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Chapter 1

Introduction

1.1 Research area, motivations and goals

The increasing complexity of the services requested to robotic devices in space
applications results in a need for more and more sophisticated and autonomous
systems. A compelling requirement for space autonomy led to the development
of systems that perform complex, time consuming and critical tasks, possibly
without the need of human intervention [MNPW98]. Planning is a research
area in Artificial Intelligence (AI) aiming at the construction of systems — called
planners — that enable a robot to autonomously synthesize a series of actions
that will achieve its goals. Planning has been studied since the early years of
AT; recently the interest has been renewed, with systems able to automatically
generate plans with hundreds (or even thousands) of actions.

On the other hand, the same increasing complexity of the requested services
causes an analogous increase in the complexity of the specifications and of the
programs controlling the robotic devices. Concerns arise about the correctness
of the specifications of the program and/or the environment in which the robots
are supposed to operate [SFMO00]. Model checking (MC) (see, e.g., [CGL94]), is a
research area in Computer Science devoted to the definition of procedures for the
automatic verification of programs and specifications. Current model checkers
are able to efficiently verify systems with more than 102 states [BCL94]. The
characteristic that makes MC particularly attractive is that it is a “push-button”
technology: It is completely automatic.

There are two important similarities between planning and MC: Both per-
form state-space exploration, and both are fully automatic. However, the plan-
ning and Formal Verification (FV) community fields have been evolved sep-
arately until recently, each adopting and developing its own techniques and
tools. In the last few years, we have seen a cross-fertilization between these two
areas in which ideas originally thought in FV have been successfully employed
in planning [CGGT97, GT99], and vice-versa [BCCZ99].

Throughout this thesis, we address the problem of “safe planning”. By
safe planning, we mean the task of generating/validating plans that not only
achieve the goal, but verify also a set of other user-defined properties, e.g., safety
properties. This is particularly important in the context of space applications,
where autonomy and safety are indeed two crucial properties any system has
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to guarantee. In particular, safe planning boils down to further exploit the
similarities between planning and MC by defining procedures:

e for the validation of user-defined plans with respect to given (safety) prop-
erties, and

e for the generation of plans satisfying the desired properties.
The problem of safe planning can be addressed via reduction to:

e a propositional formula, that can be solved by a satisfiability solver (in-
troduced in [ACGTO1]);

¢ alogic program, to be solved under the Answer Set Semantic (ASP) [GL88a]
(proposed in this thesis);

e a propositional formula enhanced with temporal constraints (called Sep-
aration Logic, SL for short [Pra77]), that can be solved by a dedicated
solver (proposed in this thesis);

e an optimization problem related to the solutions returned by a satisfiabil-
ity solver (proposed in this thesis).

The choice of the above logics was dictated by several considerations, the
main one being the fact that most problems of interest in the fields of planning
and formal verification can be naturally encoded in them.

The “Safe Planning via Propositional Logic” approach was introduced
in [ACGTO01]. Given a planning problem (expressed, e.g., in PDDL language)
and the safety properties the plan has to comply (expressed in Linear Temporal
Logic, LTL), a procedure, that rely on the “planning as satisfiability approach”,
for generating plans that not only achieve the goals but verify also a set of other
safety properties was introduced. This procedure is based on a reduction to a
propositional formula. The planning as satisfiability approach was introduced
in [KS92] in the classical setting (in which all actions have a deterministic and
“a-priori” known effect) in 1992, and then extended to the nondeterministic (in
which an action can have several effects when executed) domains in [TCGOO].
Each component of a planning problem (action/fluent) is mapped into a (se-
ries of) propositional variables, and the planning problem is translated into a
propositional formula. Then a satisfiability solver is called, and the solution (if
any) is mapped-back into a plan. The approach can leverage on the fact that
modern satisfiability solvers can deal with problems having millions of variables
in few seconds.

The “Safe Planning via Answer Set Programming” approach is introduced in
this thesis. Answer set programming [GL88a] is a new declarative paradigm for
solving search problems appearing in knowledge representation and reasoning.
To solve a problem, a programmer designs a logic program such that models of
the program are solutions to the problems. The procedure and the approach
presented in [ACGTO01] are encoded as logic programs (to be solved under the
Answer Set semantic). The approach presented rely on the strong link between
ASP and SAT: A SAT formula can be translated into a logic problem in a
modular way. Despite the strong link, ASP and SAT are different is many
ways: Among them, ASP is a non monotonic logic while SAT is monotonic;
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safety

properties
planning ) formula yes (+ solution)
problem | compi ler solver I

no

Figure 1.1: Implementing Safe Planning.

ASP allows in general for a more “compact” representation of the problems,
while SAT solvers are more optimized than ASP solvers; and the two formalism
are best suited for different problem domains.

The “Safe Planning via Temporal Reasoning” approach uses propositional
logic enhanced with constraints. In this thesis we will restrict to constraints
of the type x — y < ¢, where z,y are arithmetic variables, and c is a nu-
meric constant. The resulting theory is known as Separation (or Difference)
Logic [Pra77], in the area of FV. This theory is enough for our approach due to
the way the encoding of actions (and fluents) is implemented (see Chapter 6).
Despite its simplicity, SL can be often used to encode interesting problems from
the planning, scheduling and FV domains. A solver for this theory must have
a specialized reasoner for checking the arithmetic consistency of the problem:
Fortunately, this can be done efficiently in polynomial time.

The last approach is related to some optimization problems that can be
applied to a propositional formula. Among them, there is the “Min-One” prob-
lem: ”Given a propositional formula, find the satisfying assignment with fewer
variables assigned to true”. The “Safe Planning via SAT-related Optimization
Problems” approach rely on an encoding of a planning problem (4 safety prop-
erties) to a propositional formula and a minimization of a functional cost (that
defines the Min-ONE problem and the fact that the propositional satisfying as-
signment must be “minimal” w.r.t. this function). The functional cost is defined
on the actions of the problem. This functional cost can be easily encoded in
a propositional formula as well: Then, running a slightly modified satisfiability
solver on the overall formula guarantees (under some conditions to be imposed
on the variables of the resulting propositional formula) that the first satisfying
assignment is “optimal”, i.e., the solution corresponds to a plan with minimal
“cost”.

Summing up, all the encodings we have described can be part of a general
schema for solving the problem of Safe Planning reported in Fig. 1.1.

Given in input the description of the planning problem (e.g. described in the
STRIPS/PDDL language) and the safety properties that the plan has to enjoy
(expressed in LTL), a compiler is called. A compiler is one of the approaches we
have seen before, and a formula in the correspondent logic (due to the compiler
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used) is given in output. Then the formula is fed to a solver that is able to
decide the satisfiability of a formula in the underlined logic.

1.2 Contribution of the thesis

The contributions of this thesis are both from a “theoretical” side and from
a “practical”, implementation oriented side. On the theoretical side, we have
introduced (as anticipated before) three new approaches for implementing Safe
Planning

Safe Planning via Temporal Reasoning where the problem of Safe Plan-
ning is compiled into a Temporal Reasoning problem via a Separation
formula;

Safe Planning via Answer Set Programming where the problem of Safe
Planning is compiled into a logic program to be solved under the Answer
Set semantic;

Safe Planning via SAT Optimization where the problem of Safe Planning
is compiled into an optimization problem composed by a propositional
formula and a functional cost to be minimized defined on a subset of
the variables of the propositional formula (the actions of the planning
problem).

On the “practical”, implementation oriented side the contribution of the
thesis is on the design, the implementation and the experimental testing of four
systems:

SIMO (Satisfiability Internal Modulo Object-oriented), an efficient new gen-
eration decision procedure for propositional satisfiability. SIMO is the
evolution of the SIM solver;

Cmodels2 (Computing models), a decision procedure, based on propositional
satisfiability, for finding AS of logic programs;

TSAT++ (Temporal SATisfiability), a decision procedure , based on proposi-
tional satisfiability, for solving formula expressed in SL;

OPTSAT (OPTimal SATisifability), a decision procedure for optimization
problems related to propositional satisfiability.

Each system embeds both state-of-the-art techniques, and new ideas and
algorithms that were developed in the course of the thesis to improve the current
available decision procedures in all the logics that we study. As a result, SIMO,
Cmodels2, TSAT++ and OPTSAT compare favorably with analogous systems
from other researchers, and in particular:

e SIMO compares favorably with other systems. It ranked in the first 5
position (out of 28 competitors) in the SAT 2002 competition. It is the
object-oriented version of the solver SIM (Satisfiability Internal Modulo)
previously developed in the STAR-Lab group Then it has been used in
particular as satisfiability search engine in solvers for more expressive for-
malism (namely Cmodels2, TSAT++ and OPTSAT);
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e (Cmodels2 is continuously under development, and it is a joint project with
the University of Texas at Austin. Among other SAT solver, it embeds
SIMO as internal propositional solver, and it compares very well w.r.t.
rival systems. It uses a new algorithm for solving these problems w.r.t.
state-of-the-art systems;

e TSAT++ is faster than other state-of-the-art systems and it features
newly introduced techniques;

e OPTSAT is competitive with other comparable state-of-the-art systems:
It features a newly introduced algorithm to solve the problem, and other
improvements are coming.

The systems that we developed are interesting not only from the research per-
spective, but also from an application point of view. SIM(O) has been at the
heart of two technology-transfer projects. The first one is Thunder/Forecast,
an open architecture for verification of hardware designs developed by the Logic
Validation Technologies Group at the Israel Development Center of Intel Corp.
An early version of SIMO was integrated into Thunder and used to debug
the design of some Pentium IV components. The results obtained with Thun-
der/SIMO outperformed the results obtained with other traditional validation
technologies implemented in Forecast. The second technology transfer project
centered around SIM has been in cooperation with Istituto per la Ricerca Scien-
tifica e Tecnologica (IRST-ITC) in Trento and involved the integration of SIM
into the NuSMV model checker, a tool for debugging and verifying hardware
designs and software protocols.

The other systems presented in this thesis aim to go in the same direction.

1.3 Structure of the thesis

The thesis is composed by five parts each one focusing on the details about each
of the approach as well as the decision procedure used.

Propositional satisfiability focuses on propositional logic and the problem
of determine the consistency of a propositional formula.
Chapter 2 introduces basic definitions and notations to be used in the
remainder of the part; the basic Davis-Logemann-Loveland (DLL) algo-
rithm for propositional satisfiability is described. The SAT solver SIM and
SIMO on which all the other work is based on are presented, as well as
how to extend DLL algorithm to work as an enumerator of propositional
satisfiable assignments.

Safe Planning via Propositional Logic focuses on the approach of imple-
menting Safe planning via a reduction to a propositional formula and some
optimization on the decision of propositional formulas.

e Chapter 3 defines the approach.

e Chapter 4 introduces and experiments an optimization in the DLL
algorithm that takes into account the “meaning” of the propositional
variables, by means of “independent” variables, those variables such
that once they are assigned all the others are as well.
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e Chapter 5 introduces and studies a method for testing (possible)
improvements that a new technique could introduce “a-priori” i.e.
before optimally implement it. A case study of failed-literal is also
introduced.

Safe Planning via Temporal Reasoning focuses on the approach of imple-
menting Safe planning via a reduction to a Separation formula. Then the
extension of the DLL algorithm is presented as well as an efficient solver
for this logic.

e Chapter 6 defines the approach.

e Chapter 7 extends the DLL algorithm in order to solve Temporal (or
Separation) formulas.

e Chapter 8 presents and evaluate a decision procedure, TSAT++, for
this theory.

Safe Planning via Answer Set Programming introduces answer set pro-
gramming; focuses on Safe Planning via Answer Set Programming reduc-
tion; presents and tests a solver for logic programs under the answer set
semantic.

e Chapter 9 defines the approach and answer set programming.

e Chapter 10 extends the DLL algorithm in order to solve logic pro-
grams under answer set semantic.

e Chapter 11 introduces and evaluates an ASP solver, Cmodels2, for
logic programs under the answer set semantic.

e Chapter 12 studies both from a theoretical and practical point of
view the relation between SAT and ASP procedures.

Safe Planning via SAT-related Optimization problems focuses on the ap-
proach of implementing Safe planning via reduction to some SAT-related
optimization problems.

e Chapter 13 introduces the approach and the SAT-related optimiza-
tion problems Max(Min)-SAT and Min(Max)-One

e Chapter 14 describes the encodings from linear constraints to propo-

sitional formulas needed by the encoding.

e Chapter 15 introduces the (new) algorithm, completely based on
propositional satisfiability search, for solving the optimization prob-
lems, and the related solver OPTSAT.

e Chapter 16 introduces the benchmarks used and evaluate the OPT-
SAT decision procedure.
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Propositional Satisfiability



Chapter 2

Solving the satisfiability
(SAT) problem

The purpose of this chapter is to set out basic terminology about SAT, and the
concepts and issues that subsequent chapters will discuss in more detail when
needed. What is presented here is intended mainly for reference and it is not
meant to be detailed and complete. Extensive references will be provided for
all the results herewith presented.

The chapter consists of five sections. the first one presents some basic defini-
tions and notation. The second lists the most widely used strategies for solving
SAT. The third describes the Davis-Logemann-Loveland (DLL) algorithm, the
basic building block on top of which we develop all the SAT techniques pre-
sented in this thesis. The fourth presents the SAT solvers stM and SIMO. The
last section extends the DLL algorithm to work as an enumerator of satisfying
assignments.

2.1 Propositional logic

A proposition (or Boolean variable) is a symbol from a set P = {p;....pn},
our propositional alphabet. A literal is either a proposition (say, p) or the
complement of one (denoted by —p or p); in the first case, we say that [ is a
positive literal, and in the second, we say that [ is a negative literal. We say
that a proposition p and a literal [ are associated with each other if either [ = p
or | = —p. A clause is a finite disjunction of literals. A propositional formula
is in conjunctive normal form (CNF) if it is a finite conjunction of clauses. For
example,

ci : p1Vps

cla : p2Vps

cls : —p1V-p2Vps @1)

cla + p1V-ps

is in CNF, where each ¢l; (1 < i < 4) is a clause. We will assume that no clause
contains two literals of the form p and —p . We will also assume that the literals
in a given clause are unique. This latter assumption allows us to treat clauses

vii
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as sets of literals, and formulas as sets of clauses. So, for example:

{?’1:1’2{

P2, 3

{—p1,p2,p3} (22)
{ﬁpl, ﬁp3}}

is an equivalent way of looking at the CNF of 2.1. Given a CNF formula ¢,
the length of each clause ¢ = V;f’zl l; is simply w the number of literals in it,
also denoted as |c|; the length of ¢ is |p|= D1~ |¢;| the sum of the length of
each clause; n(yp) is the number of propositions in ¢ and m(yp) is the number
of clauses in . When ¢ is understood from the context, we will refer to these
parameters as n and m respectively.

Any propositional formula can be converted to an equi-satisfiable CNF:
By allowing the introduction of auxiliary variables (see, for example, [PG86a,
Tse70]) the worst case computation time remains polynomial in the size of the
original formula.

A truth assignment v is a partial function from the set of propositions to
1,0 (denoting respectively the values TRUE and FALSE for logical truth and
falsehood respectively). We can extend the definition of v in a natural way
so that it assigns truth values to literals, clauses and formulas: For a literal
I, if | = p for some proposition p, then v(l) = v(p), otherwise v(l) = —v(p).
For a clause ¢ = /i, l;, v(c) = (Viy)?v(l;). For a formula ¢ == A", ¢,
v(p) = (Ai~;)?v(ci). The interpretation of the connectives =¥, (\/i~;)? and
(AiL,)? are the usual ones. If x is either a proposition, literal, clause, or formula,
we say that v satisfies x if v(x) = 1, and v falsifies * if v(x) = 0. When we discuss
a truth assignment v in the context of a particular formula ¢, we will assume
that v’s domain is restricted to the set of propositions in . Since v is a partial
function, we will say that propositions, literals, clauses and formulas can have
one of three possible truth values with respect to v: true, false and undefined
(also open). A proposition, etc., that is not open with respect to v is said to
be valued by v. If v values every proposition in a formula ¢, we say that v is
complete w.r.t. ¢, otherwise it is incomplete. v need not be complete in order
to value ¢.

The CNF-satisfiability problem (SAT) is simply this [GJ79]: Given a propo-
sitional formula ¢ in CNF, is there a truth assignment v that satisfies ¢?

Finally, we define some special kinds of clauses. Given a CNF formula ¢,
a unary clause or unit clause in ¢ is a clause with length one, and a binary
clause in ¢ is a clause of length two. An open unary clause is an open clause
containing exactly one open literal, and an open binary clause is a binary clause
containing exactly two open literals. When it is clear from the context we shall
blur the distinction and talk about unary (resp. binary) clauses even when we
to refer to open unary (resp. binary) clauses.

2.2 Algorithms for SAT

Needless to say, SAT is such a fundamental problem in logic and computer
science that it received a lot of attention and many different algorithms and
techniques have been devised to try and solve it efficiently (see, for a good
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survey [GPFW97]. In particular, [GPFW97] classifies SAT algorithms according
to three dimensions:

1. sequential vs. parallel
2. discrete vs. continuous
3. constrained vs. unconstrained

In the remainder of this section (and of this thesis) we shall be concerned with
sequential and discrete algorithms to solve the SAT problem. This leaves the
third dimension to be sorted out.

Constrained formulations. The goal is to satisfy all the constraints, i.e., all the
clauses in ¢.

Unconstrained formulations. The goal is to minimize the number of unsatisfied
clauses.

