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Abstract. DLV is the state-of-the-art system for evaluating disjunctive answer set
programs. As in most Answer Set Programming (ASP) systems, its implementation
is divided in a grounding part and a propositional model-finding part. In this paper,
we focus on the latter, which relies on an algorithm using backtracking search.
Recently, DLV has been enhanced with “backjumping” techniques, which also in-
volve a reason calculus, recording causes for the truth or falsity of atoms during
the search. This reason calculus allows for looking back in the search process for
identifying areas in the search space in which no answer set will be found. We can
also define heuristics which make use of the information about reasons, preferring
literals that were the reasons of more inconsistent branches of the search tree. This
heuristics thus use information gathered earlier in the computation, and are there-
fore referred to as look-back heuristics.
In this paper, we focus on the experimental evaluation of these look-back tech-
niques that we have implemented in DLV. We have conducted a wide experimen-
tal analysis considering both randomly-generated and structured instances of the
2QBF problem (the canonical problem for the complexity classesΣP


2 andΠP


2 ).
We have also evaluated the same benchmark using “native” QBFsolvers, which
were among the best solvers in recent QBF Evaluations. The comparison shows
that DLV endowed with look-back techniques is competitive with the best avail-
able QBF solvers.


1 Introduction


Answer Set Programming (ASP) [1, 2] is a purely declarative programming paradigm
based on nonmonotonic reasoning and logic programming. Theidea of answer set pro-
gramming is to represent a given computational problem by a logic program whose an-
swer sets correspond to solutions, and then use an answer setsolver to find such solutions
[3]. The language of ASP is based on rules, allowing for both disjunction in the head of
the rules and nonmonotonic negation in the body. ASP is very expressive, allowing for
representing every property in the second level of the polynomial hierarchy. Therefore,
ASP is strictly more expressive than using encodings based on satisfiability of proposi-
tional formulas (unlessP = NP ).


⋆ Supported by M.I.U.R. within projects “Potenziamento e Applicazioni della Programmazione
Logica Disgiuntiva” and “Sistemi basati sulla logica per larappresentazione di conoscenza:
estensioni e tecniche di ottimizzazione.”







DLV is the state-of-the-artdisjunctiveASP system, and it is based on an algorithm re-
lying on backtracking search, like most other competitive ASP systems. Recently, DLV
has been enhanced with “look-back” techniques, like backjumping procedures [4] and
look-back heuristics [?]. By backjumping [5] we refer to an optimized recovery upon
inconsistency during the search where, instead of restoring the state of the search up to
the previous choice and then “flipping” its value, we try to “jump over” choices that are
not relevant for the inconsistency we met. This is done by means of a reason calculus,
which records information about the literals (“reasons”) whose truth has caused the truth
of other derived literals. Look-back heuristics [6] further strengthen the potential of back-
jumping by using the information made explicit by the reasons. The idea of this family
of heuristics is to preferably choose atoms which frequently caused inconsistencies, thus
focusing on “critical” atoms. This significantly differs from classical ASP heuristics that
use information arising from tentatively applying the simplification part (“look-head”) of
the algorithm and analyzing the result. Look-back optimization techniques and heuristics
have been shown, in various research areas, to be very effective on “big” benchmarks
coming from applications, like planning and formal verification.


In this paper, we report on the experimental evaluation of these look-back techniques
that have been implemented in DLV, yielding the system DLVLB. Since hard problems
for disjunctive logic programs are hard for the classΣP


2 or ΠP
2 , we have used instances


for the canonical problem for these classes, 2QBF, that is, quantified boolean formulas
with two alternating quantifiers. In the literature of SAT a dichotomy has been reported,
according to which random problem instances generally do not gain much from look-
back techniques, while structured problem instances do - wehave considered both types
of problems in our experiments in order to assess whether a similar behavior can be
observed for ASP.


DLV LB provides several options regarding the initialization of the heuristics and the
truth value to be assigned to an atom chosen by the heuristics, cf. [?]. In our experimental
analysis, we provide a comprehensive comparison of the impact of these options, and
demonstrate how the new components of DLVLB enhances the efficiency of DLV. We
also provide a comparison to the other competitive disjunctive ASP systems GnT and
Cmodels. Moreover, since we consider QBF as a benchmark, we have also compared the
performance of native QBF solvers. In particular, we have chosen those solvers which
were the best in recent QBF Evaluations over the various categories and which are freely
available. As a result, we observe that DLVLB clearly outperforms its direct competitors
GnT and Cmodels, and that DLVLB is also on par with the best available QBF solvers.
Considering its knowledge representation merits and its computational competitiveness,
we conjecture that DLVLB is currently the system of choice for representing and solving
problems which are on the second level of the polynomial hierarchy.


2 Answer Set Programming Language


A (disjunctive) ruler is a formula


a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm.


wherea1, · · · , an, b1, · · · , bm are function-free atoms andn ≥ 0, m ≥ k ≥ 0. The
disjunctiona1 ∨ · · ·∨an is theheadof r, while b1, · · · , bk, not bk+1, · · · , not bm is the







body, of whichb1, · · · , bk is thepositive body, andnot bk+1, · · · , not bm is thenegative
bodyof r.


