Dependent and Independent Variables
in Propositional Satisfiability

Enrico Giunchiglia, Marco Maratea, and Armando Tacchella

DIST, Universita di Genova
Viale Causa 13 — 16145 Genova, Italy
{enrico,marco,tac}Omrg.dist.unige.it

Abstract. Propositional reasoning (SAT) is central in many applica-
tions of Computer Science. Several decision procedures for SAT have
been proposed, along with optimizations and heuristics to speed them
up. Currently, the most effective implementations are based on the Davis,
Logemann, Loveland method. In this method, the input formula is repre-
sented as a set of clauses, and the space of truth assignments is searched
by iteratively assigning a literal until all the clauses are satisfied, or
a clause is violated and backtracking occurs. Once a new literal is as-
signed, pruning techniques (e.g., unit propagation) are used to cut the
search space by inferring truth values for other variables.

In this paper, we investigate the “independent variable selection (IVS)
heuristic”, i.e., given a formula on the set of variables IV, the selection is
restricted to a — possibly small — subset S which is sufficient to determine
a truth value for all the variables in N. During the search phase, scoring
and selection of the literal to assign next are restricted to S, and the
truth values for the remaining variables are determined by the pruning
techniques of the solver. We discuss the possible advantages and disad-
vantages of the IVS heuristic. Our experimental analysis shows that ob-
taining either positive or negative results strictly depends on the type of
problems considered, on the underlying scoring and selection technique,
and also on the backtracking scheme.

1 INTRODUCTION AND MOTIVATIONS

Propositional reasoning (SAT) is central in many applications of Computer Sci-
ence. Several decision procedures for SAT have been proposed, along with opti-
mizations and heuristics to speed them up. Currently, the most effective imple-
mentations are based on the Davis, Logemann, Loveland method (DLL) [Davis
et al., 1962]. In this method, the input formula is represented as a set of clauses,
and the space of truth assignments is searched by iteratively assigning a literal
until all the clauses are satisfied, or a clause is violated and backtracking oc-
curs. Once a new literal is assigned, pruning techniques (e.g., unit propagation)
are used to cut the search space by inferring truth values for other variables.
Needless to say, a crucial component in every SAT solver is the heuristic used
to score the literals and select the next one to assign. Every year, new heuristics

are proposed and evaluated, each one tuned for a particular set of problems (see,
e.g., [Li and Anbulagan, 1997, Copty et al., 2001, Dubois and Dequen, 2001]).

In this paper, we investigate the “independent variable selection (IVS) heuris-
tic”, i.e., given an input formula on the set of variables IV, the selection is re-
stricted to a — possibly small — subset S which is sufficient to determine a truth
value for all the variables in N. During the search phase, scoring and selection
of the literal to assign next are restricted to S, and the truth values for the
remaining variables are determined by the pruning techniques of the solver. The
completeness of the solver is maintained because all the variables are assigned
once those in S are. Moreover, the worst-case size of the search space goes down
from 2V to 2/5!. TVS has been proposed and used several times in combination
with different scoring and selection techniques. The results have been mixed, but
most of the times big benefits have been reported. In particular, in [Crawford and
Baker, 1994] the IVS heuristic has been first proposed and applied to schedul-
ing problems: no benefits are reported on these instances; in [Giunchiglia et al.,
1998] IVS has been applied to planning problems generated with MEDIC [Ernst
et al., 1997]: improvements reach 4 orders of magnitude; in [Shtrichman, 2000]
and [Copty et al., 2001] IVS is experimented in the context of formal verification:
the authors report significant improvements on most instances. On the imple-
mentation side, the SAT solvers siM [Giunchiglia et al., 2001] and simo [Copty et
al., 2001] both incorporate the IVS heuristic along with a variety of underlying
scoring and selection techniques.

We discuss the possible advantages and disadvantages of using the IVS heuris-
tic. Our conclusion is that it is difficult to predict whether IVS will improve
performances or not. Our experimental analysis shows that obtaining either pos-
itive or negative results strictly depends on the type of problems considered, on
the underlying scoring and selection techniques, and also on the backtracking
scheme.