We will now briefly review some relevant contributions for both formulations.
The list presented is an excerpt from the one in [GPFW97] and is by no means
exhaustive.

e The Davis-Putnam (DP) algorithm [DP60] and the improved Davis-Logemann-
Loveland (DLL) algorithm [DLL62] perform a backtracking search through
the space of possible truth assignments for ¢.

e Ordered Binary Decision Diagrams (OBDDs) [Bry92] provide a canonical
representation for propositional (non-CNF) formulas.

e The resolution algorithm [Rob65] derives implicates of the formula until
a contradiction is found or no more new implicates can be generated.

e The Stalmarck’s method [SS98], a saturation based theorem proving algo-
rithm with special treatment for equalities.

e Greedy local search [SK93] algorithms and their variants (see [HS00] for
a recent survey) randomly select an assignment for ¢ and then try to
minimize the unsatisfied clauses using various strategies.

e other approaches, such as term rewriting, production systems, enumerat-
ing assignments, some of which are covered in [GPFW97]

Many of the discrete constrained algorithms eliminate one variable at a time.
This can be done either by making repeated use of resolution, as was done in the
original version of the DP algorithm [DP60], or by assigning some variable each
possible value and generating a sub-formula for each value, as was done in David,
Logemann and Loveland’s DLL algorithm [DLL62]. Resolution generates only
one new formula, but in the worst case the number of clauses in the new formula
will be proportional to the square of the number of the clauses in the original
one. Except some peculiar case, the DLL procedure based on splitting is faster
than its ancestor DP. As reported by [Fre95] the DP variable elimination rule
has four key disadvantages:

1. it is more difficult to implement than the splitting rule;
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2. it tends to rapidly increase the number and the length of the clauses;
3. it tends to generate a lot of duplicate or subsumed clauses;
4. and it very rarely generates new unit clauses.

The DLL splitting rule also makes it easier to construct a certificate of satis-
fiability, i.e., a satisfying truth assignment, although DP’s variable elimination
rule makes it easier to construct a certificate of unsatisfiability, i.e., a resolution
refutation.

Ordered Binary Decision Diagrams take a different approach, since they
directly encode all the solutions of the propositional formula [Bry92]. Although
this may lead to an exponential blow up in the size of the diagram, many
problems have been successfully tackled with OBDDs (that, we recall, handle
the more expressive language of Quantified Boolean logic). The comparison
between OBDDs and DLL presented in [US94] shows no clear winner, but recent
results in the field of formal verification (e.g., [BCC*99], [BCRZ99], [WBCGO00]
and [CFG101]) show that DLL based solvers might have an edge over OBDDs
also in their traditional field of application. These results are also confirmed by
recent SAT competitions where the most efficient solvers are based on the DLL
algorithm.

Stalmarck’s method is at the heart of the commercial tool PROVER, and it
has been developed since the beginning to tackle formal verification problems
in large system designs. As outlined in [SS98], the strength of PROVER seems
to rely on the particular inference method, but most of PROVER strength
probably comes from a very effective implementation. The algorithm presented
in [GWO00] is a close sibling of the Stalmarck’s method and can be characterized
as a breadth-first back-tracking algorithm. In the preface of [vM00] the editors
conclude that, because of its features, HeerHugo (a SAT solver based on this
method) provides an approach that is complementary (not a substitute) to DLL
algorithms.

The resolution method lies at the root of DLL ancestor, the Davis-Putnam
algorithm [DP60], but resolution based theorem provers (like SPASS [WGR96])
are generally targeted to first-order rather than propositional logics. Although
they can deal with propositional problems and the DLL algorithm itself is a
sibling of the resolution method, it is widely accepted that DLL-based imple-
mentations outrank resolution-based theorem provers on pure propositional sat-
isfiability problems [Zha97].

2.3 The Davis-Logemann-Loveland (DLL) algo-
rithm

The basic version of DLL, shown in Figure 2.1, performs a depth-first search
through the space of all possible truth assignments until it either finds a satis-
fying truth assignment or explores the entire search space without finding any.
This function takes a propositional formula ¢ and a stack of assigned literals p
(also seen as a set of literals) and returns TRUE if the formula is satisfiable and
FALSE otherwise. Initially, we call it with g = (). The literal [ in DLL is called
the premise and the proposition associated with [ is called the branching propo-
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sition or branching variable. Although SAT is technically a decision problem,
most implementations of DLL return the satisfying truth assignment they find.

Before describing in detail the pseudo-code of Figure 2.1, we introduce the
concepts of look-ahead algorithms and heuristic choice of premises.

A look-ahead algorithm or constraint propagator, is a function that takes
a literal | and a formula ¢ and returns a simplified formula ¢’ such that the
function runs in low-order polynomial time, ¢’ is satisfiable iff ¢ is satisfiable,
and ¢’ is in some sense easier to satisfy than . For example, ¢' may have
more valued propositions than ¢, or ¢' may have fewer open propositions or
clauses than ¢, or ¢’ may stipulate some relationship between the truth values
of two or more open propositions in . SAT search algorithms typically run one
or more look-ahead algorithms at every node of the search tree to simplify the
remaining problem as much as possible without making any explicit guesses.
Also, heuristics (discussed below) can run one or more look-ahead algorithms
to compute an estimate of how effective a particular choice will be. Note that
if this is the case, the heuristics themselves can detect some simplifications to
the current problem.

A search algorithm that selects premises in a predetermined order is called
static, and one that selects them at run time is called dynamic. As reported
by [Fre95], static algorithms are generally much slower in practice than dynamic
algorithms, although some recent results in the field of formal verification, such
as [Sht00] and [ABC*02], revamped static heuristics, especially for very large
but otherwise very structured problems. Dynamic search algorithms require a
heuristic for selecting premises at each search node. For our purposes a heuristic
consists of three components:

1. A branching strategy or branching policy for selecting the next branching
proposition.

2. A priority function that takes open proposition p in ¢ and uses information
about the occurrences of p in ¢ to compute a numerical priority for p in
accordance with the given strategy.

3. A branching order for determining whether the next branching proposi-
tions should be satisfied first or falsified first.

The heuristic is a fundamental part of the DLL algorithm and it is the only
font of non-determinism of the algorithm. Finding a “good” literal on which
branch on is either very important (and moreover different heuristics work well
on different problem domains) and “difficult”. We do not report detailed proofs
here, but it has been showed in [Lib00] that deciding whether a literal is optimal
is both NP-hard and co-NP hard, and in PSPACE.

In the algorithm:

1. Simplify(l,p) simplifies the formula ¢ under the assumption that the literal
I is true. This is done by removing from ¢ all clauses in which ! appears
and by removing [ from all clauses in which [ appears;

2. ChooseLiteral(y) picks a literal [ in ¢ according to some heuristic function.
We have seen before the complexity of choosing the “best” literal.

Some heuristics operate by computing Simplify (I, ¢) and Simplify (-, ) for
each open proposition p. Consequently they can detect some simplifications
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to the current problem, thereby blurring the distinction between look-ahead
algorithms and heuristics. Given the definition of the Simplify(l, ¢) function we
can make another important definition: We say that an open literal [ is a failed
literal if Simplify(l, ¢) is false.

In the rest of the thesis, we could remove ¢ from the calls of the two pro-
cedures above described when it is clear from the context the formula we are
referring about.

We conclude this section by describing the algorithm in Figure 2.1 in detail.

e As a first step the algorithm checks whether we satisfied ¢ or we falsified
it: In both cases the algorithm returns from the current call with a result.

e If none of the above two cases holds, if there are any unit clauses [, then
¢ is correspondingly simplified assigning [ with the right value.

e If there are no more unit clause to simplify, then we must select a new
premise with the function ChooseLiteral().

e Finally, the algorithm branches on the truth values of the premise I: The
current state ¢ is simplified with Simplify(/) and then handed over to the
recursive call of DLL.

The search space is explored with a depth-first search. In this way, the second
call is done iff the first one failed to discover a satisfying truth assignment.

function DLL(p,u)
1 if {} € ¢ then return FALSE
if ¢ = () then return TRUE
if {I} € ¢ then return DLL(Simplify(l,p),u A1)
[ := ChooseLiteral(y)
return DLL(Simplify(l,),u A1) or

DLL(Simplify (1,¢),u A1)

T LN

Figure 2.1: The DLL algorithm.

DLL(p,d) terminates and returns TRUE if ¢ is satisfiable and FALSE other-
wise; in the former case, when line 2 is reached, p propositionally entails .

There is empirical evidence in the literature (see, e.g. [LS03, LS05]) that
DLL is the best among the complete algorithms for solving the SAT problem. A
number of improvements to DLL have been proposed, especially on the heuristic
function used in ChooseLiteral(p), on the data structures employed, on the way
unit propagation and backtracking are performed, but the basic algorithm still
stands unchanged.

Lemma 1 (Soundness and completeness of DLL) Let ¢ be a formula. Then
DLL(yp, u) returns TRUE if @ is satisfiable, and FALSE otherwise.

Proof. The statement is proved in detail in the original paper [DLL62]
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2.3.1 Backjumping and Learning

As we mentioned before, along the years a number of optimizations have been
made to the basic DLL algorithm in order to improve its efficiency and the
scope of the formulas it can deal with. Nowadays, modern SAT solver can
(easily) solve problems up to a million of variables and millions of clauses.

One of the most important achievements in the SAT community was the
introduction in 1997 [BS97, SS96] of optimized backtracking (i.e., look-back)
techniques in order to recover from “error” (or back-end) in the propositional
search tree. DLL algorithm is basically a depth-first backtrack search algorithm.
This means that, once a failure is reached in the search tree, the algorithm
backtrack until the closest choice point (ChooseLiteral()) and change the value
assigned to the correspondent variables. But it is not infrequent (indeed, most of
the time this is the case) that recently made choice are not directly responsible
for the conflict, and flipping the correspondent value does not change the state
of the search, and leads to explore an useless part of the search tree.

In order to possibly avoid this problem, a technique called backjumping was
introduced. This technique needs some more informations to be stored in order
to set up the machinery to implement it. Each time a literal is assigned as a
unit clause, it is stored also the clause that forced the literal to be assigned as
reason of the literal. When a dead-end is reached, there is a clause that has
become empty (empty clause). We create a working reason resolving (on the
“conflicting” literal, the literal that caused the contradiction) the empty clause
and the reason of the “conflicting” literal. Starting from this working reason
we (backward) unassigned all the units we encounter, resolving the working
reason with the reason of the literal we are de-assigning, thus creating a new
working reason. When we reach a choice point, we check if the associated
variable is in the working reason: If it is the case, we flip the value of the
correspondent literal and we go on (forward) on the search. Otherwise we
continue backtracking because this choice point was not directly responsible for
the conflict (and flipping its value would lead to explore a completely useless
part of the search tree) until a “responsible” choice point is reached or we have
backtracked until the root (and in this last case the formula is to be considered
FALSE , or unsatisfiable).

Even quite powerful, backjumping does not ensure that the same mistake
can not be done over and over again in the propositional search. This is because
backjumping is a “local” technique. In order to avoid the possibility of making
an already made error again, a new technique (highly related to backjumping)
was introduced (in [BS97, SS96]): Learning. Learning is the ability of the SAT
solver to add a clause (some of the working clause seen before) to the formula
in order to avoid the repetition of the same mistakes. Obviously, learning has
to be treated carefully: An exponential number of clauses can be learned and
add to the initial formula, causing an exponential blow up in space. For this
reason are of fundamental importance methods for bound the dimension of the
clauses to be learned and policy to delete (no anymore useful) clauses, in order
to maintain “polynomial” the number of added clauses at each moment (we will
be discussing some of this methods in the next Section). It is interesting to note
[Pro93b] that it is not obvious a-priori which is the “best” clause to be learned
in order to maximize the advantage of the two techniques. A clause that can
be more beneficial for the backjumping effects can be less effective for learning
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and vice-versa: The point is that (as anticipated before) that backjumping is a
local technique, while learning is a global technique.

Moreover, it is not even clear that backjumping and learning help in reducing
the CPU time for solving a problem (they have some overheads): In general,
and as a result of recent SAT Competitions [LS03, LS05], these techniques help
a lot when dealing with problems arising from real-world applications (such
as bounded model checking, planning, formal verification), but are useless for
randomly generated problems. As long as our focus (in the systems we will
describe) will be on resolving real-world problems, unless explicitly specified,
our (propositional) solver(s) will be using these two techniques.

Finally, we will not explicitly introduce the two techniques in the algorithms
we will see (and we saw) in this thesis: This is because it is hard to formally
introduce them in the (recursive version of the) DLL algorithm (unless intro-
ducing the propositional stack explicitly with the result of greatly complicate
the schema). Nevertheless, all the consideration and proofs we will see also hold
using backjumping and learning; and how these techniques can be integrated
into a DLL algorithm schema will be more clear when we will introduce the
iterative version of the DLL algorithm in Chapter 5.

2.4  The SAT solver(s) SIM(O)

In this section we will describe the two SAT solvers (based on DLL algorithm)
on which most of the research in this thesis is based on. For each solver, we will
be describing its main features and applications.

2.4.1 The SAT solver SIM

sim ! [GMTZO01], is a library designed and implemented at DIST, University of
Genova. It comprises of a series of techniques and heuristics from other state-of-
the-art solvers. It compares favorably with these solvers and moreover with Sim
it is possible to “create” new SAT solvers newly combining different strategies
and heuristics in the library not previously done in other solvers.

The data structure is basically composed by proposition (or variables) and
clauses. Each proposition p has two list of occurrences (in clauses): posList,
where it occurs positively, and negList, where it occurs negated. If a variable p
is assigned to TRUE , all the clauses in which it occurs positively (resp. negated)
is deleted (resp. simplified), on the contrary if it is assigned to FALSE .

SIM contains a number of heuristics (described in [GMTZ01]) in order to
choose the next literal to branch on. Mainly, all the heuristics rely on “static”
information on the formula (the number of occurrences in (some) clauses), or
[LA97, BS97] on information extracted from the formula by performing some
additional reasoning (failed literal detection for examples, see Chapter 5) at
each branching node.

Regarding learning, siM implements two kinds of learning;:

e size learning, a clause corresponding to a conflict is stored if it has no more
than Order literals. Size learning is implemented in SATO, and is used by
default with Order=20.

'http://www.star.dist.unige.it/ sim/sim/
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e relevance learning, a clause corresponding to a conflict is always stored.
A “forget” mechanism eliminates the learned clauses in which more than
Order literals are open or have been assigned differently since the time
they have been added to the set of input clauses. Relevance learning is
implemented by RELSAT, and is used by default with Order=3.

SIM was the heart of a technology transfer project in cooperation with Isti-
tuto per la Ricerca Scientifica e Tecnologica (IRST-ITC) in Trento and involves
the integration of SIM into the NuSMV model checker?’[CCG*02], a tool for
debugging and verifying hardware designs and software protocols.

Moreover, SIM is the back-end solver for dealing with the propositional part
of the problem of the academic planner CPLAN3[CGTO3], designed and im-
plemented at DIST, and of the solver for quantifier-free first order theories
MathSAT [ABCT02]

2.4.2 The SAT solver SIMO

simo * [GMTO03] is the C++ and Object-oriented evolution of SiM. But it is not
just a re-implementation of it. SIMO incorporates the most recent advancements
in the propositional solvers. In particular:

Simplify(l) is implemented as described in [MMZ*01], Sec. 2, “Optimized
BCP”. The function is based on a data structure that, for each clause,
keeps reference to two literals in the clause (“watched literals” in the ter-
minology of [MMZ101]) with the proviso that they should not be both
assigned to FALSE . This data structure has several features: (i) it identi-
fies all unit and empty clauses, (¢¢) it minimizes the number of accesses to
clauses, and (ii7) it does not need expensive updates while backtracking.

ChooseLiteral() shares many similarities with the heuristic described in [MMZ*01].
Literal scores are updated only once each N calls to HEURISTIC (N is set
by default in SIMO to 255); once the scores have been updated, the literals
are stored in a priority queue; at each branch, the highest open literal in
the priority queue is selected. The rules to update the literal score are:

e each literal has a counter, initialized to the number of occurrences in
the formula;

e when a clause is learned during the look-back process the counter
associated with each literal in the clause is incremented;

e the score of a literal is updated by considering its old score (divided
by a constant) plus the increment in the value of its counter since
the last scoring occurred.

backjumping/learning follows the learning method described in Sec. 2 of [ZMMMO1]
as “1-UIP learning”. The implementation of this look-back method in
SIMO involves some hairy details which are beyond the scope of this the-
sis. Please see [ZMMMO1] for a detailed explanation of 1-UIP (and others)
learning methods.

thtp ://nusmv.irst.itc.it/
Shttp://www.ai.dist.unige.it/drwho/Cplan/
4http://www.star.dist.unige.it/"sim/simo/
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SIMO participated to the SAT 2002 Competition [SBH02], ranking (globally)
in the first five positions (out of 28 solvers).

Moreover, SIMO was integrated into Thunder/Forecast, an open architecture
for verification of hardware designs developed by the Logic Validation Technolo-
gies Group at the Israel Development Center of Intel Corp. and used to debug
the design of some Pentium IV components. The results obtained with Thun-
der/SIMO outperformed the results obtained with other traditional validation
technologies implemented in Forecast.

Finally, siMO is the heart of all the tool for more expressive formalisms
that we developed during the thesis and that are presented in the subsequent
Sections.

2.5 Extending the DLL algorithm to work as
an enumerator

In order to set up the machinery required by the SAT-based approach, we need
a modification of a DLL algorithm. Figure 2.2 shows the resulting procedure.

function DLL_ENUM(¢,u)
1 if {} € ¢ then return FALSE
if ¢ = () then Print(u); return FALSE
if {I} € ¢ then return DLL_ENUM((Simplify(l,p),u A1)
[ := ChooseLiteral(y)
return DLL_ENUM(Simplify(,¢),u A1) or

DLL_ENUM(Simplify(l,p),u A )

T LN

Figure 2.2: DLL algorithm as enumerator.

The only difference with respect to the procedure of Figure 2.1 is when
@ = (. In this case the current valuation, u, is printed and FALSE is returned in
order to force backtracking.

Lemma 2 (DLL as an enumerator) Let ¢ be a propositional formula.
DLL_ENUM (,0) prints a set of valuations which is propositionally complete

for .