An (ASP) programP is a finite set of rules. An object (atom, rule, etc.) is called
groundor propositional, if it contains no variables. Given a programP , let theHerbrand
UniverseUP be the set of all constants appearing inP and theHerbrand BaseBP be
the set of all possible ground atoms which can be constructedfrom the predicate symbols
appearing inP with the constants ofUP .


Given a ruler, Ground(r) denotes the set of rules obtained by applying all possible
substitutionsσ from the variables inr to elements ofUP . Similarly, given a programP ,
theground instantiationGround(P) of P is the set


⋃
r∈P Ground(r).


For every programP , its answer sets are defined using its ground instantiationGround(P)
in two steps: First answer sets of positive programs are defined, then a reduction of gen-
eral programs to positive ones is given, which is used to define answer sets of general
programs. A setL of ground literals is said to beconsistentif, for every atomℓ ∈ L, its
complementary literalnot ℓ is not contained inL. An interpretationI for P is a consis-
tent set of ground literals over atoms inBP .3 A ground literalℓ is true w.r.t. I if ℓ ∈ I; ℓ
is falsew.r.t.I if its complementary literal is inI; ℓ is undefinedw.r.t.I if it is neither true
nor false w.r.t.I. InterpretationI is total if, for each atomA in BP , eitherA or not A is
in I (i.e., no atom inBP is undefined w.r.t.I). A total interpretationM is amodelfor P
if, for everyr ∈ Ground(P), at least one literal in the head is true w.r.t.M whenever all
literals in the body are true w.r.t.M . X is ananswer setfor a positive programP if it is
minimal w.r.t. set inclusion among the models ofP .


The reductor Gelfond-Lifschitz transformof a general ground programP w.r.t. an
interpretationX is the positive ground programPX , obtained fromP by (i) deleting all
rulesr ∈ P the negative body of which is false w.r.t. X and (ii) deletingthe negative body
from the remaining rules. An answer set of a general programP is a modelX of P such
thatX is an answer set ofGround(P)X .


3 Answer Set Computation Algorithms


In this section, we briefly describe the main steps of the computational process performed
by ASP systems. We will refer particularly to the computational engine of the DLV sys-
tem, which will be used for the experiments, but also other ASP systems employ a similar
procedure. In general, an answer set programP contains variables. The first step of a com-
putation of an ASP system eliminates these variables, generating a ground instantiation
ground(P) of P .4 The subsequent computations, which constitute the non-deterministic
core of the system, are then performed onground(P) by the so called Model Generator
procedure.


In the following paragraphs, we briefly illustrate the original model generation algo-
rithm of DLV and an enhancement of it by means of a backjumpingtechnique. Finally, we
report a description of all the heuristics, that will later be compared in the experiments.


3 We represent interpretations as set of literals, since we have to deal with partial interpretations
in the next sections.


4 Note thatground(P) is usually not the fullGround(P); rather, it is a subset (often much
smaller) of it having precisely the same answer sets asP [7].







bool ModelGenerator ( Interpretation& I ){
I = DetCons ( I );
if ( I == L ) then


return false;
if ( “no atom is undefined in I” )


return IsAnswerSet(I);
Select an undefined atomA using a heuristic;
if ( ModelGenerator (I ∪ {A} ) )


return true ;
else


return ModelGenerator (I ∪ {not A} );
};


bool ModelGeneratorBJ (Interpretation& I, Reason& IR,
int& bj level ){


bj level ++;
int curr level = bj level;


I = DetConsBJ ( I, IR );
if ( I == L ) return false;
if ( “no atom is undefined in I” )


if IsAnswerSetBJ( I, IR );return true ;
else


bj level = MAX ( IR );
return false;


Reason posIR, negIR;


Select an undefined atomA using a heuristic;


R(A)= { curr level};
if ( ModelGeneratorBJ(I ∪ {A}, posIR, bjlevel )


return true ;
if (bj level< curr level)


IR = posIR;return false;


bj level = curr level;
R(not A) = { curr level};
if ( ModelGeneratorBJ (I ∪ {not A}, negIR, bjlevel )


return true ;


if ( bj level< curr level )
IR = negIR;return false;


IR = trim( curr level, Union ( posIR, negIR ) );
bj level = MAX ( IR );
return false; };


Fig. 1. Computation of Answer Sets without (left) and with (right) backjumping.


The Model Generator Algorithms. Note that the algorithms presented here are ab-
stractions of actual implementations, which have to deal with several additional technical
details and optimizations. For more details we refer to [8] for the basic technique and to
[4] for the enhancement by backjumping. Moreover, the algorithms presented here com-
pute one answer set for simplicity, however they can be modified to compute all orn
answer sets in a straightforward way.