The paper is structured as follows. In Section 2 we review the DLL method
(Section 2.1), the concept of variable dependency (Section 2.2), and we discuss
the impact that one may expect from the IVS heuristic (Section 2.3). In Section 3
we briefly describe the instances (Section 3.1) as well as the scoring and selection
techniques that we experimented with (Section 3.2), and we give a detailed
presentation as well as an overall summary of the results obtained (Section 3.3).
We end the paper in Section 4 with some final remarks.

2 SAT, DLL AND VARIABLE DEPENDENCY

Propositional satisfiability is the task of deciding whether a given propositional
formula is satisfiable or not. Most procedures do not deal with arbitrary formulas,
but only with formulas in conjunctive normal form (CNF). A CNF formula is
represented as a set of set of literals. A set of literals {l1,...,I,} (n > 0) stands
for the clause (I1 V...V l,), and a set of clauses {c1,...,cn} (m > 0) stands for
the CNF formula (c1 A ... A cp). Different methods can be used to determine a
satisfying assignment, i.e., a consistent set of literals entailing the set of clauses.

Look-AHEAD(I', U) DLL-SoLvE(I', U)

1 while a unit clause {l} is in I" do 1if f = § then return T

2 U« Uu{il} 2if § € f then return ¥

3 for each clause c € I' do 3 Look-AHEAD(I", U)

4 if I € c then 41 + CHOOSE-LITERAL(I")

5 I « Ir\{c} 5return DLL-SoLve(I" U {l}, U) or
6 elseifl¢€cthen DLL-Sowve(I"' U {1}, U)

7 I I\ {ch) u{c\1}

Fig. 1. The DLL method.

Our work focuses on DLL, one of the most popular solving methods. In the
following, we use [,l1,... to denote literals; c,¢1,... to denote clauses; || to
denote the variable in /; = to denote —|I| if [= |!|, and |I| otherwise.

2.1 DLL

The function DLL-SOLVE in Figure 1 is the pseudo-code of the DLL method.
The parameters of DLL-SOLVE are a set of clauses I, and an assignment U.
Initially, I" is the set of clauses corresponding to the input formula, and U is
the empty set. DLL-SOLVE returns “T” exactly when I" is satisfiable, and “F”
otherwise.

Most implementations of the DLL method differ in the scoring and selec-
tion techniques used by CHOOSE-LITERAL, and in the kind of simplifications
performed by LOOK-AHEAD. In particular, the LOOK- AHEAD procedure in Fig-
ure 1, simplifies the set of clauses by detecting and propagating unit clauses
only. This technique is also known as Boolean constraint propagation (BCP).
Another popular simplification technique is monotone literal fixing (MLF): For
each literal [, if =/ does not belong to any clause in I', then we can add {I} to the
set of clauses. The addition of MLF preserves the correctness and completeness
of the method.

Another difference among DLL implementations is the backtracking scheme.
The function DLL-SOLVE in Figure 1 implements chronological backtracking.
According to this scheme, once an empty clause is found, the search resumes
from the latest literal selected by CHOOSE-LITERAL. In DLL-SOLVE this is ac-
complished by a disjunction of two recursive calls (line 5). Most modern im-
plementations of DLL (see, e.g., [Giunchiglia et al., 2001]) feature much more
advanced backtracking schemes, the most popular being backjumping and learn-
ing. Backjumping enables DLL to backtrack and skip over literals that are not
responsible for the generation of an empty clause; Learning augments the input
formula with clauses inferred during the backtrack phase. For a detailed descrip-
tion of these schemes see, e.g., [Giunchiglia et al., 2001]. Here it is enough to say
that backjumping and learning have had a substantial impact in practice and
are implemented in most state-of-the-art DLL solvers.