Proof. The statement is proved in detail in [GGT00]. We do not report here
the entire proof, but just a sketch. Consider that returning FALSE at line 2 after
1 has been printed forces backtracking, undoing all Simplify operations done
since the last time ChooseLiteral was called upon, and flipping the value of the
last literal chosen by ChooseLiteral. Line 2 will be hit again next time a model
is found. On the other hand, if ¢ is unsatisfiable, line 2 will never be reached
and nothing will be printed.

The disjunction of all models printed by DLL_ENUM(p,0) after its execu-
tion terminates is a DNF (Disjunctive Normal Form) of . Notice, that it is not
required that all models are stored anywhere.

We have slightly modified the SIM and SIMO solvers in order to act as enumera-
tors (as in the Figure 2.2). In this way the two SAT solvers (in particular SIMO)
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are at the basis of all the academic tools presented in this thesis, taking into
account the “propositional” part of the problem presented. The functionality of
being able to enumerate all the propositional satisfying assignments of a propo-
sitional formula is the most important feature for a SAT solver used as back-end
solver in applications that rely on abstraction/compilation into a SAT theory.
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Chapter 3

Introduction

This Chapter reviews the “Safe Planning via Propositional Logic” approach
introduced in [ACGTO01]. The concepts of possible, valid and safe plans, (safe)
plan generation and validation are introduced.

The approach described in this Chapter is the starting point for the other
approaches reported in the next Parts.

3.1 Possible and Valid Plans

We start with a set of atoms partitioned into a set of fluent symbols and a
set of action symbols. Intuitively, a fluent represents a property of the world
that changes over time, because of the execution of actions. A formula is a
propositional combination of atoms. An action is an interpretation of the action
symbols. A state is an interpretation of the fluent signature. A transition is
a triple (s, a,s’) where s, s’ are states and a is an action: Intuitively s is the
initial state of the transition, and s’ is its resulting state. Executing an action
a means to execute concurrently the “elementary actions” represented by the
action symbols satisfied by a.

An action description D is a finite set of expressions describing how actions
change the state of the world, i.e., the set of possible transitions. We do not
make any assumption on D, except the following;:

1. the effects of actions depend on the state of the world in which they are
executed.

This restriction does not allow for “non-markovian” action descriptions like the
one definable in ARD [GL95]. Under the assumption that D is Markovian, it
is possible to associate a transition diagram with each action description D.
The transition diagram represented by D is the directed graph which has the
states of D as vertexes, and which includes an edge from s to s’ labeled a for
every transition (s, a, s') that is possible according to D. Notice that D may be
deterministic or non-deterministic.
Besides the above assumption, we also assume that

2. it is possible to compute a propositional formula trP whose satisfying
assignments correspond to the possible transitions caused by the execution
of an action in D.

xix



CHAPTER 3. INTRODUCTION XX

More in detail, we assume that in ¢rP there is a propositional variable A; for
each ground action symbol A, and two propositional variables F; and F;1q for
each ground fluent F in D: Intuitively, F; represents the value of F' in the initial
state of the transition, and F;;, represents the value of F' in the resulting state,
after having performed the action.

As in the standard planning literature, a planning problem for D is charac-
terized by two formulas I and G in the fluent signature, i.e., is a triple (I, D, G),
where I and G encode the initial and goal state(s) respectively. A plan (of length
n > 0) is a finite sequence a';...;a™ of actions.

Consider a planning problem 7 = (I, D,G). Intuitively, to ensure that a
plan a';...;a™ is valid, we have to check that

e the plan is “always executable” in any initial state, i.e., executable for any
initial state and any possible outcome of the actions in the plan, and

e any “possible result” of executing the plan in any initial state is a goal
state.

In order to make the above definition precise we have to give the following
definitions.

A history for an action description D is a path in the corresponding transition
diagram, that is a finite sequence

s%al,st, ... a", s" (3.1)
(n > 0) such that s°,s',..., s™ are states, a',...,a™ are actions, and
(s1,als")  (1<i<n)

are transitions which are possible according to D. n is the length of the his-
tory (3.1).

A plan @ = a';...;a" is possible for 7 if there exists a history (3.1) for D
such that

0

e s is an initial state, and

e s" is a goal state.

An action a is executable in a state s if for some state s', {s,a,s’) is a
possible transition according to D. Let s° be a state. The plan a';...;a" is
always executable in s° if for any history

with k& < n, a**! is executable in s*¥. Assume that @ is a plan which is always
executable in a state s°. A state s™ is a possible result of executing @ in s° if
there exists a history (3.1) for D.

A plan @ = a';...;a" is valid for 7 if for any initial state s°,

e @ is always executable in s°, and

0

e any possible result of executing @ in s is a goal state.

Indeed, if D is deterministic, any possible plan is also valid. However, this
is not the case if D is nondeterministic. A possible plan may lead to the goal;
while valid plans are ensured to reach a goal state despite the potential multiple
initial states and nondeterminism in the action description. In the planning
literature, valid plans are also called “conformant” [SW98].
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3.1.1 Safe Plans

Consider a planning problem 7 = (I, D,G). In the previous section we have
formally defined the notion of valid plan as a sequence of actions which is guaran-
teed to reach a goal state. Depending on the characteristics of 7 (e.g., depending
on the language used to describe D) different planning procedures can be used.
However, as we have already argued in the introduction, we do not only want
that a plan is “valid”, but also “safe” with respect to a set of user-defined prop-
erties. For example, we do not want a plan which can go through a state which
is potentially dangerous for humans.

In the FV literature, these (safety) properties are nicely formalized by means
of temporal logics. Here we consider a simple temporal logic, whose syntax
and semantics resembles Pnueli’s Linear Temporal Logic (LTL) [Pnu77]. The
definition of temporal formula (used for the specification of the properties) is
the following:

e A fluent symbol or the negation of a fluent symbol is a temporal formula,
and

e If o and (3 are temporal formulas, also

(anp), (aVpP), X,a, Xy,
Fa,  Ga,  (aB),  (aRp),

are temporal formulas.

Notice that we have assumed temporal formulas to be in negation normal form,
i.e., that negations occur only in front of fluent symbols. This is not a limitation
given that —according to the semantics defined below— (assuming we relax for
a moment the assumption to be in negation normal form)

—Xsa = Xya,
-~Fa = Ga, (3.2)
—(alUp) = (~aR—p).

Some of the above equivalences hold in standard LTL. However, the meaning
of the temporal connectives X, F, G, R have to be adjusted in order to accom-
modate the fact that we are dealing with a finite time line (see [Eme90], pag.
1006). Intuitively, if n represent our horizon,

e X;a reads “there exists a successor moment and a holds there”,

e X, a reads “if there exists a successor moment then « holds there”,
e Fa reads “for some subsequent time < n « holds”,

e Ga reads “for all subsequent times < n « holds”,

e ol reads “for some subsequent time < n § holds, and a holds until
then”,

e oRf reads “if for some subsequent time < n 8 does not hold, then « holds
in a state before then”.
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According to the above intuitive meanings, the following equivalences hold:
Fa=TUa, Ga = 1L Ra, (3.3)

where T, L are the symbols for truth and falsity respectively.

Let h be a history (3.1), and « a temporal formula. We say that h satisfies
a (h =™ o) iff h =] a, where, for any ¢ < n, the definition of h = « is given
inductively on the structure of the formulas:

1. hEP aif s E a and « is a fluent literal,

2. hEE? (aAB)if h =P a and h =D B,

RED (aVB) i hED aor h 7 B,

h B} Xsaif i <nand h |}, a,

hE} Xyaifi=nor h F}, a,

hE} Faif3j:i<j<n,hE}a

hEp Gaif Vi i <j<n, hEDa,
hlz?od/{ﬂifﬂj:igjgn,h|:?,8andwc:i§k<j,h|:?a,

© P N o kW

hE} aRBiVj:i<j<n,hE} BorIk: i<k<j,h[}a

Given the above semantics, it is easy to see that both (3.2) and (3.3) hold.

Temporal logic allows us to specify different interesting requirements on
plans. The user can specify a safety property with the formula Ga, intuitively
standing for “the property a should be maintained”, or G—=3, meaning for in-
stance that “a dangerous or undesired situation 8 should be avoided”. The
formula GFa can be used to specify that “always a state where a holds should
be eventually reached”, while FGf states that “the system should get to the
point where property 8 can be maintained”. As further examples, formulas can
be composed in order to specify a sequential ordering in which properties should
be verified: F(aAFp) states that “a should be eventually true before 37, while
F(a A FGB) can be used to specify that “a should be reached first, and then 8
should be reached and maintained”.

3.1.2 Safe Planning: Plan Validation

We now consider the problem of plan validation with respect to a finite set
of properties. Let a be the conjunction of the properties, let # = (I,D,G) a
planning problem, and let @ = a';...;a” be a valid plan.

We say that @ is safe with respect to « if each history (3.1) satisfies a.
The problem of validating @ with respect to a can be re-cast as a satisfiability
problem. The basic idea is to check whether the execution of the actions in
a “entails” the property «, reformulated as a propositional formula. In the
following, for any number 7 and formula H, H; is the expression obtained from
H by substituting each atom B with B;. Intuitively, the subscript i represents
time:

o If F' is a fluent symbol, the atom F; expresses that F' holds at time 1.
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e If A is an action symbol, the atom A; expresses that A is among the
elementary actions executed at time .

The reformulation [a]™ of a as a propositional formula is defined as [a]f, and

[o]? is:

1. [a]? is a4, if « is a fluent literal,
- lan B3 is [afi A BT,
- [a Vv B} is [aff v [B]F,

. [Xsalf is L if i =n, and is [a]},; otherwise,

. [Fal? is V?:i[oz]"

2
3
4
5. [Xpalf is T if i = n, and is [a]},, otherwise,
6 3
7

- [Ga]? is AZ_;[o]?,
8. [aUB]} is VI, ([B]? N [aR),

9. [aRBIT is AP ([B]2 Vi_i [ad}).

For any formula, the correspondence between its semantics and its translation
as a propositional formula is immediate. Given the above mapping, and under
the assumption that @ is valid for 7, the check that & is safe with respect to
amounts to check that

Io AN A AN 1P | [a]™ (3.4)
For example, if « is a safety property Gg, (3.4) holds if for any history (3.1) in
which s° is an initial state, s* satisfies 8 for any i : 0 < i < n.

3.1.3 Safe Planning: Plan Generation

Consider a finite set of properties, Let a be their conjunction, and let 7 =
(I,D,@G) a planning problem. Safe planning is the task of finding a valid plan
which is also safe with respect to a. As before, we do not make any assump-
tion about D: it can be deterministic or nondeterministic, it can allow for the
concurrent execution of actions or not. However, for simplicity we assume that
I is satisfied by at most one state.

The simplest approach for the generation of safe plans, is to generate (possi-
ble) plans, and test whether each generated plan is valid and safe. In this way,
we obtain

1. a correct but possibly incomplete safe procedure in general, and

2. a correct and complete safe procedure if we generate and test all the
possible plans.

Given a planning problem 7 and a natural number n, we say that a procedure
for safe planning is

e correct (for m,n) if any returned plan as;...;a, is valid and safe for w,
and
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e complete (for 7,n) if it returns False when there is no valid and safe plan
ai;...;an, for m.

In the planning as satisfiability framework, all the possible plans can be
generated by enumerating the assignments satisfying

Io AN trP A Gy (3.5)

The check whether a plan @ = a!,...,a" is safe —assuming we already know
is valid— can be done as described in Section 3.1.2. Indeed, if I is satisfied
by only one state (as we assumed at the beginning of the Section) and D is
deterministic, any possible plan is also valid, and thus we are done: we can
easily devise a procedure that generates valid plans till one which is also safe is
found.

However, as described in [Giu00], the check whether @ is valid is complicated
in the case that D is non deterministic. In fact, the check that a possible plan
is also valid amounts to perform an entailment check similar to the one in (3.4).
More in detail, a plan a';...;a™ is valid iff

Io A=Zg AN Ay AN trt? = G A2, (3.6)

where trt] is defined on the basis of tr]’, and Z is a newly introduced fluent
symbol, see [Giu00]. Thus, given what we said so far, in order to have a correct
and complete procedure for safe planning we should:

e generate (all) the possible plans by satisfying (3.5),

e test if each generated plan a';...;a™ is valid by checking whether (3.6)
holds, and

e ifal;...;a"is valid, check whether it is also safe with respect to a property
a, by checking whether (3.4) holds.

This is not necessary. Indeed, the last two checks can be combined into one: A
(possible) plan al;...;a™ is both valid for = and safe with respect to a iff

IoN=Zo NN Ai AN trtl = G A =20 A )™

Furthermore, as an optimization, if in the generation phase we consider only
the plans corresponding to the assignments satisfying

Iy AN trP AGy A a]™ (3.7)

we still get a correct and complete procedure for safe planning: The assignment
satisfying (3.5) and not (3.7) for sure do not correspond to safe plans.

3.2 Summing up

In this Chapter we have presented the Safe Planning approach via a translation
to a propositional formula. The formula are not restricted to be in CNF, the
form used by most of the propositional solvers. Nonetheless, it is well known
that there exist efficient and linear-time (in the size of the formula) conversion
methods to a CNF formula [Tse70, PG86b].
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To be noticed that in the rest of this Part, all the techniques and optimiza-
tions we will see are based on (but not limited to) the CNF representation of
the formulas.

As long as the approach has been previously invented by others, we focus our
attention on optimizing the DLL computation (i) using “independent” variables
to guide the search, and (i7) introducing a new method based on oracles to
predict if a technique (when implemented efficiently) can help in reducing the
time needed to solve a propositional formula.



Chapter 4

Dependent and
Independent Variables

In this Chapter, we investigate the “independent variable selection (IVS)” heuris-
tic, i.e., given an input formula on the set of variables IV, the selection is re-
stricted to a — possibly small — subset S which is sufficient to determine a truth
value for all the variables in N. During the search phase, scoring and selection
of the literal to assign next in ChooseLiteral() are restricted to S, and the truth
values for the remaining variables are determined by the pruning techniques of
the solver. The completeness of the solver is maintained because all the vari-
ables are assigned once those in S are. Moreover, the worst-case size of the
search space goes down from 2V to 2/5I. TVS has been proposed and used sev-
eral times in combination with different scoring and selection techniques. The
results have been mixed, but most of the times big benefits have been reported.
In particular, in [CB94] the IVS heuristic has been first proposed and applied
to scheduling problems: no benefits are reported on these instances; in [GMS98]
IVS has been applied to planning problems generated with MmEDIC [EMW97]:
improvements reach 4 orders of magnitude; in [Sht00] and [CFG*01] IVS is
experimented in the context of formal verification: the authors report signifi-
cant improvements on most instances. On the implementation side, the SAT
solvers SIM and SIMO both incorporate the IVS heuristic along with a variety of
underlying scoring and selection techniques.

We discuss the possible advantages and disadvantages of using the IVS
heuristic.

4.1 Variable Dependency

The idea behind variable dependency in DLL is simple. A variable x is de-
pendent on a set of independent variables x1,...,%, if for any assignment to
Z1,...,T, the value of x becomes determined by LOOK-AHEAD.! Thus, the
notion of variable dependency is defined with respect to a given set of variables

IWith LoOK-AHEAD we refer, at least, to the repeated application of Simplify() on the
unit clauses encountered, also called BCP (Boolean Constraint Propagation). Nonetheless,
LOOK-AHEAD can perform additional reasoning as we will see in the reminder of this Chapter.

XXVi
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and a specific LOOK-AHEAD procedure. For example, in the formula:

{AIVEV . b A~ VI, -l VI

where [,11,...,1, are distinct literals, we can say that || depends on |li],. .., |ls]|
if LOOK-AHEAD enforces BCP. Our working hypotheses for the remainder of
the paper are that LOOK-AHEAD is limited to BCP as in Figure 2.1, and that
the set of independent variables is known a priori in all the problems that we
consider.

4.2 DLL and Variable Dependency

If S is a set of independent variables, it is rather easy to modify CHOOSE-
LITERAL to enforce IVS, i.e., to restrict scoring and selection to S. Now the
question is: what can we expect by using IVS? For one thing, the unrestricted
CHOOSE-LITERAL can simulate the restricted one, but the converse is not true.
If the input formula ¢ is satisfiable, this is not necessarily a problem: they
are both allowed to pick a set of literals satisfying ¢. On the other hand, if
the input formula is unsatisfiable, we may witness a substantial degradation
of DLL performances when using the IVS heuristic. For example, let ¢ be an
unsatisfiable formula on the set of variables S. Assume that refuting ¢ with
DLL requires a search tree of exponential size (the existence of such formulas
is discussed, e.g., in [Urq95]). Now let 9 be the following formula on the set of
variables N = S U {a,b, c}:

(pera)AN(aeb)Ala+ o)A (b o).

Clearly, 1) itself is unsatisfiable and the variables a, b, ¢ are dependent on the set
of variables S. If we try to have DLL refute 3 by enabling the IVS heuristic,
then we are bound to explore a search tree of exponential size. At the end of
each branch we determine a truth value for a, and then backtrack occurs because
of an inconsistency found by running LOOK-AHEAD. On the other hand, it is
sufficient for an unrestricted CHOOSE-LITERAL to pick any of the variables in
the set {a, b, c} in order to quickly refute ¢.

Statistic | DES | Parity | BMC | Pretolani | Planning
Min 0.01 0.01 0.05 0.35 0.67
Q, 0.01 0.02 0.10 0.34 0.68
Q. 0.03 0.03 0.18 0.37 0.70
Qg 0.06 0.05 0.24 0.37 0.71
Max 0.18 0.13 0.40 0.46 0.74

Table 4.1: Statistics on the ratio |S|/|N|.

Notwithstanding the above considerations that may suggest to abandon the
idea of restricting CHOOSE-LITERAL, in practice it is easy to see how exponential
improvements can be obtained with the IVS heuristic. For example, given a
formula ¢ on a set S of variables, we can construct a super-formula ¢ of ¢
that introduces denumerately many new variables, all depending on S. If we
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introduce exponentially many new such variables and try to solve v, the first call
to an unrestricted CHOOSE-LITERAL is enough to cause a substantial worsening
with respect to a restricted one.