The basic method is the Model Generator Algorithm sketched in Figure 1 (left).This
function is initially called with parameterI set to the empty interpretation.5


If the programP has an answer set, then the function returns True, settingI to the
computed answer set; otherwise it returns False. The Model Generator is similar to the
DPLL procedure employed by SAT solvers. It first calls a function DetCons, which re-
turns the extension ofI with the literals that can be deterministically inferred (or the set
of all literalsL upon inconsistency). This function is similar to a unit propagation proce-
dure employed by SAT solvers, but exploits the peculiarities of ASP for making further
inferences (e.g., it exploits the knowledge that every answer set is a minimal model). If
DetCons does not detect any inconsistency, an atomA is selected according to a heuristic
criterion and ModelGenerator is called onI ∪ {A} and onI ∪ {not A}. The atomA
plays the role of a branching variable of a SAT solver. And indeed, like for SAT solvers,
the selection of a “good” atomA is crucial for the performance of an ASP system. In


5 Observe that the interpretations built during the computation are 3-valued, that is, a literal can
be True, False or Undefined w.r.t.I .







the following, we will describe some heuristic criteria forthe selection of such branching
atoms.


If no atom is left for branching, the Model Generator has produced a “candidate” an-
swer set, the stability of which is subsequently verified byIsAnswerSet(I). This function
checks whether the given “candidate”I is a minimal model of the programGround(P)I


and if so, outputsI. IsAnswerSet(I)returns True if the computation should be stopped and
False otherwise. Note that, if during the execution of the ModelGenerator function a con-
tradiction arises, or the stable model candidate is not a minimal model, ModelGenerator
backtracks and modifies the last choice. This kind of backtracking is called chronological
backtracking.


To give an intuition on how backjumping is supposed to work, consider the following
simple example.


Consider the program of Figure 2(a) and suppose that the search tree is as depicted in
Figure 2(b).


Fig. 2.Backtracking vs Backjumping.


Here we first assumea to be true, derivingb to be false (fromr1 to ensure the mini-
mality of answer sets). Then we assumec to be true, derivingd to be false (fromr2 for
minimality). Third, we assumee to be true and derivef to be false (fromr3 for mini-
mality) andg to be true (fromr4 by forward inference). This truth assignment violates
constraintr5 (whereg must be false), yielding an inconsistency. We continue the search
by inverting the last choice, that is, we assumee to be false and we derivef to be true
(again fromr3 to preserve minimality) andg to be true (fromr6 by forward inference),
but obtain another inconsistency (because constraintr7 is violated, hereg must also be
false).


At this point, ModelGenerator goes back to the previous choice point, in this case
inverting the truth value ofc (cf. the arc labelled BK in Fig. 2(b)).


Now it is important to note that the inconsistencies obtained are independent of the
choice ofc, and only the truth value ofa ande are the “reasons” for the encountered
inconsistencies. In fact, no matter what the truth value ofc is, if a is true then any truth
assignment fore will lead to an inconsistency. Looking at Fig. 2(b), this means that in
the whole subtree below the arc labelleda no stable model can be found. It is therefore
obvious that the chronological backtracking search explores branches of the search tree
that cannot contain a stable model, performing a lot of useless work. A better policy
would be to go back directly to the point at which we assumeda to be true (see the arc







labelled BJ in Fig. 2(b)). In other words, if we know the “reasons” of an inconsistency,
we can backjump directly to the closest choice that caused the inconsistent subtree.


In practice, once a literal has been assigned a truth value during the computation, we
can associate a reason for that fact with the literal. For instance, given a rulea :–b, c, not d.,
if b andc are true andd is false in the current partial interpretation, thena will be de-
rived as true (by Forward Propagation). In this case, we can say thata is true “because”
b andc are true andd is false. A special case arechosenliterals, as their only reason is
the fact that they have been chosen. The chosen literals can therefore be seen as being
their own reason, and we may refer to them as elementary reasons. All other reasons
are consequences of elementary reasons, and hence aggregations of elementary reasons.
Each literall derived during the propagation (i.e., DetCons) will have anassociated set
of positive integersR(l) representing the reason ofl, which are essentially the recursion
levels of the chosen literals which entaill. Therefore, for any chosen literalc, |R(c)| = 1
holds.


The process of defining reasons for derived (non-chosen) literals is calledreason
calculus. Here, for lack of space, we do not report details of this calculus, and refer to [4]
for a detailed definition.


When an inconsistency is determined, we use reason information in order to under-
stand which chosen literals have to be undone in order to avoid the found inconsistency.
Implicitly this also means that all choices which are not in the reason do not have any
influence on the inconsistency. We can isolate two main typesof inconsistencies:(i) De-
riving conflicting literals, and(ii) failing stability checks. Of these two, the second one
is a peculiarity of disjunctive ASP.


Deriving conflicting literals means, in our setting, that DetCons determines that an
atoma and its negationnot a should both hold. In this case, the reason of the incon-
sistency is – rather straightforward – the combination of the reasons fora andnot a:
R(a) ∪R(not a).