2.2 Variable Dependency

The idea behind variable dependency in DLL is simple. A variable x is dependent
on a set of independent variables z1,...,x, if for any assignment to z1,...,z,
the value of z becomes determined by LOOK-AHEAD. Thus, the notion of variable
dependency is defined with respect to a given set of variables and a specific
LooOk-AHEAD procedure. For example, in the formula:

{Alviyv. .. L {-h v}, . {-l, v}

where 1,11, ..,1, are distinct literals, we can say that |I| depends on |l1|, ..., |l,]
if LoOK-AHEAD enforces BCP, and each |l;| depends on |/| if LOOK-AHEAD
enforces MLF. Our working hypotheses for the remainder of the paper are that
LOOK-AHEAD is limited to BCP as in Figure 1, and that the set of independent
variables is known a priori in all the problems that we consider.

2.3 DLL and Variable Dependency

If S is a set of independent variables, it is rather easy to modify CHOOSE-
LITERAL to enforce IVS, i.e., to restrict scoring and selection to S. Now the
question is: what can we expect by using IVS? For one thing, the unrestricted
CHOOSE-LITERAL can simulate the restricted one, but the converse is not true.
If the input formula ¢ is satisfiable, this is not necessarily a problem: they are
both allowed to pick a set of literals satisfying ¢. On the other hand, if the
input formula is unsatisfiable, we may witness a substantial degradation of DLL
performances when using the IVS heuristic. For example, let ¢ be an unsatisfiable
formula on the set of variables S. Assume that refuting ¢ with DLL requires a
search tree of exponential size (the existence of such formulas is discussed, e.g.,
in [Urquhart, 1995]). Now let 1/ be the following formula on the set of variables
N =SU{a,b,c}:

(pera)AN(aeb)Ala+s) A (b o).

Clearly, 1) itself is unsatisfiable and the variables a, b, ¢ are dependent on the set
of variables S. If we try to have DLL refute 1 by enabling the IVS heuristic,
then we are bound to explore a search tree of exponential size. At the end of
each branch we determine a truth value for a, and then backtrack occurs because
of an inconsistency found by running LOOK-AHEAD. On the other hand, it is
sufficient for an unrestricted CHOOSE-LITERAL to pick any of the variables in
the set {a, b, c} in order to quickly refute 1.

Notwithstanding the above considerations that may suggest to abandon the
idea of restricting CHOOSE-LITERAL, in practice it is easy to see how exponential
improvements can be obtained with the IVS heuristic. For example, given a
formula ¢ on a set S of variables, we can construct a superformula 1 of ¢ that
introduces denumerately many new variables, all depending on S. If we introduce
exponentially many new such variables and try to solve v, the first call to an
unrestricted CHOOSE-LITERAL is enough to cause a substantial worsening with
respect to a restricted one.

Statistic| DES |Parity BMC |Pretolani|Planning
Min 0.01f 0.01] 0.05 0.35 0.67
Q, 0.01f 0.02] 0.10 0.34 0.68
Q. 0.03| 0.03] 0.18 0.37 0.70
Q3 0.06| 0.05| 0.24 0.37 0.71
Max 0.18 0.13| 0.40 0.46 0.74

Table 1. Statistics on the ratio |S|/|N]|.

3 EXPERIMENTAL RESULTS

3.1 Test set

The test set used to evaluate the IVS heuristic consists of 157 CNF formulas,
102 satisfiable and 55 unsatisfiable, yielding an overall 64% chance of a satis-
fiable instance. Some of these instances are also known to be challenging for
currently available SAT solvers, but selecting hard instances was not our focus.
In assembling the test set, we privileged problems that have already been used
to compare SAT solvers; we tried to maximize the number of different problem
classes, and the number of problems in each class. Our choice was constrained
by the availability of instances for which we are able to determine a set of inde-
pendent variables. In particular, we choosed:

32 Data Encryption Standard (DES) problems, see [Massacci and Marraro,
2000, Li, 2000];

the “famous” 30 parity problems, see, e.g., [Selman et al., 1997;

— 34 instances of bounded model checking (BMC), see [Biere et al., 1999,
Li, 2000];

24 Pretolani problems, see, e.g., [Li, 2000].

37 planning problems generated by BlackBox [Kautz and Selman, 1998];

For the sake of our analysis, the most representative parameter is the |S|/|N]|
ratio, i.e., the fraction of the set of total variables N which is also in the set S
of independent variables.