4.3 Experimental results

4.3.1 Test set

The test set used to evaluate the IVS heuristic consists of 157 CNF formulas,
102 satisfiable and 55 unsatisfiable, yielding an overall 64% chance of a satis-
fiable instance. Some of these instances are also known to be challenging for
currently available SAT solvers, but selecting hard instances was not our focus.
In assembling the test set, we privileged problems that have already been used
to compare SAT solvers; we tried to maximize the number of different problem
classes, and the number of problems in each class. Our choice was constrained
by the availability of instances for which we are able to determine a set of
independent variables. In particular, we chose:

e 32 Data Encryption Standard (DES) problems, see [MMO00, Li00];

e the “famous” 30 parity problems, see, e.g., [SKM97];

e 34 instances of bounded model checking (BMC), see [BCCZ99, Li00];
e 24 Pretolani problems, see, e.g., [Li00].

e 37 planning problems generated by BlackBox [KS98];

For the sake of our analysis, the most representative parameter is the |S|/|N|
ratio, i.e., the fraction of the set of total variables NV which is also in the set S
of independent variables.

Table 4.1 gives an idea of how the ratio |S|/|N| is distributed among the in-
stances in each of the above problem classes. We remind that the p%-percentile
is the value z such that p% of the observed data is smaller than z. In Ta-
ble 4.1: Q; denotes the 25%-percentile, Q2 the 50%-percentile, and Q3 the
75%-percentile of the observed ratios; “Min” and “Max” denote, respectively,
the minimum and the maximum of the observed ratios. This set of statistics
is known as the “five-number summary” and is very useful for comparing dis-
tributions [MM93]. From Table 4.1 we can see that the parameter |S|/|N| is
distributed quite differently across the problem classes considered. For instance,
while |S|/|N| is almost normally distributed around 0.18 from a minimum of
0.05 to a maximum of 0.40 in BMC problems, in DES and Parity instances the
distribution is biased toward small values of |S|/|N| since the 75% of the data
is smaller than 0.06 for DES and 0.05 for Parity problems, but the maximum
ratio is 0.18 for DES and 0.13 for Parity problems.

4.3.2 DLL implementation

The SAT solvers SIM and SIMO support the IVS heuristic. Moreover, SIM comes
with different implementations of CHOOSE-LITERAL that can be selected from
the command line. Using compile-time options, it is also possible to augment SIM
with backjumping and learning. Therefore, SIM provided the ideal platform for



CHAPTER 4. DEPENDENT AND INDEPENDENT VARIABLES xxix

our purposes. In our experiments, we run SiM with 5 different implementations
of CHOOSE-LITERAL, with and without backjumping and learning. For each
version of CHOOSE-LITERAL we run the default implementation as well as the
one with the IVS heuristic, for a total of 20 different configurations tested.
Unless explicitly mentioned, the version of SIM used to produce the data is the
one with chronological backtracking. The implementations of CHOOSE-LITERAL
that we evaluated are:

e MOMS (M), introduced in [Pre93], which prefers variables that occur
frequently in the shortest clauses;

o Jeroslow-Wang (JW), see [JW90], where the occurrences of variables in
short clauses are exponentially better than those in long clauses;

e B6hm (B), discussed in [BB92], which considers occurrences in clauses of
any length and, in case of ties, prefers variables occurring frequently in
short clauses;

e SATZ (S), as explained in [LA97], which features a complex scoring mech-
anism based on BCP and a modified version of JW;

e Unitie0 (UO0), introduced by [CFG*01] under the name “Unit”, which
prefers variables producing the highest simplification with BCP.

In all the cases above, using the IVS heuristic amounts to restricting the scor-
ing and selection process to the variables in S. To distinguish between the
unrestricted CHOOSE-LITERAL and the one with the TVS heuristic, we use “*”
as a suffix for the latter. For instance, “M*” means MOMS scoring with ITVS
enabled.

4.3.3 Effects of the IVS Heuristic

Tables 4.2 to 4.6 report the results of our experimental analysis using the in-
stances and the configurations of SIM described in the previous sections. The
ordering of the tables is in accordance with the value of Q)2 for each prob-
lem class, from the lowest (DES instances) to the highest (Planning instances).
Indeed, considering the discussion in Section 4.2, we expected that using the
IVS heuristic would produce greater benefits for problems with small values of
1S1/|N].
Each line in the tables reports the following data:

e the configuration of siM, e.g., “M” and “M*” for MOMS;

e the cumulative sum C(t) of the problems solved by the configuration
within time ¢, for ¢t = {1,2,4,...,Tf}; Ty is 1200 seconds;

e the root mean square (RMS) of C(¢) calculated as:

s=1

T;]T

Ts/T 2
RMS[C(#)] = | ==t (TS

where T is a sampling constant that divides the range [0; T] into intervals
of equal length; in our calculations 7' = 12.
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The value RMS[C(t)] summarizes the performances of a given configuration, and
enables the comparison among different configurations. Intuitively, it represents
the weighted distance of C(t) from the “worst possible configuration” Co(t) = 0,
i.e., the configuration which cannot solve any problem within 7. The use of
RMSJ[C(t)] privileges the configurations that converge quickly and solve many
problems. RMS[C(¢)] is going to be small for configurations that either converge
slowly or saturate at a small number of problems. This captures precisely our
intuition of a “bad” behavior of a configuration on a problem class.?

Heur || RMS 1| 2| 4| 8|16 |32 | 64 | 128 | 256 | 512 | T¢
M 15.81 31 3| 58| 6|10 13| 14 16 16 16 | 16
M* 15.90 31 4| 5| 9| 12| 14| 15 16 16 16 | 16
B 15.83 3| 4| 5| 6 9 13| 15 16 16 16 | 16
B* 15.91 4| 5| 5| 8| 12| 15| 16 16 16 16 | 16
JW 15.66 21 2| 3| 4 4 81| 13 15 16 16 | 16
JW* 15.83 21 2] 4| 4 7| 13| 14 16 16 16 | 16
S 16.23 || 16 | 16 | 16 | 16 | 16 | 16 | 16 16 16 16 | 17
S* 16.22 || 16 | 16 | 16 | 16 | 16 | 16 | 16 16 16 16 | 17
Uo 2366 || 16 | 18 | 21 | 22 | 22 | 22 | 22 22 23 24 | 24
Uo* 16.00 || 16 | 16 | 16 | 16 | 16 | 16 | 16 16 16 16 | 16

Table 4.2: Data Encryption Standard, 32 problems, all satisfiable.

In Table 4.2 the data about DES problems is reported. Notice that none
of the configurations is able to solve all the problems in the class. Looking at
the statistics for |S|/|N| in Table 4.1, we see small ratios for these instances,
always less than 0.18. Nevertheless, introducing the IVS heuristic does not
help in speeding up the convergence of any configuration, modulo some minor
improvements on MOMS, Béhm and Jeroslow-Wang. The null impact on SATZ,
is contrasted by a sharp worsening of the UnitieQ heuristic: “U0*” solves 1/3
less problems than the unrestricted “U0” configuration.

In Table 4.3 we report the data about Parity problems. As for the DES class,
none of the configurations is able to solve all the problems in the class. This is
to be expected, since these problems have been shown to be very challenging for
the current state-of-the-art SAT solver. On the other hand, the statistics for the
|S|/|N| ratio in Table 4.1 tell us that the percentage of independent variables is
quite small (13% at most). Indeed, introducing the IVS heuristic helps a little
in speeding up the convergence of some configurations, namely MOMS, B6hm,
Unitie0, but it has a negative impact on Jeroslow-Wang and a null impact on
SATZ configurations. Moreover, the IVS heuristic does not help in solving more
problems (see the Ty column). Parity problems are thus a clear example of how
the IVS heuristic can be successful for some configurations and unsuccessful for
others.

In Table 4.4 the data about BMC problems is reported. In this problem
class (see Table 4.1) the median |S|/|N| ratio is 0.18, and it is higher than the
maximum ratio observed on DES and Parity problems. Nevertheless, with the

2 All the experiments run on a network of identical workstations equipped with PentiumIII
600MHz, 128MB of RAM, and Linux Suse ver. 6.2. SIM is compiled with gcc 2.95.2; time
is measured in CPU seconds.
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Heur || RMS 1| 2| 4| 8|16 | 32 | 64 | 128 | 256 | 512 | T¢

M 1999 || 10 |10 | 12 | 17 | 19| 20 | 20 20 20 20 | 20
M* 20.00 || 12 | 13 |15 | 19| 20 | 20 | 20 20 20 20 | 20
B 1999 || 11 |13 |13 |16 | 20 | 20 | 20 20 20 20 | 20
B* 20.00 || 12 | 15| 20 | 20 | 20 | 20 | 20 20 20 20 | 20

JW 1999 || 13 |16 | 19 | 20 | 20 | 20 | 20 20 20 20 | 20

JWH* 20.00 || 10 | 13 | 15 | 17 | 18 | 20 | 20 20 20 20 | 20

S 1999 || 12 |15 |16 | 18 | 20 | 20 | 20 20 20 20 | 20
S* 1999 || 12 | 15 |16 | 18 | 20 | 20 | 20 20 20 20 | 20
Uo 19.63 || 11 | 11 | 12 |12 | 14| 16 | 18 19 19 20 | 20

Uo* 20.00 || 14 | 17|19 | 20| 20 | 20 | 20 20 20 20 | 20

Table 4.3: Parity, 30 problems, all satisfiable.

Heur || RMS 1| 2| 4| 8|16 | 32|64 | 128 | 256 | 512 | T¢

M 26.11 9|11 |12 |13 | 16 | 16 | 18 19 21 26 | 30
M* 29.71 || 11 |12 |15 |16 | 18 | 19 | 20 24 26 32 | 32
B 25.70 8110|1213 | 16 | 16 | 18 19 21 26 | 30
B* 29.67 || 11 |12 |14 |16 | 18 | 19 | 20 24 26 32| 32

JW 17.10 9| 91011 ] 13| 13| 14 15 17 17| 18

JW* 2858 || 11 |14 |16 | 17 | 18 | 20 | 21 23 25 28 | 32

S 2122 || 10 |12 |12 | 14 | 14 | 16 | 17 17 20 21 | 24
S* 2120 || 10|12 |12 | 14 | 14| 16 | 17 17 20 21| 24
Uo 17.95 91 9|110]12| 12| 13| 14 15 17 18 | 20

Uo* 2196 || 11 |12 |13 |13 | 14 | 16 | 18 18 20 22 | 25

Table 4.4: Bounded Model Checking, 34 problems, all unsatisfiable.

only exception of SATZ scoring, introducing the IVS heuristic helps in solving
more problems (see the Ty column), and also in speeding up convergence (see
the RMS column). The data is in accordance with the good results reported on
similar problems in the literature (see, e.g., [Sht00] and [CFG101]).

Table 4.5 reports about Pretolani instances. On this class we see again some
improvement brought by the IVS heuristic. The distribution of |S|/|N| is con-
centrated in the interval [0.35;0.46] with a median of 0.37. Notwithstanding
the fairly big number of variables left to examine, in at least one configuration,
namely Béhm, introducing the IVS heuristic enables to solve more problems
within T¢. In some configurations, namely MOMS, Jeroslow-Wang and Uni-
tie0, the convergence of the configurations featuring IVS is quicker than their
unrestricted counterparts. On the other hand, SATZ performances worsen with
the introduction of IVS. Indeed, SATZ with IVS does not examine all the vari-
ables and this amounts to a loss of accuracy in the selection of the next variable.
Such loss is not compensated by the speed gain obtained by examining an ap-
proximate 40% of the variables only.

We conclude our report with the data about Planning problems in Table 4.6.
From the table we can immediately grasp the inadequacy of non-BCP based
heuristics on this problem class. MOMS, Béhm and Jeroslow-Wang fail to be
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Heur || RMS 1| 2| 4| 8|16 |32 |64 | 128 | 256 | 512 | T¢
M 8.68 4| 5| 5| 5 7 7 8 8 8 9 9
M* 8.76 6| 8| 8| 8 8 8 8 8 8 9 9
B 8.65 31 3] 3| 3 4 ) 6 6 6 6 6
B* 1475 || 11 |12 | 12 | 12 | 12| 12| 12 12 12 12 | 12

JW 1445 (|11 |13 |14 | 14| 14 | 14 | 14 14 14 14 | 15

JWH* 1455 || 13 |14 |14 |14 | 14| 14| 14 14 14 14 | 15

S 12.55 &(10(10 |11 | 11| 11| 11 11 12 13 ] 13
S* 9.15 T 7| 7] 8 8 8 8 8 9 9| 10
Uo 1422 || 10 |11 |13 | 14 | 14 | 14 | 14 14 14 14| 15

Uo* 1466 (| 12 | 13 |14 | 14| 14 | 14 | 14 14 14 15| 15

Table 4.5: Pretolani, 24 problems, 12 satisfiable, 12 unsatisfiable.

Heur || RMS 1| 2| 4| 8|16 |32 | 64 | 128 | 256 | 512 | T¢
M 5.63 0] 2| 3| 4 4 5 5 ) ) 5 7
M* 7.80 0] 2| 5| 5 5 6 6 6 6 7 9
B 2.04 0] 0] 0] O 0 0 2 2 2 2 3
B* 2.33 0} 0] 0] O 0 0 2 2 2 2 3
JW 0.97 0 0] 0] O 0 0 0 1 1 1 1
JW* 0.97 0} 0] 0| O 0 0 0 1 1 1 1
S 2799 || 10 | 11 |13 |17 | 19| 20| 21 24 27 28 | 31
S* 2799 |10 | 11 |13 |17 | 19| 20 | 21 24 27 28 | 31
Uo 27.79 71101019 | 22| 23 | 24 25 26 28 | 30
Uo* 26.92 511116 |20 | 21| 21| 22 22 24 27 | 30

Table 4.6: Planning (BlackBox), 37 problems, 28 satisfiable, 9 unsatisfiable.

really competitive, and the improvements introduced by the IVS heuristic are
quite marginal, with the only exception of MOMS. SATZ and Unitie0 configu-
rations are much more performant, but again the IVS heuristic is not able to
really improve them in any sense.

In Table 4.7 we summarize the results of our experiments in a compact way,
with the following notation. Each line corresponds to a configuration, and the
comparison is between the unrestricted version and the one featuring the IVS
heuristic. There are two blocks of results in the table. The upper block sum-
marizes the results obtained using SIM with chronological backtracking, while
the data in the lower block is obtained using SIM augmented with backjumping
and learning. Each column corresponds to a problem class. To compute the
data in the Table, we use the RMS values for each configuration. Given C(t)
and R = RMS[C(t)] for an unrestricted configuration, we denote with C*(¢)
and R* = RMS[C*(¢)] the corresponding parameters for the same configuration
with the IVS heuristic. With these definitions in mind, a “+4”(resp., “—”) in
Table 4.7 means that R* > R (resp. R* < R), and a “=" means that R* = R.
To quantify how much the RMS changes going from C(t) to C*(t), let P be the
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| Heur | DES | Parity | BMC | Pretolani | Planning |

M + + + + + -
B + + ++ | +++ -
IW + ¥ [+ ++ + =
S — = — —— =
Uo - == + + + + -
M + + + —= +
B + + + - +
IW + - ++ —= +
S — — —_ — =
U0 - + ++ - -

Table 4.7: Evaluation of the IVS heuristic.

total number of problems in the class and r be the ratio

|R* — R|

r=—p

In Table 4.7, given ® € {+, —}, a single “©” means that r < 0.1, a “©®” means
that 0.1 < r < 0.2, and a “© ® ®” means that r > 0.2. For instance, the “+ +”
corresponding to BMC and U0 in Table 4.7 means that U0* is 10% to 20% better
than UO. The upper block of Table 4.7 evidences that both the problem class
and the underlying scoring technique determine the behavior of IVS heuristic,
and the lower block of Table 4.7 evidences that also the backtracking scheme
should be included among the factors that make up for IVS effectiveness.

4.4 Summing up

Overall, on the basis of the results in Table 4.7, we can conclude that whether
IVS improves performances or not strictly depends on the type of problems
considered, on the underlying scoring and selection technique, and also on the
backtracking scheme. Still, according to the data in Table 4.7, IVS introduces
some benefits on average: in the Table there are 40 “+”, and 19 “—7.

Determining whether the heuristic will improve the performances or not is
far from being obvious. The experimental analysis that we presented confirms
this intuition. Nevertheless, the potential of the heuristic weighted against its
simplicity is fairly big, and this suggests that, whenever possible, IVS should be
included in the experimental assessment of SAT instances.



Chapter 5

Testing the efficiency of
improvements

As already mentioned, in the last years, we have seen a tremendous boost in the
performances of SAT solvers, such boost mostly due to Chaff [MMZ*01]. Chaff
owes its efficiency to four components: (7) efficient data structures, fitted to the
look-ahead and look-back methods implemented, (i¢) an innovative look-back
method, (i7¢) an innovative heuristic, based on the information extracted from
the look-back phase, and (iv) low-level optimizations of the code. ZChaff (Chaff
latest incarnation) was the best among the complete SAT solvers on industrial
benchmarks in the last SAT competitions [SBH02, LS05]. Further, all the other
top-performers in these two categories (with the exception of 2CLS+EQ [Bac02])
were “Chaff-like” SAT solvers, as they incorporated some/most of the ideas
behind Chaff. In this paper, when we speak of modern SAT solvers, we have
in mind a “Chaff-like” engine. It is worth pointing out that the only look-
ahead method implemented by most modern SAT solvers is still the simple,
yet effective, unit clause propagation method, but they all feature far more
sophisticated heuristics and look-back methods.