Inconsistencies from failing stability checks are a peculiarity of disjunctive ASP, as
non-disjunctive ASP systems usually do not employ a stability check. This situation oc-
curs if the function IsAnswerSet(I) of ModelGenerator returns false, hence if the checked
interpretation (which is guaranteed to be a model) is not stable. The reason for such
an inconsistency is always based on an unfounded set, which has been determined inside
IsAnswerSet(I) as a side-effect. Using this unfounded set,the reason for the inconsistency
is composed of the reasons of literals which satisfy rules containing unfounded atoms in
their head (the cancelling assignments of these rules). Theinformation on reasons for in-
consistencies can be exploited for backjumping by going back to the closest choice which
is a reason for the inconsistency, rather than always to the immediately preceding choice.


The function ModelGeneratorBJ (shown right in Fig. 1) is a modification of the Mod-
elGenerator function, which implements backjumping. To this end, two new parameters
IR andbj level are introduced, which hold the reason of the inconsistency encountered
in the subtrees whose current recursion level is the root, and the recursion level to back-
track or backjump to. When going forward in recursion,bj level is also used to hold the
current level. The variablescurr level, posIR, andnegIR are local to ModelGenera-
torBJ and used for holding the current recursion level, and the reasons for the positive
and negative recursive branch, respectively.







Instead of DetCons, here DetConsBJ is used, which in additionally computes the rea-
sons of the inferred literals and if it encounters an inconsistency it will return the reason
of this inconsistency in its second parameterIR. Instead of IsAnswerSet, ModelGenera-
torBJ uses IsAnswerSetBJ, which additionally computes theinconsistency reason in case
of a failure of the stability check, returning it in its second parameter.


Whenever there is the possibility to backjump, we setbj level to the maximal level
of the inconsistency reason (or 0 if it is the empty set) before returning from this instance
of ModelGeneratorBJ, the idea being that the maximum level in IR corresponds to the
nearest (chronologically) choice causing the failure.


The information provided by reasons can be further exploited in a backjumping-based
solver. In particular, in the following paragraph we describe how reasons for inconsisten-
cies can be exploited for defining look-back heuristics.


Heuristics. In this paragraph we will first describe the two main heuristics for DLV
(based on look-ahead), and subsequently define several new heuristics based on reasons
(or based on look-back), which are computed as side-effectsof the backjumping tech-
nique. We assume that a ground ASP programP and an interpretationI have been fixed.
We first recall the “standard” DLV heuristichUT [9], which has recently been refined to
yield the heuristichDS [10], which is more “specialized” for hard disjunctive programs
(like 2QBF). These are look-ahead heuristics, that is, the heuristic value of a literalQ
depends on the result of takingQ true and computing its consequences. Given a literal
Q, ext(Q) will denote the interpretation resulting from the application of DetCons on
I ∪ {Q}; w.l.o.g., we assume thatext(Q) is consistent, otherwiseQ is automatically set
to false and the heuristic is not evaluated onQ at all.


Standard Heuristic of DLV (hUT ). This heuristic, which is still the default in the DLV
distribution, has been proposed in [9], where it was shown tobe very effective on many
relevant problems. It exploits a peculiar property of ASP, namelysupportedness: For each
true atomA of an answer setI, there exists a ruler of the program such that the body of
r is true w.r.t.I andA is the only true atom in the head ofr. Since an ASP system must
eventually converge to a supported interpretation,hUT is geared towards choosing those
literals which minimize the number ofUnsupportedTrue (UT)atoms, i.e., atoms which
are true in the current interpretation but still miss a supporting rule. The heuristichUT is
“balanced”, that is, the heuristic values of an atomQ depends on both the effect of taking
Q andnot Q, the decision betweenQ andnot Q is based on the UT atoms criteria.


Enhanced Heuristic of DLV (hDS). The heuristichDS [11] is based onhUT , and is
different fromhUT only for pairs of literals which are not ordered byhUT . The idea of the
additional criterion is that interpretations having a “higher degree of supportedness” are
preferred, where the degree of supportedness is the averagenumber of supporting rules
for the true atoms. Intuitively, if all true atoms have many supporting rules in a model
M , then the elimination of a true atom from the interpretationwould violate many rules,
and it becomes less likely finding a subset ofM which is a model ofPM (which would
disprove thatM is an answer set). Interpretations with a higher degree of supportedness
are therefore more likely to be answer sets. Just likehUT , hDS is “balanced”.


The Look-back Heuristics (hLB). We next describe a family of new look-back heuris-
tics hLB. Different tohUT andhDS , which provide a partial order on potential choices,
hLB assigns a number (V (L)) to each literalL (thereby inducing an implicit order). This







number is periodically updated using the inconsistencies that occurred after the most re-
cent update. Whenever a literal is to be selected, the literal with the largestV (L) will be
chosen. If several literals have the sameV (L), then negative literals are preferred over
positive ones, but among negative and positive literals having the sameV (L), the order-
ing will be random. In more detail, for each literalL, two values are stored:V (L), the
current heuristic value, andI(L), the number of inconsistenciesL has been a reason for
since the most recent heuristic value update. After having chosenk literals,V (L) is up-
dated for eachL as follows:V (L) := V (L)/2 + I(L). The motivation for the division
(which is assumed to be defined on integers by rounding the result) is to give more impact
to more recent values. Note thatI(L) 6= 0 can hold only for literals that have been chosen
earlier during the computation.


