢" is the minimum integer for whicha  to the bounded model checking (BMC) of asynchronous
plan exists. ThUS, the instances witfi &nd “; + 1” in the concurrent Systems (See (He”anko & N|emQD03)? are

“#s” column admit at least one answer set, while those with shown in Table 4. As for the blocks world, these problems
“i — 1" do not have answer sets. These blocks world prob- are about proving a certain property in a given number of
lems are tight on their completion models (Babovich, Er- steps, represented as the last number in the instance name.
dem, & Lifschitz 2000), and thus every model of the com-  The problems in the first five rows do not have answer sets,

pletion corresponds to an answer set. As it could be ex- while the remaining (obtained by incrementing the number

pected, SAT-Based systems like SAT andCMODELS2 per- of steps) do. Here the results are mixed, and sometimes
form (sometimes significantly) better thamoDELs, both CMODELS2 performs much worse th&MODELS On these

on standard and extended programs. On standard programsproblems, our standard heuristic is not well suited. Given a
ASSAT performs slightly better thaeMoDELS2, and this programll, by changing the heuristic in order to
corresponds to the fact that, on averageHAFF is better

o firstassign the atoms occurring within the negation as fail-
We also considered Hamiltonian circuit problems on ure operator, the order and sign of such atoms determined

complete graphs, using both the standard encoding of as insiMo, and
Niemela (Niemed 1999), and the extended encoding in e then assign the remaining atoms firstRalse the order
the “benchmark problems for answer set programming sys-  determined as igIMO,

tems”. These problems are particularly interesting because g get the better figures represented in the last column, un-
they are non tight and have exponentially many loops. Thus, ger the labetmopELs2’. The idea behind this heuristic is
one would expect these problems to be difficult A&iSAT, that we should first get to a set of clauses corresponding to a
but also forcMODELS?2 in the case it will generate and then programIT without negation as failure, and then we should

reject (exponentially) many candidate answer sets. The re- 4. 1 satisfv the remaining set of clauses by assianing the
sults are in Table 2. As can be observed, on this test set fe)\//vest poszble atoms Eru?a y gning

CMODELS2 performs best, being faster (sometimes by or- Summing up, the 4 tables show the performances on 45

ders of magnitude) than all the other solvers both on stan- ,5piems. If for the Table 4 we consider the results in the
dard and extended programs. last column.CMODELS2

The problems in Table 3 are real-world non tight problem . _
related to checking requirements in a deterministic automa- ® times out on 1 problem, while the other systems do not

thansimMo.

ton, and are described in (Shefescu, Esparza, & Muscholl conclude on at least 3 problems;
2003)8 Two types of problems are considered and encoded e performs better than all the three solvers on 30 problems,
in logic programs. The first type is called IDFD and the re- and on 26 it has at least a factor of 2; and,

sults on such problems are reported in the first two rows of
the table. The second type of problem is called “Morin”, and
the results are shown on the last three rows. As can be seen,

e except for the problem on which it times oatyODELS2
is either the top performer or within a factor of 2 from it.

6Adding the times of.PARSE will not change the picture for Finding all answer sets
DLV when compared tGMODELS2. We also considered the problem of generating all answer
"http:/iww.cs.engr.uky.edu/ai/benchmark-suite/ham-cyc.sm  sets. We run the same experiments for all domains, but the
8These benchmarks are available at http://iwww.fmiuni-
stuttgart.de/szs/research/projects/synthesis/benchmarks030923.html °http://www.tcs.hut.fi kepa/experiments/boundsmodels/



Standard programs Extended programs

#b | #s || SMODELS [ ASSAT | CMODELS2 || SMODELS | CMODELS2

8 | i1 12.32 0.80 1.19 0.81 0.47

11 i-1 71.78 2.97 419 2.97 1.01

8 i 40.87 0.89 2.18 1.56 1.40

11 i 71.42 3.17 4.52 3.41 1.16

8 [i+1 23.35 0.96 0.97 4,99 0.31

11 | i+1 107.48 3.54 3.33 5.21 0.75

Table 1: Blocks world: “#b” is the number of blocks.
Standard programs Extended programs
SMODELS | ASSAT [ DLV [ CMODELS2 || SMODELS [ CMODELS2

np30c 11.70 1.14 22.08 0.69 0.36 0.36
np40c 62.89 41.81 97.96 1.63 2.48 0.87
np50c 219.56 1451 | 314.46 3.37 8.39 1.79
np60c 594.46 48.80 | 770.07 5.81 20.47 3.41
np70c 1323.61 | 291.60| 1679.12 8.22 39.41 5.87
np80c 2354.28 | 32.51 | 3407.35 14.20 75.36 9.18
np90c TIME 779.06| TIME 22.23 122.53 14.19
np100c TIME — TIME 28.63 185.52 20.76
np120c TIME — TIME 53.33 418.15 41.84

Table 2: Complete graphs. npXc corresponds to a graph with “X” nodes.