Table 1 gives an idea of how the ratio |S|/|N| is distributed among the
instances in each of the above problem classes. We remind that the p%-percentile
is the value z such that p% of the observed data is smaller than z. In Table 1: Q,
denotes the 25%-percentile, Q2 the 50%-percentile, and Q3 the 75%-percentile
of the observed ratios; “Min” and “Max” denote, respectively, the minimum
and the maximum of the observed ratios. This set of statistics is known as the
“five-number summary” and is most useful for comparing distributions [Moore
and McCabe, 1993]. From Table 1 we can see that the parameter |S|/|N]| is
distributed quite differently across the problem classes considered. For instance,
while |S|/|N| is almost normally distributed around 0.18 from a minimum of
0.05 to a maximum of 0.40 in BMC problems, in DES and Parity instances the
distribution is biased towards small values of |S|/|N| since the 75% of the data

is smaller than 0.06 for DES and 0.05 for Parity problems, but the maximum
ratio is 0.18 for DES and 0.13 for Parity problems.

3.2 DLL implementation

As we mentioned in Section 1, the SAT solver SIM supports the IVS heuristic.
Moreover, SIM comes with different implementations of CHOOSE-LITERAL that
can be selected from the command line. Using compile-time options, it is also
possible to augment SIM with backjumping and learning. Therefore, SiM pro-
vided the ideal test bench for our purposes. In our experiments, we run SIM
with 5 different implementations of CHOOSE-LITERAL, with and without back-
jumping and learning. For each version of CHOOSE-LITERAL we run the default
implementation as well as the one with the IVS heuristic, for a total of 20 differ-
ent configurations tested. Unless explicitly mentioned, the version of siM used
to produce the data is the one with chronological backtracking. The implemen-
tations of CHOOSE-LITERAL that we evaluated are:

— MOMS (M), introduced in [Pretolani, 1993], which prefers variables that
occur frequently in the shortest clauses;

— Jeroslow-Wang (JW), see [Jeroslow and Wang, 1990], where the occurrences
of variables in short clauses are exponentially better than those in long
clauses;

— Béhm (B), discussed in [Buro and Buning, 1992], which considers occur-
rences in clauses of any length and, in case of ties, prefers variables occurring
frequently in short clauses;

— SATZ (S), as explained in [Li and Anbulagan, 1997], which features a com-
plex scoring mechanism based on BCP and a modified version of JW;

— Unitie0 (UO0), introduced by [Copty et al., 2001] under the name “Unit”,
which prefers variables producing the highest simplification with BCP.

In all the cases above, using the IVS heuristic amounts to restricting the scoring
and selection process to the variables in S. To distinguish between the unre-
stricted CHOOSE-LITERAL and the one with the IVS heuristic, we use “*” as a
suffix for the latter. For instance, “M*” means MOMS scoring with IVS enabled.

3.3 Effects of the IVS Heuristic

Tables 2 to 6 report the results of our experimental analysis using the instances
and the configurations of SIM described in the previous subsections. The ordering
of the tables is in accordance with the value of () for each problem class, from the
lowest (DES instances) to the highest (Planning instances). Indeed, considering
the discussion in Section 2.3, we expected that using the IVS heuristic would
produce greater benefits for problems with small values of |S|/|N|.

Each line in the tables reports the following data:

— the configuration of siM, e.g., “M” and “M*” for MOMS;

— the cumulative sum C(t) of the problems solved by the configuration within
time ¢, for ¢t = {1,2,4,...,Tf}; Ty is 1200 seconds;
— the root mean square (RMS) of C(t) calculated as:

ST o(sT)2

RMS[C(¢)] = =1

T;]T
where T' is a sampling constant that divides the range [0; Ty] into intervals
of equal length; in our calculations T' = 12.

The value RMS[C(t)] summarizes the performances of a given configuration, and
enables the comparison among different configurations. Intuitively, it represents
the weighted distance of C(t) from the “worst possible configuration” Cy(t) = 0,
i.e., the configuration which cannot solve any problem within 7. The use of
RMS[C(t)] privileges the configurations that converge quickly and solve many
problems. RMS[C'(¢)] is going to be small for configurations that either converge
slowly or saturate at a small number of problems. This captures precisely our
intuition of a “bad” behavior of a configuration on a problem class. !