A crucial point left unspecified by the definition so far are the initial values ofV (L).
Given that, initially, no information about inconsistencies is available, it is not obvious
how to define this initialization. On the other hand, initializing these values seems to
be crucial, as making poor choices in the beginning of the computation can be fatal for
efficiency. Here, we present two alternative initializations: The first, denoted byhMF


LB , is
done by initializingV (L) to the number of occurrences ofL in the program rules. The
other, denoted byhLF


LB, involves ordering the atoms with respect tohDS , and initializing
V (L) by the rank in this ordering. The motivation forhMF


LB is that it is fast to compute
and stays with the “no look-ahead” paradigm ofhLB. The motivation forhLF


LB is to try
to use a lot of information initially, as the first choices areoften critical for the size of
the subsequent computation tree. We introduce yet another option forhLB, motivated by
the fact that answer sets for disjunctive programs must be minimal with respect to atoms
interpreted as true, and the fact that the checks for minimality are costly: If we preferably
choose false literals, then the computed answer set candidates may have a better chance
to be already minimal. Thus if the literal, which is optimal according to the heuristics,
is positive, we will choose the corresponding negative literal first, even if it has a lower
V (L). If we employ this option in the heuristics, we denote it by adding AF to the
superscript, arriving athMF,AF


LB andhLF,AF
LB respectively.


4 Experiments


We have implemented the above-mentioned look-back techniques and heuristics in DLV;
in this section, we report on their experimental evaluation.


Compared Methods. For our experiments, we have compared several versions of DLV
[12], which differ on the employed heuristics and the use of backjumping. For having a
broader picture, we have also compared our implementationsto the competing systems
GnT and CModels3, and with the QBF solvers Ssolve and sKizzo.The considered sys-
tems are:
• dlv: In several versions, namelydlv.ut , the standard DLV system employinghUT


(based on look-ahead);dlv.ds, DLV with hDS , the look-ahead based heuristic special-
ized for ΣP


2 /ΠP
2 hard disjunctive programs;dlv.ds.bj, DLV with hDS and backjump-


ing; dlv.mf , DLV with hMF
LB .6; dlv.mf.af: DLV with hMF,AF


LB ; dlv.lf , DLV with hLF
LB;


6 Note that all systems withhLB heuristics exploit backjumping.







dlv.lf.af , DLV with hLF,AF
LB .


• gnt [13]: The solver GnT, based on the Smodels system, can deal with disjunctive ASP.
One instance of Smodels generates candidate models, while another instance tests if a
candidate model is stable.
• cm3 [14]: CModels3, a solver based on the definition of completion for disjunctive
programs and the extension of loop formulas to the disjunctive case. CModels3 uses two
SAT solvers in an interleaved way, the first for finding answerset candidates using the
completion of the input program and loop formulas obtained during the computation, the
second for verifying if the candidate model is indeed an answer set. In the experiments,
we used zChaff (ver. 2004) as underlying SAT solver: it is thedefault and faster SAT
solver among the ones available in CModels3.
• ssolve[15]: is a search based native QBF solver that won the QBF Evaluation in 2004
on random (or probabilistic) benchmarks (performing very well also on non-random, or
fixed, benchmarks), and performed globally (i.e., both on fixed and probabilistic bench-
marks) well in the last two editions.
• sKizzo [?]: is a reasoning engine for QBF featuring several techniques, including
search, resolution and skolemization, that won the last QBFEvaluation 2007 (which was
run only on fixed benchmarks).


For hLB heuristics we fixedk=100. Note that we have not taken into account other
solvers like Smodelscc [16] or Clasp [17] because our focus is on disjunctive ASP.


Benchmark Programs and Data. The proposed heuristic aims at improving the per-
formance of DLV on disjunctive ASP programs. Therefore we focus on hard programs
in this class, which is known to be able to express each query of the complexity class
ΣP


2 /ΠP
2 . All of the instances that we have considered in our benchmark analysis have


been derived from instances for 2QBF, the canonical problemfor the second level of the
polynomial hierarchy. This choice is motivated by the fact that many real-world, struc-
tured (i.e., fixed) instances in this complexity class are available for 2QBF on QBFLIB
[18], and moreover, studies on the location of hard instances for randomly generated
2QBFs have been reported in [19–21].


The problem 2QBF is to decide whether a quantified Boolean formula (QBF)Φ =
∀X∃Y φ, whereX andY are disjoint sets of propositional variables andφ = D1 ∧ . . . ∧
Dk is a CNF formula overX ∪ Y , is valid.


The transformation from 2QBF to disjunctive logic programming is a slightly altered
form of a reduction used in [22]. The propositional disjunctive logic programPφ pro-
duced by the transformation requires2 ∗ (|X |+ |Y |) + 1 propositional predicates (with
one dedicated predicatew), and consists of the following rules:v ∨ v̄. for each variable
v ∈ X ∪ Y , y ← w. ȳ ← w. for eachy ∈ Y , w ← v̄1, . . . , v̄m, vm+1, . . . , vn. for each
disjunctionv1 ∨ ... ∨ vm ∨ ¬vm+1 ∨ ... ∨ ¬vn in φ, and finally← not w. The 2QBF
formulaΦ is valid iff PΦ has no answer set [22].


