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Abstract


The relation between answer set programming (ASP) and
propositional satisfiability (SAT) is at the center of many re-
search papers, partly because of the tremendous performance
boost of SAT solvers during last years. Various translations
from ASP to SAT are known but the resulting SAT formula ei-
ther includes many new variables or may have an unpractical
size. There are also well known results showing a one-to-one
correspondence between the answer sets of a logic program
and the models of its completion. Unfortunately, these results
only work for specific classes of problems.
In this paper we present a SAT-Based decision procedure for
answer set programming that(i) deals with any (non disjunc-
tive) logic program,(ii) works on a SAT formula without ad-
ditional variables, and(iii) is guaranteed to work in polyno-
mial space. Further, our procedure can be extended to com-
pute all the answer sets still working in polynomial space.
The experimental results of a prototypical implementation
show that the approach can pay off sometimes by orders of
magnitude when computing one solution, and it is competi-
tive when computing all solutions.


Introduction
Propositional satisfiability (SAT) is one of the most studied
fields in Artificial Intelligence and Computer Science. Also
motivated by the availability of efficient SAT solvers various
reductions from logic programs to SAT were introduced in
the past.


Fages (Fages 1994) showed that if a programΠ is “tight”
then its answer sets (or stable models) are in one-to-one cor-
respondence with the models of its completion (Clark 1978).
If the completion is converted to a set of clausesΓ, state-of-
the-art SAT solvers can be used as answer set generators.
Since the size ofΓ is at most twice the size ofΠ, and has
at mostm new variables (wherem is the number of rules in
the logic program) this is considered a viable and efficient
approach. Fages’ result was then generalised to include pro-
grams with infinitely many rules (Lifschitz 1996), programs
tight “on their completion model” (Babovich, Erdem, & Lif-
schitz 2000), and programs with nested expressions in the
bodies of the rules (Erdem & Lifschitz 2003). Still these re-
sults do not apply to the whole class of logic programs. It is
well known that each answer set corresponds to a model of
its completion, but the viceversa in general is not true.


Ben-Eliyahu and Dechter (Ben-Eliyahu & Dechter 1996)
gave a translation from a class of disjunctive logic programs
to SAT. However the translation may needO(n2) new vari-
ables andO(n3) new clauses (wheren is the number of
atoms in the logic program). Janhunen (Janhunen 2003)
presented an optimized encoding of this translation, which
behaves subquadratic in both size and number of atoms. Lin
and Zhao (Lin & Zhao 2003) introduced a translation which
needs the introduction ofO(n2 + m) new variables and
O(n×m) new clauses. In practice the number of variables
or clauses in the resulting formula can be prohibitive.1


A reduction to SAT which does not need extra variables
was proposed by Lin and Zhao (Lin & Zhao 2002). The
drawback of this reduction is that the resulting formula may
blow-up in space. Still systemASSAT based on such reduc-
tion outperforms state-of-the-art ASP systems likeSMOD-
ELS (Niemel̈a 1999; Simons 2000) andDLV (Eiter et al.
1998) on many interesting problems.


In this paper the question that we positively answer is: Is
it possible to build an efficient SAT-Based answer set gener-
ator that(i) deals with any (non disjunctive) logic program,
(ii) works on a SAT formula without additional variables
except for those eventually introduced by the clause form
transformation, and(iii) is guaranteed to work in polyno-
mial space? We present a procedure, called ASP-SAT, hav-
ing the above three but also other features. We integrated
ASP-SAT inCMODELS2 and ran a wide comparative anal-
ysis with other state-of-the-art systems. The results show
that our procedure has a clear edge over them when com-
puting one solution, and is competitive when computing all
solutions.


The paper is structured as follows. First we introduce
some necessary definitions and terminology. Second we
present the main ideas behind our procedure and some de-
tails for an effective implementation. We end the paper de-
scribing the integration inCMODELS, the experimental re-
sults, and the conclusions.


1Lin and Zhao (Lin & Zhao 2002) report that the grounding of a
program corresponding to the computation of an Hamiltonian path
in a complete graph with 50 nodes, produces a program with 5000
atoms and 240000 rules. For this problem, the new clauses will be
more than a billion.