Heur|RMS|| 1| 2| 4| 8|16(32|64|128/256|512|T¢
M 15.81|| 3| 3| 5| 6|10|13|14| 16| 16| 16|16
M* 15.90(| 3| 4| 5| 9|12|14|15| 16| 16| 16|16
B 15.83|| 3| 4| 5| 6| 9|13|15| 16| 16| 16|16
B* 15.91|| 4| 5| 5| 8|12|15|16| 16| 16| 16|16
JW || 15.66| 2| 2| 3| 4| 4| 8|13| 15| 16| 16|16

JW*| 15.83|| 2| 2| 4| 4| 7|13|14| 16| 16| 16|16
S 16.23||16/16(16(16| 16| 16| 16| 16| 16| 16(17
S* 16.22|(16/16(16(16| 16| 16| 16| 16| 16| 16(17
Uo 23.66(|16|18|21|22| 22| 22| 22| 22| 23| 24|24
Uo0* | 16.00((16|16|16|16|16|16|16| 16| 16| 16|16

Table 2. Data Encryption Standard, 32 problems, all satisfiable.

In Table 2 the data about DES problems is reported. Notice that none of
the configurations is able to solve all the problems in the class. Looking at the
statistics for |S|/|N|in Table 1, we see small ratios for these instances, always less
than 0.18. Nevertheless, introducing the IVS heuristic does not help in speeding
up the convergence of any configuration, modulo some minor improvements on
MOMS, Béhm and Jeroslow-Wang. The null impact on SATZ, is contrasted by
a sharp worsening of the Unitie0 heuristic: “U0*” solves 1/3 less problems than
the unrestricted “U0” configuration.

1 All the experiments run on a network of identical workstations equipped with Pen-
tiumIIT 600Mhz, 128MB of RAM, and Linux Suse ver. 6.2. SIM is compiled with
gee 2.95.2; time is measured in CPU seconds.

Heur||RMS|| 1| 2| 4| 8|16(32|64|128|256|512|T¢
M 19.99(|10{10(12{17|19(20{ 20| 20| 20| 20|20
M* 20.00(|12|13[15]|19(20| 20| 20| 20| 20| 20|20
B 19.99(|11|13|13|16|20({20{ 20| 20| 20| 20|20
B* 20.00((12]|15]|20]20]| 20{ 20{ 20| 20| 20| 20|20
JW 19.99(|13|16(19|20| 20({20{ 20| 20| 20| 20|20
JW* || 20.00(|10(13[15(17| 18|20/ 20| 20| 20| 20|20
S 19.99(|12|15(16|18| 20(20{ 20| 20| 20| 20|20
S* 19.99(|12|15(16|18| 20(20{ 20| 20| 20| 20|20
Uo 19.63||11|11(12|12|14|16{ 18| 19| 19| 20|20
UO0* || 20.00(|14/17(19{20| 20| 20| 20| 20| 20| 20|20
Table 3. Parity, 30 problems, all satisfiable.

In Table 3 we report the data about Parity problems. As for the DES class,
none of the configurations is able to solve all the problems in the class. This is
to be expected, since these problems have been shown to be very challenging for
the current state-of-the-art SAT solver. On the other hand, the statistics for the
|S|/|N| ratio in Table 1 tell us that the percentage of independent variables is
quite small (13% at most). Indeed, introducing the IVS heuristic helps a little
in speeding up the convergence of some configurations, namely MOMS, B6hm,
Unitie0, but it has a negative impact on Jeroslow-Wang and a null impact on
SATZ configurations. Moreover, the IVS heuristic does not help in solving more
problems (see the Ty column). Parity problems are thus a clear example of how
the IVS heuristic can be successful for some configurations and unsuccessful for

others.