We have selected both random and structured QBF instances. The random 2QBF
instances have been generated following recent phase transition results for QBFs [19–
21]. In particular, the generation method described in [21]has been employed and the
generation parameters have been chosen according to the experimental results reported
in the same paper. First, we have generated 10 different setsof instances, each of which
is labelled with an indication of the employed generation parameters. In particular, the
label “A-E-C-ρ” indicates the class of instances in which each clause hasA universally-







quantified variables andE existentially-quantified variables randomly chosen from aset
containingC variables, such that the ratio between universal and existential variables is
ρ. For example, the instances in the class “3-3-70-0.8” are 6CNF formulas (each clause
having exactly 3 universally-quantified variables and 3 existentially-quantified variables)
whose variables are randomly chosen from a set of 70 containing 31 universal and 39
existential variables, respectively. In order to compare the performance of the systems in
the vicinity of the phase transition, each set of generated formulas has an increasing ratio
of clauses over existential variables (from 1 to maxr). Following the results presented
in [21], maxr has been set to 21 for each of the classes 3-3-70-*, and 12 for each of 2-3-
80-*. We have generated 10 instances for each ratio, thus obtaining, in total, 210 and 120
instances, respectively. Then, because these instances donot provide information about
the scalability of the systems w.r.t. the total number of variables, we generated yet more
sets. We took the “2-3-80-1.0” and “3-3-70-1.2” classes, fixed the ratio of clauses over
existential variables to the “harder” value for the DLV versions and vary the number of
variablesC (from 5 to maxC, step 5), where maxC is 80 and 70, respectively. We have
generated 10 instances for each point, thus obtaining, in total, 160 and 140 instances per
set, respectively.


Concerning the structured instances, we have analyzed:


– Narizzano-Robot - These are real-word instances encoding the robot navigation
problems presented in [23], as used in the QBF Evaluation 2004 and 2005.


– Ayari-MutexP - These QBFs encode instances to problems related to the formal
equivalence checking of partial implementations of circuits, as presented in [24].


– Letz-Tree - These instances consist of simple variable-independent subprograms
generated according to the pattern:∀x1x3...xn−1∃x2x4...xn(c1 ∧ . . .∧ cn−2) where
ci = xi ∨ xi+2 ∨ xi+3, ci+1 = ¬xi ∨ ¬xi+2 ∨ ¬xi+3, i = 1, 3, . . . , n− 3.


The benchmark instances belonging to Letz-tree, Narizzano-Robot, Ayari-MutexP have
been obtained from QBFLIB [18], including the 32 (resp. 40) Narizzano-Robot instances
used in the QBF Evaluation 2004 (resp. 2005), and all the∀∃ instances from Letz-tree
and Ayari-MutexP.


Results. All the experiments were performed on a 3GHz PentiumIV equipped with 1GB
of RAM, 2MB of level 2 cache running Debian GNU/Linux. Time measurements have
been done using thetime command shipped with the system, counting total CPU time
for the respective process.


We start with the results of the experiments with random 2QBFformulas. For every
instance, we have allowed a maximum running time of 20 minutes. In Table 1 we re-
port, for each system, the number of instances solved in eachset within the time limit.
Looking at the table, it is clear that the new look-back heuristic combined with the “mf”
initialization (corresponding to the system dlv.mf) performed very well on these domains,
being the version which was able to solve most instances in most settings among the ASP
systems, particularly on the 3-3-70-* sets. Also dlv.lf, inparticular when combined with
the “af” option, performed quite well, while the other variants do no seem to be very ef-
fective. Considering the look-ahead versions of DLV, dlv.ds performed reasonably well.
Considering GnT and CModels3, we note that they solve quite few instances, while it is
clear that Ssolve is very efficient, being able to solving almost all instances. In contrast,
sKizzo did not perform well here, which is in line with the results of the QBF Evaluations







dlv.ut dlv.dsdlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 ssolvesKizzo


2-3-80-0.4 119 120 120 120 120 120 120 3 57 120 38
2-3-80-0.6 91 102 99 103 83 101 96 4 62 120 25
2-3-80-0.8 88 99 99 99 79 97 92 5 73 120 21
2-3-80-1.0 81 95 96 106 80 95 95 10 81 120 21
2-3-80-1.2 84 99 101 109 85 101 102 6 93 120 22


3-3-70-0.6 159 174 168 172 157 164 166 4 76 210 49
3-3-70-0.8 128 138 135 150 123 132 140 2 82 210 37
3-3-70-1.0 114 128 127 149 112 128 125 7 96 205 34
3-3-70-1.2 123 131 133 156 115 129 140 9 117 209 34
3-3-70-1.4 124 139 142 161 117 142 141 9 131 210 34


#Total 1111 1225 1220 1325 1071 1209 1217 59 868 1644 315


Table 1.Number of solved instances within timeout for Random 2QBF.


which showed that Ssolve is very efficient on probabilistic (i.e., fixed) benchmarks, while
sKizzo is not efficient on this domain.