In this Chapter we investigate the effect of adding a failed literal detection
method to the traditional unit clause propagation method in the look-ahead
component of a modern SAT solver. Failed literal detection was first introduced
in POSIT [Fre95], used extensively, e.g., in SATZ [LA97] and RelSAT [BS97],
and similar techniques led to positive results on real-world instances in [Bac02].
Our analysis is mostly experimental and has been performed using our solver
siIMO modified to incorporate ideas (i) - (#47) above. With these modifications
SIMO is within a factor of 3 slower than zChaff, the remaining gap due to the
absence of low-level code optimizations. We have run our experiments using
several challenging real-world benchmarks. Such instances are either well-known
in the literature or submitted to the SAT 2002 competition. On the basis of the
collected data, we anticipate that:

e enhanced look-ahead based on failed literal detection does not pay off in
modern SAT solvers;

e even assuming we had an oracle answering whether a literal will fail (thus
saving the time necessary to try the literals which will not fail), enhanced

XXXIV
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DLL-SoLvE()
1 do
2 r + LOOK-AHEAD()

3 if r = TRUE then

4 r + CHOOSELITERAL()
5 else

6 r < LOOK-BACK()

7 while r = UNDEF
8 return r

Figure 5.1: Iterative version of DLL algorithm.

look-ahead is not effective;

e even assuming we had an oracle giving us the list of literals which will
fail (thus saving the time necessary to scan the list of literals), enhanced
look-ahead is not effective.

We reached such conclusions by analyzing CPU times, but also, and perhaps
most convincingly, on the basis of CPU independent data such as the total
number of assignments performed by SIMO. Therefore, enhancing the look-
ahead method with powerful deduction techniques seems to be unsuccessful, at
least in the case of failed literal detection and real-world instances.

5.1 Experimenting with look-ahead techniques

In this section we introduce and compare two versions of SiMO: Simo-Up, i.e.,
SIMO in its default configuration, and Simo-Fp, i.e., SIMO enhanced with failed
literal detection. In Subsec. 5.1.1 we briefly describe the implementation of
SIMO, the differences between Simo-Up and Simo-Fp, and the failed literal de-
tection algorithm. In Subsec. 5.1.2 we describe the benchmarks selected for our
analysis and the computing platform on which the experiments have been car-
ried out. Finally, in Subsec. 5.1.3 we show experimental data indicating that the
search space explored by Simo-Fp appears to be smaller than the one explored
by Simo-Up, but Simo-Fp performance is much worse than Simo-Up.

5.1.1 Iterative version of the (modern) SAT solver simo

In order to better understand the modification (in the algorithm) introduced in
this Chapter, we introduce here the “iterative” version of the DLL algorithm
(DLL-SoLVE()). This description introduces the concept of “state of the search”
r (that can be undefined if the formula is not yet satisfiable nor unsatisfiable),
but more important there is the explicit indication of the LOOK-BACK() phase.

Particular emphasis is given to the look-ahead engine, since this is the only
part in which Simo-Fp differs with respect to Simo-Up. The conventions we use
to describe algorithms are those of [CLR98] (pages 4,5).

The main search loop of siM0 is DLL-SoLVE, Fig. 5.1, an iterative imple-
mentation of the DLL method [DLL62]. Inside DLL-SOLVE:
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UNIT-PROPAGATE()
1 r = TRUE
2 while there is {l} and r = TRUE
3  r = Simplify(l)
4 returnr

Figure 5.2: The UNIT-PROPAGATE() phase of the algorithm.

LOOK-AHEAD()
1 r < UNIT-PROPAGATE()
2 if r = FALSE then
3 return FALSE
4 else
5  return FAILED-PROPAGATE()

Figure 5.3: The LOOK-AHEAD() phase of the algorithm.

FAILED-PROPAGATE()
1 for each open atom a
2 r + UNIT-PROPAGATE(a)

3  LOOK-BACK()

4  if r = FALSE then

5 r < UNIT-PROPAGATE(—a)

6 if r = FALSE then return FALSE
7 else

8 r < UNIT-PROPAGATE(—a)

9 LOOK-BACK()

10 if r = FALSE

11 UNIT-PROPAGATE(a)

12 return TRUE

Figure 5.4: The FAILED-LITERAL() phase of the algorithm.
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e LOOK-AHEAD simplifies the input formula and returns FALSE if an empty
clause is deduced, TRUE otherwise;

e CHOOSELITERAL assigns an open literal according to some criterion and
returns TRUE in case no open literal can be found, UNDEF otherwise;

e LOOK-BACK backtracks to a previous open branch in the search tree, and
returns FALSE if such branch cannot be found, UNDEF otherwise.

LOOK-AHEAD, Fig. 5.3, is where the distinction between Simo-Up and Simo-Fp
comes into play: in Simo-Up, lines 2-5 of LOOK-AHEAD are replaced with the
instruction “return r”, i.e., Simo-Up simplifies the formula using unit clause
propagation only; in Simo-Fp, the implementation of LOOK-AHEAD is exactly
as detailed in Fig. 5.3. FAILED-PROPAGATE, in Fig. 5.4, scans all the open
atoms of the formula (line 1). For each such atom a, it tentatively assigns a
to TRUE and performs unit clause propagation (line 2), and then it retracts the
tentative assignment (line 3). If UNIT-PROPAGATE deduces an empty clause,
i.e., the literal a is failed, then FAILED-PROPAGATE tries to assign a to FALSE
(line 5): if even this fails, then it returns FALSE , i.e., it forces backtracking
(line 6). If the propagation of a succeeds, then FAILED-PROPAGATE repeats the
same process for —a (lines 8-11). Notice that, in case —a is failed (line 11),
FAILED-PROPAGATE already knows that a is not, and so there is no need to
check the result of UNIT-PROPAGATE. If there was no atom a such that both a
and —a failed, FAILED-PROPAGATE returns TRUE .

The functions UNIT-PROPAGATE, CHOOSELITERAL and LOOK-BACK called
by the algorithms in Fig. 5.1 are implemented as described in [MMZ*01] and
[ZMMMO1], and detailed in Subsec 2.4.2.

5.1.2 Experimental Setting

The test set that we used for our experimental analysis consists of 483 real world
instances. The benchmarks have been selected considering classical SAT prob-
lems as well as instances submitted to the last SAT 2002 competition [SBHO02].
The benchmarks are divided into 10 families:

Beijing’96 16 instances from the Beijing’96 SAT competition, a mixture of
scheduling [CB94], planning and circuit verification problems;

bmec 78 instances including

¢ 30 instances from CMU described in [BCCZ99),
e 13 instances from IBM, described in [Sht00], and

e 22 “dining philosophers” and 6 “counter” model checking instances
described in [SBH02];

des 28 instances of logic cryptanalysis for security protocols described in [MMO00];

fev 8 instances, encoding the problem of comparing the output of different
adder circuit implementations (see [SBH02]);

fpga 102 instances of FPGA routing problems, including “homer” and “bart”
instances described in [MAAS02];
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fvp-unsat 2.0 22 instances of formal property verification problems;

mediator 4 instances of query optimization problems in complex mediator sys-
tems, described in [Pre02];

miters 25 instances encoding problems of Combinational Equivalence Checking
described, e.g., in [SG99];

sss-sat 1.0 100 instances related to formal property verification of super-scalar
microprocessors;

vliw-sat 1.0 100 instances related to formal property verification of VLIW
microprocessor.

The three families fvp-unsat 2.0, sss-sat 1.0 and vliw-sat 1.0 are collectively
described in [VBO1]. The size of the problems varies considerably, from a mini-
mum of 25 atoms and 60 clauses (an instance in the fev family), to a maximum
of 315,312 atoms and 1,725,384 clauses (an instance in the fpga family), with an
overall average of 11,520 atoms and 108,229 clauses. To confirm that the test set
is indeed challenging for modern SAT solvers, we used zChaff [MMZ%01], the
winner of the latest SAT competitions on industrial categories (see [SBH02]).
By running zChaff on the test set we obtained the following results:

e 438 problems can be solved within a time limit of 20 minutes;

e 303 instances are found satisfiable, 135 unsatisfiable, and the remaining
timed out;

e the total run time (excluding timed out instances) is about 5 and a half
hours, with an average run time of about 50 seconds.

All the experiments presented in this paper, including the above exploratory
analysis, have been run on two identical PCs equipped with a Pentium IV 1.8
GHz processor, and 512MB of RAM (DDR 266Mhz), running Linux RedHat 8.0
(kernel version 2.4.18-14). Since this platform cannot normally measure CPU
times below the threshold of 10*usec, to overcome this limitation we patched
the kernel with the tool perfctr contained in the distribution of the package
papi 2.3.1 [DLM*01]. We used a binary distribution of zChaff 2001.2.17 for the
exploratory analysis, and our solver SIMO (version 3.0) to run all the experiments
presented. SIMO has been compiled with gcc 3.2. For practical reasons, a timeout
of 1200 seconds has been placed on the run time of SIMO on each instance.

5.1.3 Simo-Up vs. Simo-Fp

Using the algorithms presented in Subsec. 5.1.1 and the test set presented in
Subsec. 5.1.2 we run the comparison between Simo-Up and Simo-Fp. For both
versions of SIMO, the distributions of the run time and the number of calls to
CHOOSELITERAL (branches), are summarized in Fig. 5.5. The x-axis in both
plots is an ordinal in the range (0-180), and the y-axis is, respectively, CPU
seconds in Fig. 5.5 (left) and number of branches in Fig. 5.5 (right). The total
number of problems visualized is 181 out of 483 since we discarded

e instances in which either Simo-Up or Simo-Fp exceeded the time out, and
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Simo-Fp vs. Simo-Up (CPU times)

¢ Simo-Fp
o Simo-Up
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Simo-Fp vs. Simo-Up (Branches)
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Figure 5.5: Simo-Up vs. Simo-Fp considering CPU time (left) and Branches
(right).

e instances in which the run time of Simo-Up was less than 0.1 seconds.

Both plots in Fig. 5.5 are obtained by ordering the results of Simo-Up and
Simo-Fp independently and in ascending order.

As you can see from Fig. 5.5, the performance of Simo-Fp in terms of CPU
time is clearly worse than the performance of Simo-Up, also considering that
Simo-Up solves another 161 instances (not shown in Fig. 5.5) on which Simo-Fp
times out. On the other hand, if we consider the number of branches, then the
search space explored by Simo-Fp appears to be always, although not consider-
ably, smaller than the one explored by Simo-Up. At first glance, this seems to
point out a specific inefficiency in the implementation of FAILED-PROPAGATE
in Simo-Fp. As we will show in the next section, this is indeed not the case.

5.2 (In)Effectiveness of failed literal detection

In this section we will motivate the experimental results shown in the previ-
ous one, and we will give strong empirical reasons against the effectiveness of
failed literal detection in modern SAT solvers like StMO. To accomplish this,
we introduce a family of oracle-based algorithms, where an oracle is an ideal
procedure that performs some computation for free (see, e.g., [Pap94]). In par-
ticular, we will show how the CPU time of algorithms incorporating oracles can
be calculated starting from the CPU time of Simo-Fp, and then we compare the
performances of such oracle-based algorithms with Simo-Up.

In the following, we use tries as a CPU independent performance measure,
instead of branches. The number of tries is the number of times that a literal is
assigned a value, for whatever reason, be it a choice of the heuristic, a unit literal,
a failed literal, or a tentative assignment performed during FAILED-PROPAGATE.
Clearly, the number of branches is always less than (or equal to) the number
of tries. As we will see, tries are more informative than branches as a CPU
independent performance measure, because most of the overall run time of the
solver is spent on assigning literals (as also reported in [MMZ*01]).

This point is confirmed also by our experiments (not reported in details
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here), where the correlation between CPU time and tries is higher than the
correlation between CPU time and branches.

5.2.1 Introducing oracles in Simo-Fp

As we saw in Subsec. 5.1.1, Simo-Fp scans the list of open literals and propagates
each open literal to check whether it fails. We can think of three oracle-based
versions of Simo-Fp, that we call Simo-Fp(TO), Simo-Fp(FO), and Simo-Fp(FRO).
In particular, we assume to have

e in Simo-Fp(TO), an oracle testing whether a literal will fail, thus saving
the time necessary to try the literals which will not be failed;

e in Simo-Fp(FO), an oracle returning the sequence of literals which will fail
in Simo-Fp, thus saving also the time necessary to scan the list of open
literals;

e in Simo-Fp(FRO), an oracle returning the sequence of literals which will
fail in Simo-Fp and their reasons, thus saving also the time necessary to
calculate the reasons of the failed literals.

Since the oracles cannot be implemented in practice, we need to calculate the
performance of the oracle-based versions using the experimental data of Simo-
Fp. In order to accomplish this, we introduce four CPU time counters inside
FAILED-PROPAGATE (line numbers refer to FAILED-PROPAGATE in Fig. 5.1):

e Total time (7}) is the sum of the run times of each call to FAILED-
PROPAGATE.

e Time spent on failed (T}) is the sum of the run times spent to perform
literal propagations when the literals are failed (lines 2-5 and lines 8-11,
when the tests on lines 4 and 10 are successful, respectively).

e Time wasted on failed (T,) is the same as above, but when the literals
are not failed (lines 2-3 and lines 8-9, when the tests on lines 4 and 10 are
not successful, respectively).

e Time spent on reason (7)) is the sum of the run times spent to calculate
the reason of each failed literal when the literal is failed (lines 2-3 and
lines 8-9 when the tests on lines 4 and 10 are successful, respectively).

Let T be the CPU time of Simo-Fp, and T'(*) be the CPU time of Simo-Fp(*).
The performance of the oracle-based algorithms can be calculated as follows:

T(TO) = T-T,
T(FO) = T-T;+T,
T(FRO) = T-T;+T,—T,

Notice that T(FRO) = T(FO) — T.,.
To calculate the tries of the oracle-based versions of Simo-Fp we introduce
four more counters (still with reference to FAILED-PROPAGATE in Fig. 5.1):

e Total tries (IVy) is the sum of the tries performed in each call to FAILED-
PROPAGATE.
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e Tries spent on failed (N;) is the sum of the tries spent to perform literal
propagations when the literals are failed (the tries performed by UNIT-
PROPAGATE in lines 2,5 or 8,11 when the literal is failed).

e Tries wasted on failed (N,,) is the same as above, but when the literals are
not failed (the tries performed by UNIT-PROPAGATE in lines 2 or 8 when
the literal is not failed).

e Tries spent on reason (N,) is the sum of the tries spent to calculate the
reason of each failed literal when the literal is failed (the tries performed
by UNIT-PROPAGATE in lines 2 or 8 when the literal is failed).

Let N be the number of tries performed by Simo-Fp, and N(*) the number of
tries performed by Simo-Fp(*). The number of tries performed by the oracle-
based algorithms can be calculated as follows:

N(TO/FO) = N-—N,
N(FRO) = N-—N;+N,-N,

Notice that N(TO) = N(FO), so we do not need two distinct measures for the
tries of Simo-Fp(TO) and Simo-Fp(FO).

5.2.2 Simo-Up vs. Simo-Fp(*)

Considering the oracles presented in the previous Subsection, we can enrich
the comparison between Simo-Up and Simo-Fp with the data of Simo-Fp(TO),
Simo-Fp(FO), and Simo-Fp(FRO). For all such real and oracle-based versions of
SIMO, the distributions of the run time and the number of tries are summarized
in Fig. 5.6. The layout of the plots, as well as the selection of the data to
show, follows the same guidelines of Fig. 5.5. By looking at Fig. 5.6 we can
immediately conclude that aggressive failed literal detection is bound to be
ineffective, both in terms of run time and, more interestingly, also in terms of
search space explored. The only version of Simo-Fp that can barely compete
with Simo-Up is Simo-Fp(FRO), the version of Simo-Fp embodying the most
powerful oracle presented in Subsec. 5.2.1. In spite of its power, the number of
tries performed by Simo-Fp(FRO) is, on average, only about 80% of the number
of tries performed by Simo-Up. As we can deduce from the plots, Simo-Fp
performances are influenced by two major factors:

(7) the time (and the tries) spent to check whether a given literal is failed or
not, and

(#4) the time (and the tries) spent to calculate the reasons of failed literals.

By looking at Fig. 5.6 (right) we can see two order-of-magnitude gaps in the
number of tries: one between Simo-Fp and Simo-Fp(TO/FO), which confirms
point (7), and one between Simo-Fp(TO/FO) and Simo-Fp(FRO), which confirms
point (7).

In the following we concentrate on tries as a performance measure. The
explanation for the performance gap between Simo-Fp and Simo-Fp(TO/FO)
lies in the fact that FAILED-PROPAGATE, on a formula with N atoms, performs
O(N?) tests along each path of the search tree. Moreover, each test involves
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Figure 5.6: Simo-Up, Simo-Fp and oracle-based versions of Simo-Fp, considering
CPU time (left) and Tries (right).

Benchmarks
Family Sat | Tot At# Cl#
Beijing-1996 8 8 8,226 53,390
bmc 14 30 | 10,466 52,995
des 7 7 3,285 20,539
fev 0 3 1,324 3,819
fpga 10 30 | 32,612 | 194,786
fvp-unsat.2.0 0 5| 1,468 | 15,206
mediator 2 2 | 561.50 12,086
miters 31 12| 2261 6,119
sss-sat.1.0 79 79 5,022 51,043
vliw-sat.1.1 5 5 | 20,780 | 284,509

Table 5.1: Data for each benchmark family.

a round of unit propagation which performs O(N) tries. The total complexity
of failed propagation along a single path is therefore O(N?) tries. Considering
that the percentage of tests that yield a failed literal propagation is always
less than 5% and about 0.2% on average, the gap between Simo-Fp and Simo-
Fp(TO/FO) grows as O(N?). The reason of the performance gap between Simo-
Fp(TO/FO) and Simo-Fp(FRO) is explained by the fact that in order to calculate
the reason of a failed literal, Simo-Fp(TO/FO) has to pursue the “wrong” branch
till it generates a contradiction. This involves one assignment plus several unit
propagations: in our test set, such propagations cost about 160 tries on average.