Heur|RMS|| 1| 2| 4| 8|16(32|64|128/256|512|T¢
M 26.11)| 9|11|12(13|16|16|18| 19| 21| 26|30
M* 29.71(|11|12|15|16|18|19| 20| 24| 26| 32|32
B 25.70(| 8|10|12{13|16|16|18| 19| 21| 26|30
B* 29.67(|11{12|14|16|18|19| 20| 24| 26| 32|32
JW || 17.10(| 9| 9/10{11|13|13|14| 15| 17| 17|18
JW* || 28.58|(11|14|16(17| 18| 20| 21| 23| 25| 28|32
S 21.22||10|12|12(14| 14| 16| 17| 17| 20| 21|24
S* 21.20(|10({12|12{14| 14| 16| 17| 17| 20| 21|24
Uo 17.95|| 9| 9(10{12(12|13|14| 15| 17| 18|20
U0* || 21.96(11]12|13|13|14|16|18| 18| 20| 22|25

Table 4. Bounded Model Checking, 34 problems, all unsatisfiable.

In Table 4 the data about BMC problems is reported. In this problem class
(see Table 1) the median |S|/|N| ratio is 0.18, and it is higher than the maxi-

mum ratio observed on DES and Parity problems. Nevertheless, with the only
exception of SATZ scoring, introducing the TVS heuristic helps in solving more
problems (see the Ty column), and also in speeding up convergence (see the RMS
column). The data is in accordance with the good results reported on similar
problems in the literature (see, e.g., [Shtrichman, 2000] and [Copty et al., 2001]).

Heur|RMS|| 1| 2| 4| 8(16(32|64|128|256(512|T¢
M 8.68(4| 5/ 5/ 5| 7| 7| 8 8 8 9| 9
M* 8.76|| 6| 8| 8| 8| 8 8 8 8 8§ 9| 9
B 8.65(3| 3| 3| 3| 4 5| 6| 6| 6| 6| 6

B* 14.75|(11]12|12|12{12{12{12| 12| 12| 12|12
JW | 14.45||11|13|14|14| 14| 14|14| 14| 14| 14|15
JW* || 14.55|(13|14|14|14| 14| 14| 14| 14| 14| 14|15
S 12.55|| 8/10({10|11f11{11{11| 11| 12| 13|13
S* 9.15(7| 7| 7| 8| 8| 8 8 8 9] 9|10
Uo 14.22|(10(11{13(14|14| 14| 14| 14| 14| 14|15
UO0* || 14.66|{12(13(|14|14|14|14|14| 14| 14| 15|15

Table 5. Pretolani, 24 problems, 12 satisfiable, 12 unsatisfiable.

Table 5 reports about Pretolani instances. On this class we see again some
improvement brought by the IVS heuristic. The distribution of |S|/|N| is con-
centrated in the interval [0.35;0.46] with a median of 0.37. Notwithstanding
the fairly big number of variables left to examine, in at least one configuration,
namely Bohm, introducing the IVS heuristic enables to solve more problems
within 7. In some configurations, namely MOMS, Jeroslow-Wang and Unitie0,
the convergence of the configurations featuring IVS is quicker than their unre-
stricted counterparts. On the other hand, SATZ performances worsen with the
introduction of IVS. Indeed, SATZ with IVS does not examine all the variables
and this amounts to a loss of accuracy in the selection of the next variable. Such
loss is not compensated by the speed gain obtained by examining an approximate
40% of the variables only.

We conclude our report with the data about Planning problems in Table 6.
From the table we can immediately grasp the inadequacy of non-BCP based
heuristics on this problem class. MOMS, Béhm and Jeroslow-Wang fail to be
really competitive, and the improvements introduced by the IVS heuristic are
quite marginal, with the only exception of MOMS. SATZ and Unitie0 configu-
rations are much more performant, but again the IVS heuristic is not able to
really improve them in any sense.