Figures 3 (resp. 4) show the results for the “2-3-80-1.0” (resp. “3-3-70-1.2”) set,
regarding scalability. For sake of readability, only the instances with a high number of
variables are presented: GnT, Cmodels3, Ssolve, sKizzo andall the DLV versions solve
all instances not reported. The left (resp. right) plot of each Figure contains the cumulative
number of solved instances about all the DLV versions (resp.GnT, CModels3, Ssolve,
sKizzo and the best version of DLV). Overall, on these particular sets, we can see that
all the “look-back” versions of DLV scaled much better than GnT and CModels3, with
dlv.mf being able to solve some of the bigger instances not solved by other DLV versions,
GnT and Cmodels3. Ssolve managed to solve all instances (butone in Fig. 4 left), and in
less time (not reported), while sKizzo showed poor performances.


In Tables 2, 3 and 4, we report the results, in terms of execution time for finding
one answer set, and/or number of instances solved within 20 minutes, about the groups:
Narizzano-Robot, Ayari-MutexP and Letz-Tree, respectively. The last columns (AS?) in-
dicate whether the instance has an answer set (Y), or not (N),only in Table 2 it indicates
how many instances have answer sets. A “–” in these tables indicates a timeout.
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Fig. 3. Left: Number of solved instances by all DLV versions. Right:Number of solved instances
by dlv.mf, GnT, CModels3, Ssolve and sKizzo.
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Fig. 4. Left: Number of solved instances by all DLV versions. Right:Number of solved instances
by dlv.lf.af, GnT, CModels3, Ssolve and sKizzo.


In Table 2 we report only the instances from the QBF Evaluation 2004 and 2005,
respectively, which were solved within the time limit by at least one of the compared
methods. In Table 2, dlv.mf was, among the ASP and QBF solvers, the system which
solved the highest number of instances among the 67 reported(24 for QBF Evaluation
2004 and 40 for QBF Evaluation 2005) instances, followed by Ssolve (60), CModels3
and sKizzo (58), and dlv.lf (50). Moreover, dlv.mf solved a superset of the instances
solved by Ssolve, while the timeouts of dlv.mf showed up on different instances w.r.t.
the timeouts of sKizzo. Further, dlv.mf was always the fastest ASP system on each in-
stance (sometimes drastically, even if for lack of space we do not report CPU time) if we
consider the instances on which it took more than 1 second, and often faster than Ssolve
and Skizzo, especially on the QBF Evaluation 2004 instances. All of the QBF Evalua-
tion 2005 instances were solved by dlv.mf, Cmodels3 and Ssolve, with mean execution
times of 228.07s, 189.74s and 76.91s, respectively. The “traditional” DLV versions could
solve 10 instances, while dlv.ds.bj solved 21 instances, and took less execution time. This
indicates the advantages of using a backjumping technique on these robot instances.


In Table 3, we then report the results for Ayari-MutexP. In that domain all the ver-
sions of DLV and the QBF solvers were able to solve all 7 instances, outperforming
both CModels3 and GnT which solved only one instance. Comparing the execution times
required by all the variants of DLV we note that, also in this case, dlv.mf is the best-
performing version, while QBF solvers scaled up much better.


About the Letz-Tree domain reported in Table 4, the DLV versions equipped with
look-back heuristics solved a higher number of instances and required less CPU time (up
to two orders of magnitude less) than all ASP competitors. Inparticular, the look-ahead
based versions of DLV, GnT and CModels3 could solve only 3 instances, while dlv.mf


dlv.ut dlv.dsdlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 ssolvesKizzo AS?


QBF Eval. 2004 10 10 11 24 15 18 13 5 18 20 22 5
QBF Eval. 2005 0 0 10 40 34 32 22 0 40 40 36 0


#Total 10 10 21 64 49 50 35 5 58 60 58 5


Table 2.Number of solved instances on Narizzano-Robot instances asselected in the QBF Evalu-
ation 2004 and 2005. The last column indicates how many instances have answer sets.







dlv.ut dlv.dsdlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 ssolvesKizzo AS?


mutex-2-s 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.890.65 0.03 0.01 N
mutex-4-s 0.05 0.05 0.05 0.06 0.05 0.06 0.05 – – 0.04 0.01 N
mutex-8-s 0.21 0.2 0.23 0.21 0.21 0.23 0.21 – – 0.07 0.01 N
mutex-16-s 0.89 0.89 0.98 0.89 0.89 1.01 0.9 – – 0.13 0.01 N
mutex-32-s 3.67 3.72 4.06 3.63 3.64 4.16 3.79 – – 0.3 0.03 N
mutex-64-s 15.3816.08 17.64 14.97 15.04 18.08 16.97 – – 0.81 0.07 N
mutex-128-s69.0779.39 90.92 62.97 62.97 92.92 93.05 – – 2.83 0.13 N


#Solved 7 7 7 7 7 7 7 1 1 7 7


Table 3.Execution time (seconds) and number of solved instances on Ayari-MutexP instances.


and dlv.lf solved 4 and 5 instances, respectively. Interestingly, here the “lf” variant is very
effective, in particular when combined with the “af” option, like in the random instances
for testing scalability. It could solve the same number of instances as Ssolve and sKizzo,
which, however, scale better.