2http://www.cs.utexas.edu/users/tag/cmodels







Formal Background
Let P be a set of atoms. Arule is an expression of the form


A0 ← A1, . . . , Am, not Am+1, . . . , not An (1)


whereA0 ∈ P ∪ {⊥} (⊥ is the logical symbol standing for
False), and{A1, . . . , An} ⊆ P (0 ≤ m ≤ n). A0 is the
head of the rule,A1, . . . , Am, not Am+1, . . . , not An is the
body. A (non disjunctive) logic program is a finite set of
rules.


In order to give the definition of an answer set we con-
sider first the special case in which the programΠ does not
contain the negation as failure operatornot (i.e. for each
rule (1) inΠ, n = m). Let Π be such a program and letX
be a set of atoms. We say thatX is closed underΠ if for
every rule (1) inΠ, A0 ∈ X whenever{A1, . . . , Am} ⊆ X.
We say thatX is ananswer set for Π if X is the smallest set
closed underΠ.


Now consider an arbitrary programΠ. Let X be a set of
atoms. Thereduct ΠX of Π relative toX is the set of rules


A0 ← A1, . . . , Am


for all rules (1) inΠ such thatX ∩ {Am+1, . . . , An} = ∅.
ThusΠX is a program without negation as failure. We say
thatX is ananswer set for Π if X is an answer set forΠX .


Our next step is to introduce the relation between the an-
swer sets ofΠ and the models of its completion. In the fol-
lowing we represent an interpretation in the sense of propo-
sitional logic as the set of atomsTrue in it. With this con-
vention a set of atomsX can denote both an answer set and
an interpretation.


If A0 is an atom or the symbol⊥, the completion of Π
relative to A0 Comp(Π, A0) is the formula


A0 ≡
∨


(A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An)


where the disjunction extends over all rules (1) inΠ with
headA0. The completion Comp(Π) of Π consists of the
formulasComp(Π, A0), one for each symbolA0 in P∪{⊥}.


It is well known that ifX is an answer set ofΠ thenX
satisfiesComp(Π) while the converse is not necessarily true.
Lin and Zhao (Lin & Zhao 2002) proved that to have a one-
to-one correspondence between the answer sets ofΠ and
the models of its completion we have to consider the loop
formulas ofΠ. To state this formally we need the following
definitions.


The dependency graph of a programΠ is the directed
graphG such that the vertexes ofG are the atoms inΠ, and
G has an edge fromA0 to A1, . . . , Am for each rule (1) in
Π with A0 6= ⊥. A loop of Π is a setL of atoms such that
for each pairA,A′ of atoms inL there is a path fromA to
A′ in the dependency graph ofΠ whose intermediate nodes
belong toL.


Given a loopL, we defineR(L) to be the set of formulas


A1 ∧ . . . ∧Am ∧ ¬Am+1 ∧ . . . ∧ ¬An


for all rules (1) inΠ, with A0 ∈ L and{A1, . . . , Am}∩L =
∅. Theloop formula associated with L is∨


L ⊃
∨


R(L)


where
∨


L denotes the disjunction of the elements inL, and
similarly for


∨
R(L). For instance, the only loop formula of


the program{p← p, p← not q} is p ⊃ ¬q.


Proposition 1 (Lin & Zhao 2002) LetΠ be a program,
Comp(Π) its completion, andLF (Π) be the set of loop
formulas associated with the loops inΠ. For each set of
atomsX, X is an answer set ofΠ iff X is a model of
Comp(Π) ∪ LF (Π).


SAT-Based Answer Set Solvers
Consider a programΠ. Given Proposition 1 it is clear that
if the dependency graph ofΠ has no cycles (in this case we
say thatΠ is tight) then the models ofComp(Π) are also an-
swer sets ofΠ. Thus for tight programs answer set systems
can use SAT solvers as “black-box” search engines.CMOD-
ELS used this approach to compute answer sets for tight pro-
grams.