In Table 7 we summarize the results of our experiments in a compact way,
with the following notation. Each line corresponds to a configuration, and the
comparison is between the unrestricted version and the one featuring the IVS
heuristic. There are two blocks of results in the table. The upper block sum-
marizes the results obtained using SIM with chronological backtracking, while

Heur|RMS 32|64|128|256|512|T

1| 2| 4| 8|16 £
M 5.63| O 2| 3| 4| 4| 5] 5| 5| 5| 5| 7
M* 7.80(O] 2| 5| 5| 5| 6/ 6/ 6| 6 7| 9
B 2.04(| 0] O] Of O] O] 0] 2| 2| 2| 2| 3
B* 2.33|| 0] 0/ O] O] O] O] 2| 2| 2| 2| 3
JW 0.97(| 0| 0] O O] O] O] Of 1] 1] 1] 1
JW*| 097| 0/ 0| 0| 0| 0/ O] Of 1] 1] 1| 1
S 27.99||10|11{13|17|19| 20| 21| 24| 27| 28|31
S* 27.99(|10{11|13|17|19|20| 21| 24| 27| 28|31
Uo 27.79(7|10|10{19|22|23|24| 25| 26| 28|30
U0* || 26.92|| 5[11|16/20|21|21|22| 22| 24| 27|30

Table 6. Planning (BlackBox), 37 problems, 28 satisfiable, 9 unsatisfiable.

|Heur| DES |Parity| BMC |Pretolani|Planning|

M + [+ [++ + +
B + [+ [++ | +++ +
IW |+ [+ [+ + =
S _ — _ —_ =
U0 |[———] + [++ + -
M + [+ + —= +
B + [+ + — +
IW |+ | - [++ —= +
S — = — — =
U0 | - | + | ++ — +

Table 7. Evaluation of the IVS heuristic.

the data in the lower block is obtained using SIM augmented with backjump-
ing and learning. Each column corresponds to a problem class. To compute the
data in the Table, we use the RMS values for each configuration. Given C(t)
and R = RMS[C(t)] for an unrestricted configuration, we denote with C*(¢) and
R* = RMS|[C*(t)] the corresponding parameters for the same configuration with
the IVS heuristic. With these definitions in mind, a “+”(resp., “—") in Table 7
means that R* > R (resp. R* < R), and a “=" means that R* = R. To quantify
how much the RMS changes going from C(t) to C*(t), let P be the total number
of problems in the class and r be the ratio

_ |B" - R|

N P
In Table 7, given ® € {+,—}, a single “©” means that r < 0.1, a “©©®” means
that 0.1 < r <0.2, and a “© ® ®” means that r > 0.2. For instance, the “4 +”
corresponding to BMC and U0 in Table 7 means that U0* is 10% to 20% better

than UQ. The upper block of Table 7 evidentiates that both the problem class
and the underlying scoring technique determine the behavior of IVS heuristic,

and the lower block of Table 7 evidentiates that also the backtracking scheme
should be included among the factors that make up for IVS effectiveness.

Overall, on the basis of the results in Table 7, we can conclude that whether
IVS improves performances or not strictly depends on the type of problems
considered, on the underlying scoring and selection technique, and also on the
backtracking scheme. Still, according to the data in Table 7, IVS introduces some
benefits on average: in the Table there are 40 “+”, and 19 “—”.

4 CONCLUSIONS

In this paper, we have investigated the “independent variable selection (IVS)
heuristic”. We have discussed the possible advantages and disadvantages of using
IVS that one may expect a priori, and we concluded that determining whether
the heuristic will improve the performances or not is far from being obvious.
The experimental analysis that we presented confirms this intuition. We showed
that obtaining either positive or negative results strictly depends on the type of
problems considered, on the underlying scoring and selection techniques, and on
the backtracking scheme. Nevertheless, the potential of the heuristic weighted
against its simplicity is fairly big, and this suggests that, whenever possible, IVS
should be included in the experimental assessment of SAT instances.

References

[Biere et al., 1999] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In Proceedings of the Fifth International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’99),
1999.

[Buro and Buning, 1992] M. Buro and H. Buning. Report on a SAT competition.
Technical Report 110, University of Paderborn, Germany, November 1992.

[Cimatti et al., 2002a] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pis-
tore, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource tool for
symbolic model checking. In Proc. CAV, 2002. To appear.

[Cimatti et al., 2002b] A. Cimatti, E. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. Integrating BDD-based and SAT-based symbolic model
checking. In A. Armando, editor, Proceedings of the 4rd International Workshop on
Frontiers of Combining Systems (FroCoS 2002), volume 2309 of Lecture Notes in
Computer Science, pages 49-56. Springer-Verlag, 2002.