To complete our experimental analysis, we need to confirm that the cumu-
lative results of Fig. 5.6 are true also of each single family, i.e., there are no
compensation effects among different families of benchmarks. In Tables 5.1 and
5.2 we present the data regarding Simo-Up, Simo-Fp and the oracle-based ver-
sions of Simo-Fp. Each row of the Tables contains data about a single family
among those detailed in Subsec. 5.1.2. For each family we report: in Table 5.1
the number of benchmarks left in the family after instances have been filtered
out as described in Subsec. 5.1.3 (column Tot); the number of satisfiable in-
stances (column Sat); the average number of atoms and clauses (columns At#
and Cl#, respectively); in Table 5.2 the total number of tries performed by
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siMo Tries (x1000)

Family Up Fp Fp(FRO) | Fp(TO/FO)
Beijing-1996 1,151 4,475,504 113 5,141
bme 95,253 | 5,006,227 33,669 290,623
des 3,073 85,967 786 13,554
fev 1,636 168,740 786 2,814
fpga 10,326 960,441 9,232 48,375
fvp-unsat.2.0 8370 1,047,241 5,438 52,900
mediator 3,689 22,472 1,289 12,833
miters 27,398 | 2,505,136 23,478 72,405
sss-sat.1.0 75,227 | 17,553,074 56,333 601,287
vliw-sat.1.1 242 2,657,969 127 8,374

Table 5.2: Simo-Up, Simo-Fp and oracle-based versions of Simo-Fp, considering
Tries arranged by benchmark family.

Simo-Up, Simo-Fp, Simo-Fp(TO/FO) and Simo-Fp(FRO) divided by 1,000. No-
tice that clauses and atoms statistics have been rounded to 1, and tries statistics
have been rounded to 1,000. Although we cannot show here the complete data,
compensation effects are absent also when looking at single instances in each
family. In other words, there is no single instance in our test set on which Simo-
Fp(TO/FO) performs less tries than Simo-Up or Simo-Fp(FRO), while on all the
instances Simo-Fp(FRO) performs less tries than Simo-Up.

5.2.3 Ineffectiveness of failed literal in a modern SAT solver

All the points we made so far might explain some of the deficiencies of failed
literal propagation, but they still do not explain why Simo-Fp(TO/FO) loses the
comparison with Simo-Up. Considering the implementation of SIMO, as shown
in Fig. 5.1, it is easy to see that the solver is parametric on UNIT-PROPAGATE,
CHOOSELITERAL and LOOK-BACK. In particular, while the efficient imple-
mentation of UNIT-PROPAGATE is not likely to interfere negatively with the
performances of Simo-Fp, the same is not true for CHOOSELITERAL and LOOK-
BACK. Therefore, in order to understand the impact of CHOOSELITERAL and
LOOK-BACK we introduce four more versions of SIMO:

Simo(R)-Up and Simo(R)-Fp are obtained, respectively, from Simo-Up and
Simo-Fp by substituting the Chaff-like heuristic with a random one; in
Simo(R)-Up, Simo(R)-Fp and its variants Simo(R)-Fp(*) CHOOSELITERAL
chooses a literal uniformly at random from the set of open literals at each
branch.

Simo(CR)-Up and Simo(CR)-Fp are obtained from Simo(R)-Up by substitut-
ing the advanced learning technique with a straightforward chronologi-
cal backtracking routine; in Simo(CR)-Up, Simo(CR)-Fp and its variants
Simo(CR)-Fp(*) LoOK-BACK always backtracks to the latest open branch
node, irrespective of whether the branch caused the conflict or not, and
learning is disabled, i.e., no clauses are ever added to the initial set.

Further, we selected about one hundred instances from the initial test set of
483 described in Subsec. 5.1.2 by considering all the benchmarks that Simo-Fp
solved in less than 10 seconds. The resulting test set contains about 50% of
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Figure 5.7: Simo(R)-Up, Simo(R)-Fp and oracle-based versions of Simo(R)-Fp
(top); Simo(CR)-Up, Simo(CR)-Fp and oracle-based versions of Simo(CR)-Fp
(bottom); CPU times (left) and Tries (right).

satisfiable formulas, and about 10% of formulas that could not be solved by
the fastest of the four versions of SIMO described above. The results presented
hereafter are preliminary in the sense that we did not run multiple instances of
the randomized algorithms.

In Fig. 5.7 we present the results obtained by running Simo(R)-Up, Simo(R)-
Fp, Simo(CR)-Up and Simo(CR)-Fp on the reduced test set. The results are
arranged into four plots, where each set of dots represents the runtime (resp.,
tries) distribution of a particular version of siMo. Considering Fig. 5.7 (top
row) we can observe that Simo(R)-Up is still superior to Simo(R)-Fp: on average,
Simo(R)-Fp performs one order of magnitude tries more than Simo(R)-Up, and
it is barely competitive in terms of CPU. To this, we must add that Simo(R)-Fp
times out on 15 instances, while Simo(R)-Up can solve an additional 8. On the
other hand, Simo(R)-Fp(TO/FO) is very close to the performances of Simo(R)-
Up: Simo(R)-Fp(TO/FO) performs, on average, about 50% of the number of tries
of Simo(R)-Up, and Simo(R)-Fp(TO) is about a factor of 6 faster than Simo(R)-
Up. Therefore, although the real version of Simo(R)-Fp does not show any
real advantage over Simo(R)-Up, the least powerful of the oracles introduced
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in Subsec. 5.2.1 is sufficient to yield a substantial improvement. Considering
Fig. 5.7 (bottom row) we can observe that Simo(CR)-Fp dominates Simo(CR)-
Up: on average, Simo(CR)-Fp performs about 50 times less tries than Simo(CR)-
Up, and it is about 500 times faster. Moreover, Simo(CR)-Up times out on 64
instances, while Simo(CR)-Fp can solve an additional 30.

The preliminary results presented in Fig. 5.7 point out that (¢) the look-
back based heuristic and (i7) the advanced look-back techniques implemented
in Simo-Up are the major causes of the ineffectiveness of failed literal detection.
The fact that failed literal detection per se appears to be an effective tech-
nique is witnessed by the comparison between Simo(CR)-Up and Simo(CR)-Fp.
Nevertheless, the addition of a clever look-back technique can change this result
dramatically, as witnessed by the comparison between Simo(R)-Up and Simo(R)-
Fp. Our current explanation of this, is that the look-back schema implemented
in SIMO shadows the effects of failed literal propagation. Intuitively, even though
Simo(R)-Up may assign failed literals late in the search tree, its look-back engine
will assign the negation of the failed literals and place them at the proper level
in the search stack. Although we do not have yet a precise intuition about the
underlying phenomena in the case of the heuristic, by contrasting the results
of Simo(R)-Up and Simo(R)-Fp with those presented in Subsec. 5.2.2, it is clear
that also the implementation of CHOOSELITERAL is playing a major role in the
ineffectiveness of failed literal detection.

5.3 Summing up

Concluding, the Chapter presented strong empirical evidence that enhanced
look-ahead based on failed literal detection does not pay off in modern SAT
solvers, at least in the case of real-world problems. In particular we showed
that

e the number of tries performed by Simo-Fp is, on average, about three
orders of magnitude bigger than the number of tries performed by Simo-
Up;

e the number of tries performed by Simo-Fp(TO/FO) is, on average, about
one order of magnitude bigger than the number of tries performed by
Simo-Up;

e the number of tries performed by Simo-Fp(FRO) is, on average, only about
80% of the number of tries performed by Simo-Up.

The CPU times of Simo-Fp(*) and Simo-Up share a similar behavior.

On the basis of the preliminary results shown in Subsec. 5.2.3 we conjecture
that look-back based heuristics and advanced look-back techniques account for
the ineffectiveness of Simo-Fp.

Apart from the results on the case study related to failed literal that we have
presented, in this Chapter we have introduced a new methodology for testing if
a technique (before optimally implement it) have the potential to improve the
performances of an algorithm if enhanced with the technique.
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Chapter 6

Introduction

In the previous part we have seen how to encode the problem of Safe Planning
into a propositional formula, i.e., to decide if a planning is also “safe” w.r.t. some
given safety properties via decision about the satisfiability of a propositional
formula. However, this is not the only possible approach.

We can reduce the Safe Planning problem to a decision of a formula that
involves both propositional logic and (a limited form of) linear constraints. We
focus here on the case where the action description D is deterministic.

The idea is quite simple. Remember that if A is an action symbol, the
atom A; expresses that A is among the elementary actions executed at time
i. Then, instead of assuming that in #rP there is a propositional variable A;
for each ground action symbol A, we assume that in ¢rP there is a constraint
of the type A = i for each ground action symbol A. This means that now
trP can not be longer assumed to be a propositional formula, but now is a
“Temporal Reasoning” formula or, a formula in Separation Logic (SL)! [Pra77].
The approach has a disadvantages w.r.t. the one that uses only propositional
logic: An action can be executed only once, because only one of the constraints
A = i can be true in the different #rP. Nevertheless, the problem can be
overcome by introducing, instead of a unique constraint, a bunch of constraints
(for the same A), 49 = 0,4, =1,...,4; = i,...,A, = n. Are also possible
constraints that induce some “orders” among the actions, e.g., A — B <= k,
that encodes the fact that the action A must be executed at most k time units
after the execution of B.

The final formula to check is

Io AN (A; = i) AN trP = [ (6.1)
where, now,

e Iy and [a]™ are propositional formulas

e A" trP is a formula in SL

“w__»

1SL has also other connectives other than as we will see later. Moreover, constraints
in the form A = 4 are not exactly SL constraints: We need to add a slack variable Zp in order
to create the SL constraint A — Zp = 3.

xlvii
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This approach boils down to checking the satisfiability of a formula in Tem-
poral Reasoning (or in Separation Logic) in order to check if a planning is also
safe under given conditions.

With respect to the approach of checking a formula expressed in pure propo-
sitional logic, obviously there are both advantages and disadvantages.

Clearly, an SL formula is strictly more expressive w.r.t. a propositional
formula, and the “encoding” most likely result in a more compact formula. On
the other hand, very specialized and efficient solver for propositional reasoning
exist, and they have had a tremendous boost in the last years; while decision
procedures for propositional logic enhanced with linear arithmetic is not so a
mature area.

In order to possibly overcame the last point, we have chosen an approach to
solve SL formulas mainly based on reasoning on propositional formulas (SAT-
based reasoning).

6.1 Working example

In order to better understand and appreciate all the definitions and optimiza-
tions that we will present in the next Chapter, we introduce here a working
example, borrowed from the FV community, and we will use it in the next
Chapter.

Example 1 In [BLS02], the case-study is introduced of a bounded model check-
ing problem for the memory unit of the Motorola FEIf microprocessor. The unit
1s initially modeled as 20K lines of VERILOG, with 80 integer-valued variables
and 70 propositional atoms. After some translation stages, the problem is re-
duced to checking satisfiability of a formula in SL, a fragment of which, call it
oE1f, looks like this:

(p1 \% _|(VP7‘6d = IRR))
(—p1 V VPred = Igg)

(—|p2 V VPred < Iggr + 1)
(p2 V—(VPred < Igrg + 1))
(p3 V pa)

(p3s V —ps V = Venl’ = Venl)
(ps V = (VenI’+ 2 = Venl))
(—ps V Venl’+ 2 = Venl)

>>>>> > >

In the above formula, VPred, Igrgr, Venl, Venl’ are variables and py, pa, p3,
p4, ps are propositional letters. VPred < Igrr + 1 is a constraint, and ps and
—(VenI’+ 2 = Venl) are literals. *



Chapter 7

From DLL to a decision
procedure for TR

In this Chapter we will see how to turn a decision procedure for DLL into a
decision procedure able to decide temporal reasoning formulas, or Separation
formulas (formulas in Separation Logic, SL).

In the rest of this part, without loss of generality we will speak only of SL
and SL formulas.

We will introduce same necessary theoretical background about SL, and then
we will present a decision procedure for this logic.

7.1 Separation logic

7.2 Syntax

Let V and P be two disjoint sets of symbols, called variables and propositional
atoms respectively. A constraint is an expression of the form x — y p< ¢ where
z,y € V, <€ {<,<,>,>,=,#} and ¢ is a numeric constant. The notations
x>y +cand z — ¢y will also be freely used in place of z —y < ¢c. An atom
is either a constraint or a propositional atom. A formulae is a combination of
atoms via the unary connective “~” for negation and the n-ary connectives “A”
and “v” (n > 0) for conjunction and disjunction respectively. We will write
T and L for the empty conjunction and the empty disjunction respectively. A
literal is either an atom or its negation. If a is an atom, then @ abbreviates —a
and =a stands for a.

7.2.1 Semantics

Let the set D (domain of interpretation) be either the real or the integer num-
bers. An assignment is a total function mapping variables to D and proposi-
tional atoms to the truth values FALSE and TRUE.

Let o be an assignment and ¢ be a formula. Then o | ¢ (o satisfies a
formula ¢) is defined as follows

o=z —ywcif and only if o(z) — o(y) ¢,

xlix
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o = p with p € P if and only if o(p) = true,
o = —¢ if and only if it is not the case that o = ¢,
o = (A, ¢;) if and only if for each ¢ € [1,n], 0 = ¢;, and
o = (ViL,¢;) if and only if for some ¢ € [1,n], 0 |= ¢;.
If o |= ¢ then o will also be called a model of ¢. We also say that

e aformula ¢ is satisfiable if and only if there exists an assignment satisfying
it;
e a formula ¢ is valid if and only if every assignment satisfies it;

e two formulae ¢ and v are logically equivalent if and only if the formula

(= V1h) A (¢ V —p) is valid.

Here we deal with deciding whether a formula is satisfiable or not in the given
domain of interpretation D. Notice that the satisfiability of a formula depends
on D eg.z—y > 0Ax—y < 1lis clearly satisfiable if D is IR but unsatisfiable if
D is Z. However, the problems of checking satisfiability in Z and IR are closely
related and will be treated uniformly almost always. Therefore, from now on,
we will drop the distinction, and we will introduce it back only when needed.

Example 2 Consider Example 1. ¢giy is satisfiable, and a model is 0 =
{p1 — true, VPred — 12,Ipp — 12,ps > true,pz — true,ps — true,ps —
true, Venl — 10, VenI’— 8}. *

7.2.2 Valuations

A wvaluation is a finite set p of literals such that for each atom a, if a € y then
—a ¢ p. In the following if p is a valuation, then by u we also denote the formula
Aiepl. Context will make clear what is intended. Moreover, we say that

1. a valuation p propositionally entails a formula ¢ if (—pV ¢) can be proved
in propositional logic;

2. two formulae are propositionally logically equivalent if one formula propo-
sitionally entails the other, and vice versa.

The following result shows the importance of valuations.

Theorem 1 A formula ¢ is satisfiable if and only if there exists a valuation p
such that

1. p is satisfiable,
2. all atoms occurring in p also occur in ¢, and

3. p propositionally entails ¢.
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Proof. The right to left direction is trivial. For the left to right direction,
first notice that it is always possible to convert ¢ to an equivalent formula in
Disjunctive Normal Form (DNF). Let S be the set of disjuncts in the DNF.
Then by the semantics of V it follows that ¢ is satisfiable if and only if there is
1 € S such that p is satisfiable. Further, for such u, also the second and third
properties hold.

Given the above result, in order to check satisfiability of a formula ¢, the
issue becomes that of efficiently building a set S of valuations which is proposi-
tionally complete for ¢, i.e. such that the disjunction of the valuations in S is
propositionally logically equivalent to ¢. Given such a set, we can then sepa-
rately check the satisfiability of its elements.

function TSAT (¢,u)
1 if {} € ¢ then return FALSE
if ¢ = () then return SatCheck(u)
if {I} € ¢ then return TSAT(Simplify(l,$),u A1)
I := ChooseLiteral(¢)
return TSAT (Simplify(l,4),u Al) or
TSAT(Simplify(I,8),u Al)

T LN

Figure 7.1: Basic SAT-based decision procedure based on DLL.

The DLL_ENUM algorithm that we have seen in Section 2.5 can be readily
turned into a decision procedure for SL as show in Figure 7.1. Again, the modi-
fications are limited to the case in which ¢ = ). Instead of printing y and uncon-
ditionally returning FALSE, we now return the result of invoking SatCheck(pu),
where SatCheck(p) is a satisfiability procedure for valuations, i.e. it returns
TRUE if p is satisfiable and FALSE otherwise. This procedure clearly depends
on the decidable theory under consideration. As we will see shortly, a satisfia-
bility procedure for SL valuations can be readily built by using the well-known
Bellman-Ford procedure, which runs in polynomial time [CLRS01].

Theorem 2 (Soundness and completeness of TSAT) Let ¢ be a formula. Then
TSAT (¢, T)! returns TRUE if ¢ is satisfiable, and FALSE otherwise.

Proof. It readily follows from Theorem 1, from the soundness and completeness
of the DLL algorithm and from Lemma 2.

It is a well known fact that the Bellman-Ford (BF) algorithm can be used
to check the satisfiability of a finite set @ of constraints of the form z —y < ¢,
see, e.g., [CLRS01]. This is done by first building a constraint graph for Q, i.e.
a weighted directed graph whose nodes are the variables occurring in @) and
having an edge from y to x of weight ¢ for each constraint x — y < cin Q. An
extra node, the source, is also included and is linked to all the other nodes with
edges of weight 0. BF is then used to solve the “single source shortest-paths”
problem. The set of constraints @ is satisfiable if and only if the constraint

1Here we initialize u with T because it is defined as a formula, and not as a set like in
Chapter 2.
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graph for () contains no negative cycles, i.e. cycles with cumulative negative
weight.

Here we show that satisfiability checking of a generic valuation p can be done
efficiently with BF. As a preliminary step, we turn g into an equi-satisfiable set
pS< whose literals are of the form # —y < ¢ or z — y < ¢. This can be done
by deleting all the literals of the form p and —p where p is a propositional atom
and by replacing constraint literals

ey—z > —¢,~(y—z < —c),~(x —y > ¢) with the logically equivalent
constraint x — y < ¢, and

ey—z > —¢(y—z < —¢),~(x —y > ¢) with the logically equivalent
constraint z —y < c.