If Π is non tight, Lin and Zhao (Lin & Zhao 2002) pre-
sented the following procedureLZ(Π) which still uses SAT
solver as black-boxes:


1. ComputeComp(Π) and convert it to a set of clausesΓ.


2. Find a modelX of Γ by using a SAT solver. Exit with
failure if no such model exists.


3. Compute the set of atomsX− = X −Cons(ΠX), where
Cons(ΠX) is the smallest set of atoms closed underΠX .


4. If X− = ∅, then returnX.


5. Otherwise, add the clauses corresponding to the loop for-
mulas of all the maximal (under subset inclusion) loops in
X− to Γ, and go to step 2.


LZ(Π) either returns an answer set forΠ, or failure if Π
does not have answer sets. In their article Lin and Zhao
showed thatASSAT, a system implementing the above pro-
cedure, can outperform rival systems often by orders of mag-
nitude. Still,LZ(Π) has the following two drawbacks:


1. It is not guaranteed to work in polynomial space. In fact,
Π can have exponentially many loops: If we assume that
each loop formula is not redundant (i.e., that it is not en-
tailed by the rest of the formula under consideration), then


• If Π has an answer set thenLZ(Π) blows up in space
in the worst case, while
• If Π has no answer set thenLZ(Π) is bound to blow up


in space: InLZ(Π) adding and keeping loop formulas
is essential to guarantee that the SAT solver does not
return previously computed models, and ultimately to
guaranteeASSAT termination.


2. Considering two successive calls of the SAT solver, the
computation done for finding the first model is completely
discarded. Thus some branches of the search tree may get
computed many times.


These drawbacks can be eliminated if we do not use a
SAT solver as a black-box. Instead we can take advantage
that state-of-the-art complete SAT solvers are based on the
Davis-Logemann-Loveland procedure (DPLL) (Davis, Lo-
gemann, & Loveland 1962). The basic observation is that







DPLL(Γ, S)
if Γ = ∅ then return True;
if ∅ ∈ Γ then return False;
if {l} ∈ Γ then return DPLL(assign(l, Γ), S ∪ {l});
A := an atom occurring inΓ;
return DPLL(assign(A,Γ), S ∪ {A}) or


DPLL(assign(¬A,Γ), S ∪ {¬A}).


Figure 1: The DPLL procedure


DPLL can easily work as a SAT enumerator. We can thus
computeComp(Π) and then


• generatemodels ofComp(Π), and


• testwhether the generated models are answer sets ofΠ.


ConsiderDPLL as in Figure 1, wherel denotes a literal;
Γ a set of clauses;S an assignment, i.e. a consistent set
of literals. Given an atomA, assign(A,Γ) is the set of
clauses obtained fromΓ by removing the clauses to which
A belongs, and by removing¬A from the other clauses in
Γ. assign(¬A,Γ) is defined similarly. In the initial call to
DPLL Γ is the set of clauses of which we compute a model
andS is the empty set.DPLL(Γ, ∅) returnsTruewheneverΓ
is satisfiable, andFalseotherwise.


GivenDPLL, we can obtain a SAT-Based answer set gen-
erator forΠ by


1. Modifying the first line ofDPLL in the figure by substitut-
ing “return True” with “ return test(S, Π)”, a new func-
tion which


• prints the setatoms(S) = S ∩ P and returnsTrue, if
atoms(S) is an answer set ofΠ, and
• returnsFalse, otherwise.


2. Defining a function ASP-SAT(Π), that callsDPLL(Γ, ∅)
whereΓ is a set of clauses corresponding toComp(Π). Γ
can be computed in many ways. Here, our only assump-
tions are that(i) Γ signature extendsP , and(ii) for each
setX of atoms inΓ signature,X satisfiesΓ iff X ∩ P
satisfiesComp(Π). Standard conversion methods satisfy
such conditions.


Notice that the setS in test(S, Π) may be non maximal
wrt P , i.e., for some atomA in P , bothA and¬A may not
belong toS. Thus,S ∪ {A} entailsComp(Π) and in princi-
ple we also need to check ifatoms(S ∪ {A}) is an answer
set ofΠ. However, this additional check is not needed, as
established by the following proposition.


Proposition 2 Let Π be a program,X, X ′ be two sets of
atoms satisfying Comp(Π). If X ⊂ X ′ thenX ′ is not an
answer set.