BMC [ SMODELS | CMODELS2 | CMODELS2" | | BMC | #sol || SMODELS [ CMODELS2 |
dp-10.i-02-b11 382.72 1476.72 442 .14 dp-10.i-02-b12|| 12600 1892 2692.31
dp-10.s-02-b8 15.24 8.20 14.22 dp-10.s-02-b9| 17280 115.54 332.79
dp-12.s-02-b9 336.03 65.41 137.34 dp-12.s-02-b1Q ? TIME TIME
dp-8.1-0O2-b9 8.08 12.62 10.69 dp-8.i-02-b10 360 42.22 53.76
dp-8.5-02-b7 1.19 1.02 2.28 dp-8.s-02-b8 720 5.83 13.98
dp-10.--O2-b12 445.47 3295.72 163.29
dp-10.s-02-b9 28.87 16.07 15.03 Table 7: Bounded Model Checking Problems. Finding all
dp-12.s-02-b1Q| 971.50 209.29 48.73 solutions.
dp-8.i-02-b10 5.05 40.01 6.44
dp-8.5-02-b8 1.76 1.99 2.03 | | #sol | SMODELS|[ DLV [ CMODELS2 |

mutex4 || ? TIME | TIME TIME

Table 4: Bounded Model Checking Problems. phi4 || 134 ] 3754 | 4821] TIME

mutex2 || 28 0.11 0.49
mutex3 ? TIME TIME
complete graphs. We generated smaller instances of com- phi3 18 9.81 16.85

plete graphs to evaluate this domain. Tables 5- 8 report the

results. Additional column in each table #sol indicates the Table 8: Checking requirements in a deterministic automa-
number of answer sets for the problem.

ton. Finding all solutions.

Table 5 contains the results on blocks world domain.
CMODELS?2 performs better thaamoDELSon all programs

but the non basic programs witht- 1 steps. The number of  has to check and reject a very high number of propositional
models of completion is equivalent to the number of answer models. Moreover, the dimension of the SAT formula grows
sets for these programs. quickly.

Table 6 shows the results for complete graphs. We present  The analysis on BMC problems is in Table 7. In this do-
results for complete graphs with “8”, “9” and “10” nodes. main, the timings of the solvers are comparals®ODELS
Starting from the graph with “11” nodes, none of the solvers is better thanrcMODELS2, of around a factor of two. Both
is able to find all solutions within the timeowgMODELSand SMODELS and CMODELS2 can not solve the biggest prob-
DLV are much faster thamMODELS2, both on basic and non lem in the suite.
basic programs. In order to find all answer setgODELS2 Table 8 presents the results on checking requirements in a



Basic program Non basic program
#b || #s || #sol SMODELS[ CMODELS2 | SMODELS [ CMODELS?2
8 i 28 75.38 2.98 5.29 4.64
11 i 2 171.39 4.88 10.79 2.68
8 [ i+1 || 3374 586.98 103.30 39.03 217.59
11 || i+1 || 263 888.11 58.76 57.04 110.16

Table 5: Blocks world: “#b” is the number of blocks. Finding all solutions

Basic program Non basic program
#sol || SMODELS| DLV [ CMODELS2 | SMODELS | CMODELS2
np8c [ 5040 1.10 3.35 4.68 0.38 4.36
np9c | 40320 10.52 31.79 111.52 3.60 170.19
nplOc || 362880 111.17 | 330.71 TIME 38.07 TIME

Table 6: Complete graphs. npXc corresponds to a graph with “X” nodes. Finding all solutions.

deterministic automaton problem. The performance of the
solvers is comparable, but for the phi4 benchmark in the
IDFD category. For two of the problems presented, none
of the solvers can find all solutions within the timeout.

Overall SMODELS and DLV perform better thartmoD-
ELS2 when all solutions are computed. In case of finding
all solutionscMODELS2 is competitive whenever number of
loops in the program is small. Whenever the number of the
loops is great as for instance in complete graph domain the
computation of all answer sets using ASP-SAT procedure

adds a big overhead by testing and rejecting great number of

models.

NeverthelesscMODELS? is the first SAT-Based answer
set solver that can find all answer sets of a logic program,
still running in polynomial space, and we believe that the
results are positive even for the case of all solutions, given
that we put no effort in optimizing our solver for such task.

Conclusions

We presented a SAT-Based procedure thatleals with any
logic program(ii) works on a SAT formula without addi-
tional variables,(ii7) is guaranteed to work in polynomial
space. We evidenced that ASP-SAT is easily modified in
order to generate all answer sets. We showed how to imple-
ment ASP-SAT on top of a1CHAFF-like SAT solver, and

discussed the modifications needed in the case of non basic

programs. The experimental evaluation shows thadD-
ELS2 has a significant edge over other state-of-the-art sys-

tems when we search for one answer set, and can be com-

petitive when solvers have to find all solutions. Still, we be-
lieve that there is a lot of space for improvements, especially
in the heuristics, and in the way reasons are computed.

Finally, we believe that ASP-SAT helps in closing the
algorithmic gap between answer set and SAT solvers, with
beneficial results especially for the former, given the very
advanced state of development of the latter.
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