A further step is needed to transform the valuation y<'< into an equi-satisfiable
set of constraints of the form =z — y < ¢ whose satisfiability can be checked
with BF. If the domain of interpretation is Z, this can be done by replacing
in =< every constraint of the form z —y < ¢ with z —y < ¢’ where ¢ is the
maximum integer strictly smaller than c. It is easy to see that the resulting set
of constraint is satisfiable if and only if << is. If the domain of interpretation
is IR, then we rely on the following result.

Lemma 3 Let QQ and Q' be two finite sets of constraints of the form x —y < ¢
and x —y < c respectively. Let n be the number of variables in Q'. Let p be the
mazimum number of digits appearing to the right of the decimal point in any
numeric constant in QU Q'. If C isxz —y <c, let C< bez —y < c—
Finally, let Q. = {C<:C € Q'}.

QU Q' is satisfiable in IR if and only if QU Q' is satisfiable in IR.

1
10P (nt1)

Proof. The right to left direction is trivial and therefore here we focus on the
left to right direction. In the following, if Q" C Q U Q' is a set of constraints,
by Q. we mean the set obtained from Q" by replacing each constraint C' of the
form xz —y < ¢ with C<. Further, € is mp(lTl).

We proceed by contradiction and assume that @ U @’ is satisfiable while
Q U Q' is not. In this case, there exists a subset Q" of @ U Q' such that

e Q" is satisfiable and QY is not,

° Q’é has the form {z; —zs < ¢1 —e1,22 — 23 < cp —€9y..., Ty — 1 <
¢m — em }, where each e; is either 0 or ¢, and

e in Q'L, there are at least one and at most n constraints for which e; = ¢,
ie. 1<|Q"NQ'| < n.

Q" is satisfiable and QZ unsatisfiable imply >i* | ¢; > 0 and 357, (¢; — ;) <
0 respectively (notice that it cannot be the case that > ;" ¢; = 0 because
Q"N Q" # 0 and Q" has to be satisfiable by hypothesis). Since > 1" ¢; > 0,
then 31", ¢; > 155. But then we have a contradiction, because

E;ll(ci —e;)

m m
D ie1 G = D
Dim1 € — nE
D G~ Tom
1 _ 1 m
107 107 ntl

o
)
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Notice that the application of the above result requires, if the domain of inter-
pretation is IR, to determine the values of n and p which in turn depend on pu.
The next result shows that the values for n and p can be computed beforehand
and once and for-all, on the basis of the input formula ¢.

Theorem 3 Let ¢ be a formula with n variables. Let p be the mazimum number
of digits appearing to the right of the decimal point in any numeric constant in
¢. Let p be a valuation whose atoms occur in ¢. The valuation p is satisfiable in
IR if and only if the valuation obtained from p<< by replacing each constraint

x—y<cwithx—y§c—10p(lTl) is satisfiable in IR.

Proof. Clearly, u is satisfiable in IR if and only if << is satisfiable in IR.
The thesis trivially follows from Lemma 3 once we observe that, given that the
atoms in p occur in ¢,

e the number of variables in =< is less than or equal to n and

e the maximum number of digits appearing to the right of the decimal point
in any of the numeric constants in 4=>< is less than or equal to the maxi-
mum number of digits appearing to the right of the decimal point in any
of the numeric constants in ¢.

The above results allow us to use BF in order to check the satisfiability of any
valuation. Given a valuation p with n variables, BF runs in time O(n X |u|),
and is the best known method for this task (see [CLRSO01]). Further BF has the
following advantages, in the case the valuation p is unsatisfiable:

e each negative cycle in the constraint graph G corresponds to a minimal
(with respect to set inclusion) unsatisfiable subset of u, and

e assuming there are more than one negative cycles in G, and that R is the
corresponding set of reasons (where a reason if a set of constraints involved
in a negative cycle), it is easy to modify BF (i) in order to return the
“best” reason under given conditions among those in R, and (i7) without
modifying its overall complexity O(n x |u|).

Example 3 Once again, let us consider Example 1. Assume, moreover, that
ChooseLiteral simply returns the first atom in lexicographical order. Then here
is how TSAT (¢pgif,T) works:

1. since there are no unit clauses, p1 is chosen and p = {p1};

2. after Simplify(p:,9E1r) is executed, the second clause has become unit since
—p1 has been removed from it; therefore VPred = Igg is detected as ap-
pearing in o unit clause and added to p;

3. same as Items 1 and 2, but with p» and VPred < Igrg + 1; now p =
{p1, VPred = IgrR,p2, VPred < Igg + 1};

4. again, there are no unit clauses, therefore ps is chosen and added to u;

5. after Simplify(ps,dE1r) is executed, no unit clauses are left, so ps is chosen
and added to p;
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6. lastly, VenI’+ 2 = Venl is detected in a unit clause and added to p which
is now {p1, VPred = Igg,p2, VPred < Igp + 1,ps,ps, Venl’+ 2 = Venl};

7. ¢riy has now become empty; SatCheck is called and a model of p, which
also is a model of ¢riy, is found; for instance, the model in Example 2.

*



Chapter 8

The TSAT++ solver

In this Chapter we present TSAT++ [ACGMO05, ACGM04, ACG*04], our solver
for SL. TSAT++ is the new version of our solver Tsat, both designed and imple-
mented at MRG-Lab (now STAR-Lab and AI-Lab) at DIST. In the rest of the
Chapter we present some key optimizations we have implemented of top of the
basic version of the solver, prove their soundness and completeness properties,
and show experimentally their effectiveness.

8.1 Optimizations

The clear separation between the enumeration of valuations propositionally en-
tailing ¢ and the check of their satisfiability is the key feature of the SAT-based
approach to building decision procedures. However, the naive application of
this idea may suffer from the generation of exponentially many unsatisfiable
valuations. The reason of this inefficiency is that the SAT solver is not aware
of the properties of the background theory, in our case SL. To illustrate this
point, let us again consider the problem of Example 1. If V_Pred; = Irg is
assigned to TRUE, then it is pointless to assign FALSE to V _Pred; < Igrg +1 as
this valuation (or any extension thereof) will be later found to be unsatisfiable
and hence rejected by SatCheck.

As a matter of fact most optimizations to the basic procedure that have been
proposed in the literature aim at preventing the generation of unsatisfiable (and
hence useless) valuations. In this section we describe four optimizations that—
as shown in Section 8.3—make TSAT++ the fastest decision procedure for SL
on a wide range of benchmark problems.

8.1.1 IS, Pre-processing

To reduce the enumeration of unfruitful valuations at a reasonable price, [ACG99]
introduced the so called IS,, pre-processing. The name stands for Inconsistent
Subsets and the subscript number represents the size of the subsets sought for.
Naively put, if P is the set of constraint literals occurring positively in the input
formula, IS, checks the satisfiability of all the valuations P’ subset of P such
that |P'| < n: For each unsatisfiable subset P’, the clause V;cpl is added to
the input formula before calling the TSAT procedure.

Iv
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Although IS,, can be exponential in general, for each fixed n polynomially
many subsets of cardinality n exists, and if satisfiability checking is done in
polynomial time the resulting procedure runs in polynomial time.

For a given value of n, it also makes sense to generalize the idea in order to
check the satisfiability of sets P, with |P| < n, of literals whose atom occurs in
the input formula. To ease the presentation, we restrict to the case in which n =
2. The generalization of IS, works as follows: for each unordered pair {c;,c;}
of distinct constraints appearing in ¢ such that they involve the same variables,
all possible pairs of literals built out of them are checked for satisfiability.

The resulting optimized version of TSAT is given in Figure 8.1.

function TSAT _I1.S5(¢)
1 let ¢0 =T
2 foreach unordered pair of constraints {c;,c;} in ¢
3 involving the same variables,
4 if SatCheck(c; A ¢;)=FALSE then ¢ := ¢ A (—¢; V —¢;)
5 else if SatCheck(—c¢; A ¢;)=FALSE then ¢y := ¢g A (¢; V —¢;)
6 else if SatCheck(c; A —¢;)=FALSE then ¢g := ¢o A (—¢; V ¢;)
7 else if SatCheck(—¢; A —¢;)=FALSE then ¢o := ¢o A (c; V ¢;)
8 return TSAT((¢o A ¢),T)

Figure 8.1: IS, pre-processing.

Theorem 4 (Soundness and completeness of TSAT_1S,) Let ¢ be a formula.
Then TSAT_1Ss(¢) returns TRUE if ¢ is satisfiable, and FALSE otherwise.

Proof. By Theorem 2, since ¢ is logically valid and therefore ¢ and ¢g A ¢ are
equivalent.

Example 4 Consider Example 1 once more. After the pre-processing step of
TSAT_ISs(¢rif), the clauses

—(VPred = Irg) V VPred < Iggp + 1

and
—(VenI’= Venl) V —~(Venl’+ 2 = Venl)

are added to ¢giy. These added clauses allow for more pruning while descending
the search tree.

Consider Example 3. In TSAT_ISs(¢ris), choosing pi forces VPred = Irp
by unit propagation; but now, thanks to the clause added by ISy, this also forces
VPred < Irg + 1, which in turn forces po. TSAT (¢miz,T) on the other hand,
had to branch on p-. *

1S, is a simple way of guiding the generation phase by taking into account
the structure of the constraints in the input formula. IS5 has been proved
to speed-up the search, especially on randomly generated problems such as
the Disjunctive Temporal Problems (DTPs), which are made of binary clauses
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containing constraints only (cf. Section 8.3.1). In that case, the effectiveness of
the technique is dramatic, since adding more binary clauses, which is what 1.5
does, paves the way to detect and propagate more unit clauses once a literal has
been selected by ChooseLiteral.

8.1.2 Early Pruning

An alternative approach that aims to limiting the generation of unsatisfiable
valuations is based on the idea of checking the valuations while they are gener-
ated by TSAT. This technique is called early pruning (EP) and relies on the
fact that no unsatisfiable valuation can be extended into a satisfiable one by
adding more constraints. EP can be readily incorporated in TSAT as shown in
Figure 8.2.

function TSAT_EP (¢,u)
1 if {} € ¢ then return FALSE
if ¢ = () then return SatCheck(u)
if {I} € ¢ then return TSAT _EP (Simplify(l,¢),u A1)
if SatCheck(p)=FALSE then return FALSE
I := ChooseLiteral (¢)
return TSAT _EP (Simplify(l,4),u A1) or
TSAT_EP(Simplify(1,¢),u A )

O UL W N

Figure 8.2: TSAT with early pruning.

Theorem 5 (Soundness and completeness of TSAT _EP ) Let ¢ be a formula.
TSAT_EP (¢,T) returns TRUE if ¢ is satisfiable, and FALSE otherwise.

Proof. By Theorem 2 we know that TSAT is sound and complete. Now, first
notice that TSAT_EP only differs from TSAT in that one more recursion base
case, possibly returning FALSE, has been introduced at line 4. This fact ensures
soundness of the function: if TSAT finds no model of ¢, neither will TSAT _EP.

As far as completeness is concerned, assume by contradiction that a satisfi-
able valuation p is found by TSAT, which is not found by TSAT_EP. By the
above consideration, this means that a subset of u, call it x4, must have been
reached by TSAT _EP and rejected. This means that u' is unsatisfiable and p,
a superset of it, is satisfiable, which is contradictory.

Example 5 Consider Example 1, TSAT_EP as in the Figure, and assume
ChooseLiteral return the first literal that appears in the formula. Then,
TSAT_EP (¢gi5,T) picks and adds to p, in turn, p1, VPred = Irr and —ps.
The last choice forces —=(VPred < Igg + 1) into p by unit propagation, but
clearly the valuation is now unsatisfiable. Therefore backtracking happens and
both =(VPred < Igg + 1) and —ps are removed from u. ChooseLiteral then
switches to pa and the algorithm goes on as in Example 3.

Notice that in this case TSAT, with the same ChooseLiteral, would have
explored a totally useless portion of the search space, namely checking all models
prefized with the unsatisfiable p detected above by EP. *



CHAPTER 8. THE TSAT++ SOLVER lviii

8.1.3 Model Reduction

A further optimization, called model reduction, is based on the observation
that a valuation p generated by TSAT can be redundant, i.e. there might exist
a valuation u' C p that propositionally entails the input formula. When this is
the case, we can check the satisfiability of u' instead of p. This has the following
advantages:

1. If p and p' are either both satisfiable or both unsatisfiable, then the value
returned by SatCheck is the same. However, checking the satisfiability of
1’ can be easier if we use, e.g., the Bellman-Ford algorithm for this task.

2. If u is unsatisfiable, it may nevertheless be the case that ' is satisfiable: in
this case SatCheck(y') returns TRUE, thereby pruning any further search.

Model reduction can be easily incorporated in TSAT as shown in Figure
8.3. The main difference with respect to TSAT is that the reduced model y’,

function TSAT_MR(¢,u)
1  if {} € ¢ then return FALSE
if $ = () then return SatCheck(ReduceModel (1))
if {I} € ¢ then return TSAT_MR(Simplify(l,¢),u A1)
I := ChooseLiteral (¢)
return TSAT _MR(Simplify(l,$),u A1) or
TSAT _MR(Simplify (I,6),u A )

T LN

Figure 8.3: TSAT with model reduction.

rather than p, is checked for satisfiability. It is assumed that ReduceModel ()
returns a valuation u' C p propositionally entailing the initial input formula.

Theorem 6 (Soundness and completeness of TSAT_MR) Let ¢ be a formula.
TSAT_MR (¢, T ) returns TRUE if ¢ is satisfiable, and FALSE otherwise.

Proof. It suffices to note that, since u’ C u, there are three possible cases: both
' and p are satisfiable, both are unsatisfiable, or y' is satisfiable, but p is not.
In the first two cases, SatCheck(ReduceModel(u)) coincides with SatCheck(u);
in the third case, a satisfiable valuation propositionally entailing the input for-
mula has been found, and the algorithm terminates.

Here again is important to check that, on average, the time spent in reducing
the model does not overwhelm the advantage gained by reducing it. So far, we
have been experimenting with two techniques for reducing models:

Triggering: If 4 contains a literal [ that does not belong to any clause in the
input formula ¢, then p propositionally entails ¢ if and only if u\ {I} does;
therefore I can be safely removed from p. This technique, introduced in
[WW99], is called triggering. Triggering has a linear cost in |y if realized,
e.g. via a simple table of the occurrences of literals in ¢.

Minimization: A better idea is to remove as many redundant constraint lit-
erals as possible. This can be done by recursively eliminating from p one
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constraint literal / at a time such that for each clause C' containing [, there
exists another literal I’ in pUC. Minimization can be done in linear time in
the size of the input formula ¢ provided that a data structure associating
to each literal I the clauses of ¢ whom [ belongs to is available.

Example 6 Consider again ¢giyz; in this case, a possible valuation found by
TSAT MR is u = {p1, VPred = Igg,p2, VPred < Igg+1, Venl’ = Venl, ps, p3, ps,
Venl’+ 2 = Venl}. A reduced version of it, according to minimization, is
' = {p1, VPred = Igg,p2, VPred < Irp + 1,p3,p4,p5, Venl’ + 2 = Venl}, ob-
tained from p by removing the constraint literal VenI’ = Venl. Further, while u
s unsatisfiable, u' is not. *

8.1.4 Best Reason Detection

So far, we have discussed how to extend a SAT solver in order to obtain a decider
for SL, focusing in particular on SAT solvers based on DLL. Our motivation for
this has been that most of the state-of-the-art complete SAT solvers are based
on DLL. However, such solvers extend the basic DLL procedure in different ways
in order to be more effective on different classes of problems. Broadly speaking,
we can divide such solvers in two categories, following the distinction that is
usually made in the SAT competition [LS03]:

e those designed for real-world problems, e.g. zchaff [MMZ*01], the winner
of the last SAT competition in this category. The features of these solvers
are that they have a fast-to-compute heuristics, a simple but efficient
pruning mechanism based on unit-propagation, and a sophisticated back-
tracking mechanism based on back-jumping and learning (see [MMZ101]).

e those designed for solving difficult either randomly generated or hand-
made problems, e.g. kenfs [DD04] and March_eq [HMO04] the winners of the
last SAT competition in these categories. These solvers have a complex-
to-compute heuristics, sophisticated pruning mechanisms significantly ex-
tending unit-propagation, and a simple but efficient backtracking mecha-
nism without learning.

The modifications needed in order to obtain a SAT-based solver for SL can
be done along the lines so far outlined if we start from a solver without back-
jumping and/or learning. Still, in case we want to use a backtracking schema
based on learning, whenever FALSE is returned, a “reason” for the failure has
to be computed. Intuitively, whenever we are backtracking from a valuation
1, a reason is a subset u' of p such that any valuation extending p' will fail.
While backtracking, these reasons u' are used in order to back-jump over the
literals which are not in p'. Further, if the solver uses learning, the clause Vle,ﬂ
is (temporarily) added to the input set of clauses in order to avoid the future
exploration of valuations extending u'.

Thus, in order to use SAT solvers with learning, it is not enough for SatCheck(u)
to return FALSE when p is not satisfiable. Indeed, SatCheck(u) must also com-
pute a reason for such a failure, i.e. an unsatisfiable subset p' of p. One such
set is obviously p itself. However in order to try to maximize the advantages of

INotice that the clauses eventually added by IS, need not be taken into account since
valid.
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learning, it is important that u' be as “small” as possible with respect to some
ordering relation on valuations. We have found useful to focus on some specific
notions of minimality. In particular we will consider valuations

1. minimal under set inclusion,
2. of minimal cardinality, and

3. minimal with respect to the ordering with which p has been built during
the search. A valuation minimal in this sense will be said to be “shallow-
est” in the sequel.

Intuitively, there is no point in returning a reason which is not minimal under
set inclusion: If we unnecessarily include a literal [ in the reason, this may
lead to branch on I, and such branch is bound to fail. Among the reasons
which are minimal under set inclusion, those with minimal cardinality have the
further advantage that, once added to the input formula because of learning,
they prune a larger portion of the search space. Finally, while backtracking
from a valuation p, and even returning a reason p' with minimal cardinality, it
may still be the case that the next branch being explored is deemed to fail. In
fact, p may still contain a shallowest reason.