From the above proposition, and the fact that each answer
set is also a model ofComp(Π) it follows the correctness
and completeness of ASP-SAT(Π).


Proposition 3 Given a programΠ, ASP-SAT(Π) returns
True if and only ifΠ has an answer set.


Moreover ASP-SAT(Π) (i) performs the search on
Comp(Π) and thus does not introduce any extra variables
except for those eventually needed by the clause form trans-
formation; (ii) is guaranteed to work in polynomial space;
(iii) can deal with both tight and non tight programs. Fur-
ther,


• In the case of tight problems each generated model
of Comp(Π) corresponds to an answer set and thus
ASP-SAT(Π) behaves as a standard SAT solver run on
Comp(Π).


• ASP-SAT(Π) can be easily modified for printing all the
answer sets ofΠ: It is enough to modifytest(S, Π) in
order to returnFalse also whenatoms(S) is an answer
set.


Compared toASSAT, ASP-SAT is guaranteed to work in
polynomial space and no computation is ever repeated, also
when computing all answer sets. Compared to other answer
set solvers likeSMODELS andDLV , ASP-SAT has the ad-
vantage of being SAT-Based and thus it can leverage on the
great amount of knowledge available in SAT.


Still, most of the state-of-the-art SAT solvers based on
DPLL, e.g. MCHAFF (Moskewiczet al. 2001), use learning
when backtracking. With learning, wheneverFalse is re-
turned, a “reason” for the failure has to be computed. Intu-
itively, a reason is a subsetS′ of the assignmentS such that
any assignment extendingS′ will fail. In order to use SAT
solvers with learning, it is thus not enough fortest(S, Π) to
returnFalsewhenS is not an answer set. Indeed, it has also
to compute a reason for such failure, i.e., a subsetS′ of S
such that for any maximal assignmentS′′ (i) extendingS′


and(ii) entailingComp(Π), atoms(S′′) is not an answer set
of Π. One such set isS itself. However in order to try to
maximize the advantages of learning, it is important thatS′


be as small as possible. Thus, for computing suchS′, the
test(S, Π) procedure


1. computes the loop formulas associated with the loops in
atoms(S)− Cons(Πatoms(S)),


2. determines a subset ofS which falsifies one of the loop
formulas computed in the previous step.


In our experiments, with such a simple procedure, we are
able to compute reasons which are often less than 1% of
the size ofS. Of course, the above method for computing
reasons, cannot be applied when returningFalseif the goal
is to determine all the answer sets andatoms(S) is an answer
set. In this case, by Proposition 2, the setatoms(S) can work
as reason.


In the SAT literature, it is well known that learning can
produce exponential speed-ups. We now show that ASP-
SAT with learning and the method for computing reasons
based on loop formulas, may invoketest(S, Π) exponen-
tially fewer times than ASP-SAT without learning.


Assume the programΠ consists of the two rules3


Ai ← Ai+1 Ai+1 ← Ai


3In this paragraph for simplicity we assume that the clauses
corresponding to the reasons returned bytest(S, Π) are stored and
never deleted.







for each i ∈ {0, 2, . . . , 2k}. Then Comp(Π) includes
Ai ≡ Ai+1 (i ∈ {0, 2, . . . , 2k}) and we can assume that its
clausificationΓ consists of the two clauses(¬Ai ∨ Ai+1),
(Ai ∨¬Ai+1), for eachi ∈ {0, 2, . . . , 2k}. Γ has2k models
while the only answer set ofΠ is the empty set:


• ASP-SAT without learning or with learning but in which
test(S, Π) computesatoms(S) as reason whenS is not
an answer set, may generate2k assignments entailing
Comp(Π).


• ASP-SAT with learning and in whichtest(S, Π) com-
putes as reason the subset ofS falsifying one of the loop
formulas inatoms(S)−Cons(Πatoms(S)), may generate
at mostk assignments entailingComp(Π).