[Copty et al., 2001] Fady Copty, Limor Fix, Enrico Giunchiglia, Gila Kamhi, Armando
Tacchella, and Moshe Vardi. Benefits of bounded model checking at an industrial
setting. In Proc. 13th International Computer Aided Verification Conference (CAV),
2001.

[Crawford and Baker, 1994] James M. Crawford and Andrew B. Baker. Experimental
results on the application of satisfiability algorithms to scheduling problems. In
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-
94), volume 2, pages 1092-1097, Seattle, Washington, USA, August 1994. AAAI
Press/MIT Press.

[Davis et al., 1962] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem proving. Journal of the ACM, 5(7), 1962.

[Dubois and Dequen, 2001] Olivier Dubois and Gilles Dequen. A backbone-search
heuristic for efficient solving of hard 3-SAT formulae. In Bernhard Nebel, editor,
Proceedings of the seventeenth International Conference on Artificial Intelligence
(IJCAI-01), pages 248-253, San Francisco, CA, August 4-10 2001. Morgan Kauf-
mann Publishers, Inc.

[Ernst et al., 1997] Michael Ernst, Todd Millstein, and Daniel Weld. Automatic SAT-
compilation of planning problems. In Proc. IJCAI-97, 1997.

[Giunchiglia and Sebastiani, 1999] E. Giunchiglia and R. Sebastiani. Applying the
Davis-Putnam procedure to non-clausal formulas. In Evelina Lamma and Paola
Mello, editors, Proceedings of AI*IA’99: Advances in Artificial Intelligence, LNAI
2175, pages 84-94. Springer Verlag, 1999.

[Giunchiglia et al., 1998] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act,
and the rest will follow: Exploiting determinism in planning as satisfiability. In
Proc. AAAI 1998.

[Giunchiglia et al., 2001] Enrico Giunchiglia, Marco Maratea, Armando Tacchella, and
Davide Zambonin. Evaluating search heuristics and optimization techniques in propo-
sitional satisfiability. In Proc. of the International Joint Conference on Automated
Reasoning (IJCAR’2001), LNAI 2083, 2001.

[Jeroslow and Wang, 1990] Robert G. Jeroslow and Jinchang Wang. Solving propo-
sitional satisfiability problems. Annals of Mathematics and Artificial Intelligence,
1:167-187, 1990.

[Kautz and Selman, 1998] Henry Kautz and Bart Selman. BLACKBOX: A new ap-
proach to the application of theorem proving to problem solving. In Working notes of
the Workshop on Planning as Combinatorial Search, held in conjunction with AIPS-
98, 1998.

[Li and Anbulagan, 1997] Chu Min Li and Anbulagan. Heuristics based on unit prop-
agation for satisfiability problems. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI-97), pages 366-371, San Francisco, Au-
gust 23-29 1997. Morgan Kaufmann Publishers.

[Li, 2000] Chu Min Li. Integrating equivalence reasoning into Davis-Putnam proce-
dure. In Proc. AAAI, 2000.

[Massacci and Marraro, 2000] Massacci and Marraro. Logical cryptanalysis as a SAT
problem. JAR: Journal of Automated Reasoning, 24, 2000.

[Moore and McCabe, 1993] D. S. Moore and G. P. McCabe. Introduction to the Prac-
tice of Statistics. W. H. Freeman and Co., 1993.

[Pretolani, 1993] Daniele Pretolani. Satisfiability and Hypergraphs. PhD thesis, Uni-
versita di Pisa, 1993.

[Selman et al., 1997] Bart Selman, Henry Kautz, and David McAllester. Ten challenges
in propositional reasoning and search. In Proc. IJCAI-97, pages 50-54, 1997.

[Shtrichman, 2000] O. Shtrichman. Tuning SAT checkers for bounded model-checking.
In Proc. 12th International Computer Aided Verification Conference (CAV), 2000.

[Urquhart, 1995] Alasdair Urquhart. The complexity of propositional proofs. The
Bulletin of Symbolic Logic, 1(4):425-467, December 1995.