Strategic companies. We also run native disjunctive ASP benchmarks for theStrategic
Companiesproblem, as defined in [25]. The goal here is to understand if also the new
look-back based DLV versions have an edge over QBF solvers onnative disjunctive ASP
benchmarks, as showed in [10] for traditional versions.


Here, we generated tests as in [12] with 20 instances each size form companies (5 ≤
m ≤ 100), 3m products, 10 uniform randomly chosencontr by relations per company
(up to four controlling companies), and uniform randomly chosenprod by relations (up
to four producers per product), for a total of400 instances. The problem is deciding
whether two fixed companies (1 and2, without loss of generality) are strategic.


For the QBF solvers we have produced the following formula:∃c1, . . . , cn : ∀c′1, . . . , c
′
n :


((I ∧NE)→ (R∧R′)∧ c1 ∧ c2) whereI stands for(c′1 → c1)∧ . . .∧ (c′n → cn), NE
for ¬((c′1 ↔ c1)∧ . . .∧ (c′n ↔ cn)), R for


∧m


i=1((
∧


cj∈Oi
cj)→ ci)∧


∧n


i=1(
∨


gi∈Cj
cj)


(Oi contains the controlling companies ofci, whileCj contains the companies producing
goodj. R′ is defined analogous toR on the primed variables.


Unfortunately this formula is not in CNF, as required by the qDimacs format. In
order to avoid a substantial blowup of the formula by a trivial normalization, we have
used the toolqstof thetraquastosuite [26], which transforms a formula into qDimacs by
introducing additional “label variables” to avoid exponential formula growth. However,
these additional variables are existentially quantified atthe inner level and thus would
turn the formula above into a 3QBF. To avoid this, we considerthe negated formula


dlv.ut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 ssolvesKizzo AS?


exa10-10 0.18 0.17 0.17 0.04 0.1 0.06 0.06 0.12 0.03 0.01 0.01 N
exa10-15 7.49 7.09 7.31 0.34 0.71 0.48 0.38 6.46 0.73 0.01 0.01 N
exa10-20278.01264.53 275.1 12.31 17.24 5.43 2.86 325.2667.56 0.02 0.01 N
exa10-25 – – – 303.67 432.32 44.13 19.15 – – 0.02 0.02 N
exa10-30 – – – – – 166.93 129.54 – – 0.05 0.02 N


#Solved 3 3 3 4 4 5 5 3 3 5 5


Table 4.Execution time (seconds) and number of solved instances on Letz-Tree instances.







dlv.ut dlv.dsdlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 ssolvesKizzo


#Solved 400 400 400 400 400 400 400 400 400 195 91


Table 5.Number of solved instances on Strategic Companies.


∀c1, . . . , cn : ∃c′1, . . . , c
′
n : ¬((I ∧ NE) → (R ∧ R′) ∧ c1 ∧ c2), which stays on the


second level after the transformation.
In Table 5 we report the total number of solved instances. We can see that all DLV


versions, GnT and Cmodels3 are able to solve all the generated instances, while Ssolve
and sKizzo can just solve a very limited portion, i.e., the smallest instances in the set.


Summarizing, dlv.ds.bj showed (especially on same sets of the random programs,
and on the Narizzano-Robot instances) improvements w.r.t.the “traditional” DLV ver-
sions. Moreover, if equipped with look-back heuristics, DLV showed very positive per-
formance, further strengthening the potential of look-back techniques. In all of the test
cases presented, both random and structured, DLV equipped with look-back heuristics
obtained good results both in terms of number of solved instances and execution time
compared to traditionals DLV, GnT and CModels3. Variant dlv.mf, the “classic” look-
back heuristic, performed best in most cases, but good performance was obtained also by
dlv.lf. The results of dlv.lf.af on the some random and Letz-Tree instances show that this
option can be fruitfully exploited in some particular domains. The QBF solvers Ssolve
and sKizzo in general performed very well, but on some domains (notably Narizzano-
Robot) they were outperformed by dlv.mf, both in terms of number of instances solved
and CPU execution time. Moreover, ASP systems did much better than QBF solvers in
the Strategic Companies benchmarks. Overall we can observethat look-back based ASP
systems, in particular dlv.mf, are competitive with QBF solvers. It should be also noted
that the vast majority of the structured instances presented do not have answer sets, while
the bigger advantages of dlv.mf over Ssolve on the Narizzano-Robot instances are ob-
tained on the instances with answer sets.


Finally, we would like to mention some further experiments that we have performed,
without going in details for lack of space. In particular, weexperimented with different
values fork for dlv.mf, and extensions ofhLF


LB where more atoms are taken into account.
k=100 proved to be the overall best setting, while the extensions ofhLF


LB did not show
overall significant differences in performance w.r.t. the versions presented in the paper.
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