Still, for such a simple program, the generation and testing
of k assignments seems an overkill. Indeed, for programsΠ
without negation as failure, we know that there exists exactly
one answer set,Cons(Π). For such programs, ASP-SAT
can be easily tuned to directly compute such answer set by
first assigning the atoms inP to Falsewhile branching. It
can be proved that with this modification and for programsΠ
without negation as failure, the first invocation totest(S, Π)
hasS = Cons(Π).


Integration in CMODELS


ASP-SAT was implemented on top of theSIMO sys-
tem (Giunchiglia, Maratea, & Tacchella 2003) and inte-
grated inCMODELS(Lierler & Maratea 2004) by the last two
authors.SIMO is a MCHAFF-like SAT solver (Moskewiczet
al. 2001), and features two-literal watching data structure,
1-UIP learning, and VSIDS heuristics. However, it does not
feature the low level optimizations ofMCHAFF and thus it is
within a factor of 3 slower thanMCHAFF. Our implementa-
tion of ASP-SAT incorporates all the techniques presented
in previous section, including the idea to assign atoms first
to Falsewhile branching.


Still, the integration of ASP-SAT inCMODELS posed
some challenges related toCMODELS expressivity.CMOD-
ELS usesLPARSEas frontend and thus its input may contain
cardinality expressions (also called “constraint literals” in
LPARSE manual4) and choice rules, two constructs widely
used in answer set programming.5 OperationallyCMODELS
performs the following steps:


1. Simplifies the givenLPARSEprogram performing prepro-
cessing similar to those involved inSMODELS.


2. Eliminates cardinality expressions by introducing auxil-
iary atoms and rules. Eliminates choice rules in favor
of nested expressions in the sense of (Lifschitz, Tang, &
Turner 1999). This is done using a procedure defined in
(Ferraris & Lifschitz 2003).


3. Verifies that the resulting program with nested expres-
sions is tight: the definition of tightness is generalized to
such programs in (Erdem & Lifschitz 2003).


4http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
5The input can also contain general weight expressions


(“weight literals”) However, optimize statements (seeLPARSE
manual) are not allowed.


4. Forms the program’s completion (see (Lloyd & Topor
1984) for the definition of completion of a program with
nested expressions) and calls a SAT solver.


For CMODELS the integration implied calling ASP-SAT in-
stead of the SAT solver. As for ASP-SAT we had to take
into account that programs with nested expressions do not
satisfy Proposition 2. For instance, the program


A← not not A (2)


(corresponding to the translation of the choice rule
“{A} ←”) has two answer sets:∅, {A}. The violation of
Proposition 2 implied two modifications in our procedure.
Consider a program with nested expressionsΠ. When we
are interested in computing all solutions, we have to guar-
antee that each setS of literals in test(S, Π) is maximal.
Assuming that the input set of clauses is satisfiable,SIMO
always returns maximal assignments but in the signature of
the set of clauses resulting afterSIMO preprocessing. How-
ever SIMO removes tautological clauses in the preprocess-
ing. Tautological clauses can naturally arise during the com-
pletion process and removing them may cause the genera-
tion of non maximal (wrt the signature of the input program)
assignments. By Proposition 2, this is not a problem ifΠ
does not have nested expressions; it may be a problem oth-
erwise. For instance, the completion of the program (2) is
A ≡ ¬¬A. (A ∨ ¬A) is the tautological clause correspond-
ing to this completion. After the preprocessing, the set of
clauses corresponding to the program is empty, and ASP-
SAT would not find the answer set{A}. Therefore, we
modified ASP-SAT preprocessing in order to keep tautolog-
ical clauses. The second modification involved the function
test(S, Π). It considers loop formulas as defined in (Lee &
Lifschitz 2003) for nested programs. In the caseatoms(S)
is an answer set and we are interested in finding all answer
sets ofΠ, test(S, Π) returns the entire setS as a reason since
any superset or subset of the atoms inS may be an answer
set ofΠ.


Experimental Results
CMODELS2 was comparatively tested against other state-of-
the-art systems on a variety of benchmarks. Some of the
benchmarks we considered include cardinality constraints
and choice rules, and will be called “extended”. The sys-
tems we considered areSMODELSversion 2.27,ASSAT ver-
sion 1.52 runningMCHAFF as SAT solver,DLV release of
2003-05-16. It worths remarking that whileSMODELS, AS-
SAT andCMODELS2 useLPARSE as preprocessor, and thus
can be run on the same problems,DLV does not. This ex-
plains whyDLV appears only in few tables. Further,ASSAT
cannot deal with extended programs. Finally, forDLV we
have to mention that it is a system specifically designed for
disjunctive logic programs, and that very different results
can be obtained depending on the specific encoding being
used.


All the tests were run on a Pentium IV PC, with 1.8GHz
processor, 512MB RAM DDR 266MHz, running Linux.
For SMODELS, ASSAT and CMODELS2, the time taken by







LPARSE is not counted.6 Further, each system was stopped
after 3600 seconds of CPU time on an instance, or when it
exceeded all the available memory: In the tables, these cases
are denoted with “TIME” and “MEM” respectively. Other-
wise, the tables report the CPU times in seconds needed by
each solver to solve the problem, or a “−” to denote an ab-
normal exit of the program. Finally, we run many more ex-
amples than those showed: We report here only the results
for the instances in which at least one of the systems solved
it and in more than 1 second.


Finding one answer set
We start our analysis considering blocks world planning
problems, encoded as both standard and extended logic pro-
grams, the latter formulation due to Erdem (Erdem 2002).
The results are represented in Table 1. In the table,(i) the
column “#b” represents the number of blocks;(ii) an “i”
in the “#s” (standing for “number of steps”) column means
that the instance corresponds to the problem of finding a plan
in “ i” steps, where “i” is the minimum integer for which a
plan exists. Thus, the instances with “i” and “i + 1” in the
“#s” column admit at least one answer set, while those with
“ i − 1” do not have answer sets. These blocks world prob-
lems are tight on their completion models (Babovich, Er-
dem, & Lifschitz 2000), and thus every model of the com-
pletion corresponds to an answer set. As it could be ex-
pected, SAT-Based systems likeASSAT andCMODELS2 per-
form (sometimes significantly) better thanSMODELS, both
on standard and extended programs. On standard programs
ASSAT performs slightly better thanCMODELS2, and this
corresponds to the fact that, on average,MCHAFF is better
thanSIMO.


We also considered Hamiltonian circuit problems on
complete graphs, using both the standard encoding of
Niemela (Niemel̈a 1999), and the extended encoding in
the “benchmark problems for answer set programming sys-
tems”7. These problems are particularly interesting because
they are non tight and have exponentially many loops. Thus,
one would expect these problems to be difficult forASSAT,
but also forCMODELS2 in the case it will generate and then
reject (exponentially) many candidate answer sets. The re-
sults are in Table 2. As can be observed, on this test set
CMODELS2 performs best, being faster (sometimes by or-
ders of magnitude) than all the other solvers both on stan-
dard and extended programs.


The problems in Table 3 are real-world non tight problem
related to checking requirements in a deterministic automa-
ton, and are described in (Ştefănescu, Esparza, & Muscholl
2003).8 Two types of problems are considered and encoded
in logic programs. The first type is called IDFD and the re-
sults on such problems are reported in the first two rows of
the table. The second type of problem is called “Morin”, and
the results are shown on the last three rows. As can be seen,


6Adding the times ofLPARSE will not change the picture for
DLV when compared toCMODELS2.


7http://www.cs.engr.uky.edu/ai/benchmark-suite/ham-cyc.sm
8These benchmarks are available at http://www.fmi.uni-


stuttgart.de/szs/research/projects/synthesis/benchmarks030923.html


SMODELS ASSAT DLV CMODELS2
mutex4 33.92 (0)0.62 840.60 (0)0.68


phi4 0.24 (168)2.98 1.44 TIME
mutex2 0.09 (88)1.78 (0)0.12
mutex3 229.57 MEM (0)24.16


phi3 2.87 (704)236.91 (57)3.91


Table 3: Checking requirements in a deterministic automa-
ton. DLV was not run on the last 3 instances.


CMODELS2 times out on one instance that is easily solved by
all the other solvers. This is due to the dimension of the re-
lated propositional formula. On the other hand, for any other
solver, there are one/two instances on whichCMODELS is at
least 1 order of magnitude faster. Interestingly,ASSAT blows
up in memory on one instance (and also on other instances,
on which the other systems time out).


Non tight, extended real-world problems corresponding
to the bounded model checking (BMC) of asynchronous
concurrent systems (see (Heljanko & Niemelä 2003))9 are
shown in Table 4. As for the blocks world, these problems
are about proving a certain property in a given number of
steps, represented as the last number in the instance name.
The problems in the first five rows do not have answer sets,
while the remaining (obtained by incrementing the number
of steps) do. Here the results are mixed, and sometimes
CMODELS2 performs much worse thanSMODELS. On these
problems, our standard heuristic is not well suited. Given a
programΠ, by changing the heuristic in order to


• first assign the atoms occurring within the negation as fail-
ure operator, the order and sign of such atoms determined
as inSIMO, and


• then assign the remaining atoms first toFalse, the order
determined as inSIMO,


we get the better figures represented in the last column, un-
der the labelCMODELS2’. The idea behind this heuristic is
that we should first get to a set of clauses corresponding to a
programΠ without negation as failure, and then we should
try to satisfy the remaining set of clauses by assigning the
fewest possible atoms toTrue.


Summing up, the 4 tables show the performances on 45
problems. If for the Table 4 we consider the results in the
last column,CMODELS2


• times out on 1 problem, while the other systems do not
conclude on at least 3 problems;


• performs better than all the three solvers on 30 problems,
and on 26 it has at least a factor of 2; and,


• except for the problem on which it times out,CMODELS2
is either the top performer or within a factor of 2 from it.


Finding all answer sets
We also considered the problem of generating all answer
sets. We run the same experiments for all domains, but the


9http://www.tcs.hut.fi/̃ kepa/experiments/boundsmodels/







Standard programs Extended programs
#b #s SMODELS ASSAT CMODELS2 SMODELS CMODELS2
8 i-1 12.32 0.80 1.19 0.81 0.47
11 i-1 71.78 2.97 4.19 2.97 1.01
8 i 40.87 0.89 2.18 1.56 1.40
11 i 71.42 3.17 4.52 3.41 1.16
8 i+1 23.35 0.96 0.97 4.99 0.31
11 i+1 107.48 3.54 3.33 5.21 0.75


Table 1: Blocks world: “#b” is the number of blocks.


Standard programs Extended programs
SMODELS ASSAT DLV CMODELS2 SMODELS CMODELS2


np30c 11.70 1.14 22.08 0.69 0.36 0.36
np40c 62.89 41.81 97.96 1.63 2.48 0.87
np50c 219.56 14.51 314.46 3.37 8.39 1.79
np60c 594.46 48.80 770.07 5.81 20.47 3.41
np70c 1323.61 291.60 1679.12 8.22 39.41 5.87
np80c 2354.28 32.51 3407.35 14.20 75.36 9.18
np90c TIME 779.06 TIME 22.23 122.53 14.19
np100c TIME − TIME 28.63 185.52 20.76
np120c TIME − TIME 53.33 418.15 41.84


Table 2: Complete graphs. npXc corresponds to a graph with “X” nodes.


BMC SMODELS CMODELS2 CMODELS2’
dp-10.i-02-b11 382.72 1476.72 442.14
dp-10.s-02-b8 15.24 8.20 14.22
dp-12.s-O2-b9 336.03 65.41 137.34
dp-8.i-O2-b9 8.08 12.62 10.69
dp-8.s-O2-b7 1.19 1.02 2.28


dp-10.i-O2-b12 445.47 3295.72 163.29
dp-10.s-O2-b9 28.87 16.07 15.03
dp-12.s-O2-b10 971.50 209.29 48.73
dp-8.i-O2-b10 5.05 40.01 6.44
dp-8.s-O2-b8 1.76 1.99 2.03


Table 4: Bounded Model Checking Problems.


complete graphs. We generated smaller instances of com-
plete graphs to evaluate this domain. Tables 5- 8 report the
results. Additional column in each table #sol indicates the
number of answer sets for the problem.


Table 5 contains the results on blocks world domain.
CMODELS2 performs better thanSMODELSon all programs
but the non basic programs withi + 1 steps. The number of
models of completion is equivalent to the number of answer
sets for these programs.


Table 6 shows the results for complete graphs. We present
results for complete graphs with “8”, “9” and “10” nodes.
Starting from the graph with “11” nodes, none of the solvers
is able to find all solutions within the timeout.SMODELSand
DLV are much faster thanCMODELS2, both on basic and non
basic programs. In order to find all answer sets,CMODELS2


BMC #sol SMODELS CMODELS2
dp-10.i-O2-b12 12600 1892 2692.31
dp-10.s-O2-b9 17280 115.54 332.79
dp-12.s-O2-b10 ? TIME TIME
dp-8.i-O2-b10 360 42.22 53.76
dp-8.s-O2-b8 720 5.83 13.98


Table 7: Bounded Model Checking Problems. Finding all
solutions.


#sol SMODELS DLV CMODELS2
mutex4 ? TIME TIME TIME


phi4 134 37.54 48.21 TIME
mutex2 28 0.11 0.49
mutex3 ? TIME TIME


phi3 18 9.81 16.85


Table 8: Checking requirements in a deterministic automa-
ton. Finding all solutions.


has to check and reject a very high number of propositional
models. Moreover, the dimension of the SAT formula grows
quickly.


The analysis on BMC problems is in Table 7. In this do-
main, the timings of the solvers are comparable.SMODELS
is better thanCMODELS2, of around a factor of two. Both
SMODELS and CMODELS2 can not solve the biggest prob-
lem in the suite.


Table 8 presents the results on checking requirements in a







Basic program Non basic program
#b #s #sol SMODELS CMODELS2 SMODELS CMODELS2
8 i 28 75.38 2.98 5.29 4.64
11 i 2 171.39 4.88 10.79 2.68
8 i+1 3374 586.98 103.30 39.03 217.59
11 i+1 263 888.11 58.76 57.04 110.16


Table 5: Blocks world: “#b” is the number of blocks. Finding all solutions


Basic program Non basic program
#sol SMODELS DLV CMODELS2 SMODELS CMODELS2


np8c 5040 1.10 3.35 4.68 0.38 4.36
np9c 40320 10.52 31.79 111.52 3.60 170.19
np10c 362880 111.17 330.71 TIME 38.07 TIME


Table 6: Complete graphs. npXc corresponds to a graph with “X” nodes. Finding all solutions.


deterministic automaton problem. The performance of the
solvers is comparable, but for the phi4 benchmark in the
IDFD category. For two of the problems presented, none
of the solvers can find all solutions within the timeout.


Overall SMODELS and DLV perform better thanCMOD-
ELS2 when all solutions are computed. In case of finding
all solutionsCMODELS2 is competitive whenever number of
loops in the program is small. Whenever the number of the
loops is great as for instance in complete graph domain the
computation of all answer sets using ASP-SAT procedure
adds a big overhead by testing and rejecting great number of
models.


Nevertheless,CMODELS2 is the first SAT-Based answer
set solver that can find all answer sets of a logic program,
still running in polynomial space, and we believe that the
results are positive even for the case of all solutions, given
that we put no effort in optimizing our solver for such task.


Conclusions


We presented a SAT-Based procedure that(i) deals with any
logic program(ii) works on a SAT formula without addi-
tional variables,(iii) is guaranteed to work in polynomial
space. We evidenced that ASP-SAT is easily modified in
order to generate all answer sets. We showed how to imple-
ment ASP-SAT on top of aMCHAFF-like SAT solver, and
discussed the modifications needed in the case of non basic
programs. The experimental evaluation shows thatCMOD-
ELS2 has a significant edge over other state-of-the-art sys-
tems when we search for one answer set, and can be com-
petitive when solvers have to find all solutions. Still, we be-
lieve that there is a lot of space for improvements, especially
in the heuristics, and in the way reasons are computed.


Finally, we believe that ASP-SAT helps in closing the
algorithmic gap between answer set and SAT solvers, with
beneficial results especially for the former, given the very
advanced state of development of the latter.
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