Example 7 Consider Example 1 once again and assume that the heuristics is
such to first set p1, forcing also VPred = Irgr by unit propagation, then —ps,
forcing —=(VPred < Iggr + 1), and then Venl’ = Venl, ps and ps, this last
one forcing also Venl’+ 2 = Venl. The corresponding valuation {p;, VPred =
Iggr,—p2, 7 (VPred < Igg + 1), Venl’= Venl, p3,ps, Venl’+ 2 = Venl} proposi-
tionally entails ¢giy but is unsatisfiable. The standard procedure detects that
is unsatisfiable, but it backtracks only up to the choice of ps, which is not in-
volved in the unsatisfiability of u; then a whole search branch is explored, which
is totally useless, since the assignment still contains both VPred = Igr and
—(VPred < Igrgr + 1), which are responsible of the contradiction. The same,
even worse, goes for the choice of ps.

On the other hand, if reason detection is enabled, upon detection of the
unsatisfiability of 1, o reason is found, backtracking starts up to a point where
the contradiction corresponding to the reason is solved. In our example, there are
two possible minimal reasons, namely & = { VPred = Irp, —(VPred < Irgr +1)}
and & = {VenI’ = Venl, VenI’+ 2 = Venl}. Both & and &' are minimal under
set inclusion of minimal size. However, £ is the shallowest. Indeed, if the reason
is set to &, backtracking will stop at the choice point where —ps was chosen. Also
notice that, assuming the reason being returned is &', backtracking will stop ot
the choice Venl’ = Venl: However, the following search is bound to fail given
that the valuation will still contain &. *

The above example and discussion seems to point out that a reason of min-
imal size is better than a reason minimal under set inclusion, and that the
shallowest reason is better than a reason of minimal size. Indeed, the shallowest
reason tries to remove as soon as possible the unsatisfiability from the valuation
built so far. However, despite the “smartness” of the reason being returned,
there is no guarantee whatsoever that the tree being explored with a “smart”
reason mechanism will be smaller than the tree explored with another reason
mechanism. As [Pro93a] pointed out, it may be the case that the a-priori known
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fruitless exploration of a branch will lead to a failure and the discovery of a rea-
son causing a long jump to the top of the search stack. To this extent, a simple
implementation of SatCheck(u) returning p as reason whenever p is not satis-
fiable, can turn out to be more effective than other implementations, at least
in some cases. However, trivially, a solver with back-jumping and/or learning
can never explore more nodes than a solver with backtracking, assuming, e.g. a
lexicographic branching heuristics.

The first SAT-based solver for SL using a backtracking schema with learning
has been proposed in [ABC*02]. However, in that paper, there is no indication
about how the reason is computed when SatCheck(y) fails.

8.2 Related work

Several systems tailored for SL, employing different approaches and techniques,
have been built and tested along the years. We now give an overview of them,
highlighting the pros and cons of each one and chronologically reviewing the
techniques introduced by each one.

SK [SK98, SK00]. The procedure SK has been the first dealing with a sig-
nificant fragment of SL. Its main features are the combined usage of forward-
checking, back-jumping and Minimum Remaining Value (MRV) heuristics. For-
ward-checking works by checking whether the valuation built so far entails either
a literal or its negation, for each literal not yet in the valuation. This actually
reduces the search space, at the price of performing a potentially large number
of useless satisfiability checks, namely those for which the check detects satisfi-
ability. SK is also able to detect conflict sets and to improve on backtracking
via a technique similar to back-jumping. MRV is used to choose literals which
appear in disjunctions with the smallest number of unassigned disjuncts—in
the case of the DTP, to which SK is limited, this actually boils down to unit
propagation.

The main difference between SK and SAT-based procedures lies in the way
valuations propositionally entailing the input formula are searched. In fact, SK
is based on syntactic branching: given a disjunction [V I', first [ is added to the
current valuation, and, upon failure, I’ is considered. As explained below, this
type of search may lead to the exploration of search space already explored.

Tsat [ACGY99]. Tsat was the first application of the SAT-based approach to
SL. The system employs a branching schema now known as semantic branching.
Unlike syntactic branching, semantic branching selects a not yet assigned literal
[, and considers in turn the case in which [ is true and the case in which [ is
false. Notice that in the second case, the conjunction of [ with (I V') forces the
assignment of I’ by unit propagation: As already observed in [D’A92], syntactic
branching may lead to redundant exploration of parts of the search space, which
semantic branching avoids. The following example, adapted from [ACG99],
clearly illustrates this issue.
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Example 8 Let ¢ be a formula including the following clauses:

T1—22<3 V z7—x5<20
r1—23<4 V z4—23< -2
To—24<2 V z3—22<1

Let ¢(i,j) denote the j-th disjunct of the i-th disjunction displayed in ¢; for
example, ¢(1,2) is x7—xs < 20. Assume that the dots stand for further (possibly
many) unspecified clauses such that no satisfiable extension of the valuation
{6(1,1), 6(2,1)} eists.

Consider the behavior of syntactic versus semantic branching when
{#(1,1),¢(2,1)} is the valuation built so far. Since no satisfiable extension
of it exists, after some search, failure is necessarily detected; both procedures
backtrack and remove ¢(2,1) from the current valuation.

Now syntactic branching goes on with the valuation {¢(1,1), #(2,2)}, whereas
semantic branching proceeds with {¢(1,1),—¢(2,1)} which leads immediately,
via unit propagation, to {$(1,1),-¢(2,1),$(2,2)}.

Working with the latter valuation rather than with the former may lead to
considerable savings: assume that both procedures extend the wvaluation with
#(3,1); since {¢(1,1),7¢(2,1), #(2,2), ¢(3,1)} is unsatisfiable, semantic branch-
ing immediately backtracks and considers ¢(3,2), whereas syntactic branching
may waste a big amount of resources in the vain attempt of finding a satisfiable

extension of {¢(1,1),4(2,2),$(3,1)}.

*

Semantic branching was shown in [ACG99] to dramatically improve the per-
formance with respect to SK, up to one order of magnitude on randomly gener-
ated DTPs.

In Tsat, also IS, was introduced, gaining to the system another order of
magnitude in performance. This despite the fact that, to enumerate valuations,
Tsat adapted a rather simple SAT solver, due to Béhm [BB92], which did not
employ any modern optimization such as back-jumping and learning. Satisfia-
bility checking used Ip_solve v2.2 [Ber97], which provided a free implementation
of the Simplex method.

CSPi [OCO00]. CSPi features an essentially CSP-based solution schema, im-
plementing an efficient incremental procedure for forward-checking. Semantic
branching is used, showing results that are better than Tsat on small instances,
and comparable on bigger ones. Notice that performance, up to [0C00], was
measured in terms of how many calls to the satisfiability check function were
done, rather than CPU time.

MathSAT [ABC*02]. MathSAT uses SIM [GMTZ01] as enumerator and a hi-
erarchical satisfiability checker employing—in this order—equality reasoning,
the Bellman-Ford method for constraints, the Simplex method for full linear
arithmetic, and inequalities reasoning. The simplest solver is chosen on-the-fly,
thereby obtaining both expressivity and efficiency at the same time. MathSAT
also introduces a number of optimizations, among which preprocessing based
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upon syntactic equivalence, enhanced early pruning, that is, early pruning con-
ditioned upon a heuristic function, and back-jumping/learning based upon rea-
son detection. Also, a form of model reduction is used, based upon triggering.
On randomly generated DTPs, MathSAT improves the performance over Tsat
in terms of CPU time. However, the gap between the two solvers decreases as
the number of variables increases.

Epilitis [TP03]. Epilitis is, so far, the last CSP-based system. Epilitis is re-
stricted to DTPs. It uses semantic branching, incremental forward checking, a
MRV heuristics and size-bounded learning of size n [BM96]. This means that
conflict clauses are retrieved and stored only if they contain less than n literals
(in practice, n = 10 is used). Once stored, a clause is never forgotten. On
randomly generated DTPs, Epilitis shows significantly better performance than
Tsat in terms of CPU time, of up to one order of magnitude.

SEP [SSB02]. SEP is a back-end to the UCLID verification tool [LSB02], em-
ploying the so-called eager variant of the SAT-based approach. Given a formula
¢, rather than enumerating valuations and checking them for satisfiability, SEP
builds a propositional formula ¢’ whose satisfying valuations are ensured to cor-
respond to satisfiable valuations of ¢. The current version of SEP uses Chaff to
find valuations satisfying ¢'.

To the best of our knowledge, SEP is so far the only solver using the eager
SAT-based approach to SL. SEP suffers from the fact that the size of ¢’ can be
exponential in the size of ¢. On the other hand, as reported in [SSB02], if SEP
can get past the encoding phase, the problem is easy to solve for Chaff.

8.3 Implementation and Experimental Analysis

We have implemented the techniques described in Section 8.1 in a system called
TSAT++. The system is based on a C++ implementation of an iterative version
of the algorithm of Figure 7.1 featuring all optimizations presented in Section
8.1. TSAT++ uses two distinct modules for the enumeration of valuations p
propositionally entailing the input formula ¢ and for checking the satisfiability
of u.

In the current version, enumeration is done by a modified version of SIMO
[GMTO03]. SIMO features a number of SAT optimization techniques inspired by
Chaff, among which 1-UIP learning, VSIDS heuristic, and two-literal watching
[MMZT01].

In order to assess the effectiveness of the optimizations described in Sec-
tion 8.1 we have carried out a thorough experimental analysis using TSAT++
and TSAT++plain, on a wide variety of publicly available random, handmade,
and real-world SL-formulae.? TSAT++plain is the same as TSAT++ except
that ISs, early pruning, and model reduction are disabled while best reason
detection is set so to return a reason minimal with respect to set inclusion.
Further, in order to evaluate the effectiveness of our system, we have compared
TSAT++ with a number of rival, publicly available, and state-of-the-art systems

2The classification of the benchmarks in “random”, “handmade”, and “real-world” prob-
lems is borrowed from the SAT competitions [LS03, LS05].
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Figure 8.4: Performance on (a) randomly generated DTPs with 35 real valued
variables and on (b) randomly generated DTPs with 35 integer valued variables.
The dotted plot indicates satisfiability percentage both in (a) and in (b).

specifically designed for (a significant fragment of) SL or with a specialized sat-
isfiability procedure for SL valuations.®> We have thus considered the system
presented in [SK98], that we will call SK; Tsat [ACG99], the predecessor of
TSAT++; CSPi [OC00]; and Epilitis [TP03]. All these systems are restricted
to DTPs (see Section 8.3.1). Moreover, we have considered SEP [SSB02] and
MathSAT [ABC102]. TSAT++ is as expressive as SEP and not comparable to
MathSAT: while MathSAT allows for arbitrary linear constraints as atoms, it
does not allow to consider the integers as domain of interpretation. After a first
run, we have discarded SK, because clearly non competitive with respect to the
others.

Each solver has been run on all the benchmarks it can deal with, not only
on the benchmarks the solver was analyzed on by the authors. In particular,
Epilitis can only handle DTPs with integer valued variables; CSPi and Tsat can
only handle DTPs with real valued variables; MathSAT can handle arbitrary
SL-formulae with real valued variables; SEP and TSAT++ can handle arbitrary
SL-formulae with real or integer valued variables. Each solver has been run
using the settings or the version of the solver suggested by the authors for the
specific class of problems. All the experiments have been run on a Linux box
equipped with a Pentium IV 2.4GHz processor and 1GB of RAM. CPU time is
measured in seconds; timeout has been set to 1,000 seconds.

8.3.1 Disjunctive Temporal Problems

We start our analysis considering randomly generated DTPs as introduced in
[SK98] and since then used as a benchmark in [ACG99, OC00, ABC*T02, TP03].
DTPs are randomly generated by fixing the number k of disjuncts per clause,
the number n of arithmetic variables, a positive integer L such that all the

3Notice that there exists other systems capable of handling SL, e.g., ICS [dMRSRO04],
CVC [SBD02], CVC-Lite [BB04], Verifun [FJOS03]. We did not include these solvers in our
analysis since they are not tailored for SL. MathSAT has been included since it has a specialized
satisfiability checker for SL based on Bellman-Ford.
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Figure 8.5: Performance on real-world problems.

constants are taken in [—L, L]. Then, (i) the number of clauses m is increased
in order to range from satisfiable to unsatisfiable instances, (i¢) for each tuple
of values of the parameters, 100 instances are generated and then fed to the
solvers, and (ii7) the median of the CPU time is plotted against the m/n ratio.
The results for £k = 2, L = 100, and n = 35 are given in Figure 8.4: Plots (a)
and (b) show the performance when the variables are real and integer valued
respectively.

When m/n > 6, TSAT++ clearly outperforms the other systems, including
TSAT++plain: In the peak region, the solver that is closer to TSAT++ in this
domain, namely Epilitis, is a factor of 6 slower on 35 variables (cf. plot (b)). This
is a very positive result, taking into account that Epilitis only works on DTP with
k = 2, and it has been thoroughly tested and optimized on this type of problems
(see [TP03]). All the other systems are about 2 orders of magnitude slower than
TSAT++ in the peak region. Even more important is the fact that according to
some experiments we have done, as the number of variables increases (we have
experimented with problems up to 50 variables), the gap in performance be-
tween TSAT++ and the other systems also increases. For this class of problems
TSAT++ has been run with early pruning and pre-processing enabled, with
the best reason detection optimization set to return shortest reason, and with
model reduction disabled. The role of the optimizations is fundamental for the
performance on this test set: TSAT++ is more than one order of magnitude
faster than TSAT++plain in the peak region.

8.3.2 Real-world problems

We have also carried out experiments on
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1. the 40 post-office benchmarks introduced in [ABC*02], coming in 4 series
(consisting of 7, 9, 11, and 13 instances respectively) of increasing diffi-
culty. In these problems the domain of the interpretation is the set of real
numbers.

2. the 16 hardware verification problems from [SSB02], 9 (resp. 7) of which
are with real (resp. integer) valued variables.

The post-office benchmarks are bounded model checking problems for timed
automata; the hardware verification suite includes scheduling, cache coherence
protocol, load-store unit and out-of-order execution problems. Considering the
results of MathSAT, SEP, and TSAT++ on the post-office problems, our first ob-
servation is that SEP is not competitive on these problems: on 13 of the hardest
instances, SEP had a segmentation fault in 11 cases, and on the other 2 hardest
instances SEP is outperformed by different orders of magnitude by TSAT++ and
MathSAT. Our second observation is that TSAT++ (with IS, pre-processing,
model reduction, and shortest reason detection) performs better than MathSAT
up to a factor of 6 on each single instance: This is particularly remarkable given
that the authors have customized a version of MathSAT explicitly for this kind
of problems.* Considering the hardware verification problems, all of them are
easy to solve (i.e. in less than 3s each) for all the three solvers, except for SEP
that timeouts on one instance. Of the 9 (resp. 16) runs of MathSAT (resp. SEP
and TSAT++), only 3 take more than 0.1s. These observations are confirmed
by Figure 8.5, which gives the overall picture of the results for MathSAT, SEP,
and TSAT++ on the 49 instances with real valued variables: The z-axis is the
number of instances solved by each solver within the CPU time specified on the
y-axis. The plot also shows that TSAT++plain can be faster than TSAT++ on
the easy instances, i.e. those requiring less than 1s to be solved. For such prob-
lems, the overhead of the optimizations (and in particular of the pre-processing)
outweighs the benefits.

8.3.3 Hand-made problems

Finally, we have considered the “hand-made” diamond problems from [SSB02].
A diamond problem is a formula ¢ that depends on a parameter K > 0 and such
that there exists a number of unsatisfiable valuations propositionally entailing ¢
which is exponential in K. Moreover, hard instances having a single satisfiable
valuation propositionally entailing them can be generated. A second parameter
T is also used and it affects the number of variables and the size of the problem.
Variables range over the reals.

Table 8.1 shows comparative results on the diamond problems for various
settings of K and T'. In particular, we considered all the settings corresponding
to non trivially solvable instances reported in [SSB02]. The third column denotes
whether the problem has a unique valuation propositionally entailing it; the
remaining columns show CPU times for TSAT++, TSAT++plain, MathSAT,
and SEP. For this class of problems TSAT++ has been run with best reason
detection set to shortest reason, and with model reduction. The experimental
results clearly show that TSAT++ performs best, often by orders of magnitude.

4As indicated by the authors, we have used this customized version of MathSAT on this
class of problems.
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Table 8.1: Diamond problems: “TIME” indicates that the solver does not solve

the instance withing the time limit. “~” indicates that the solver exits abnor-
mally.
K T unique TSAT++ TSAT++plain  MathSAT SEP
50 4 NO 0.00 0.02 0.05 0.12
50 4 YES 0.01 0.14 TIME 0.07
100 5 NO 0.01 0.11 0.61 1.18
100 5 YES 0.04 7.57 TIME 0.17
250 5 NO 0.08 0.76 5.40  52.20
250 5 YES 0.21 194.99 TIME 0.77
500 5 NO 0.29 4.46 21.22 742.99
500 5 YES 1.05 TIME TIME 4.85
1000 5 NO 1.07 22.3 - TIME
1000 5 YES 6.45 TIME - 2253
2000 5 NO 3.76 94.23 - -
2000 5 YES 29.90 TIME - -

Instances with a unique solution are more difficult than non-unique ones, as
expected, except for SEP.5

For this test set, it is of fundamental importance the model reduction op-
timization: without it, TSAT++ performance is significantly worse, up to the
point that problems which are solved in 1 second by TSAT++, are not solved
without model reduction within the time limit.

8.3.4 Hardware verification problems

Table 8.2 reports on the performance obtained on hardware verification prob-
lems. These unsatisfiable formulae, converted to SL from CLU, represent bounded
model checking of safety properties for hardware models such as an out-of-order
microprocessor design, a cache coherence protocol, a DLX pipeline and the
memory unit of the Elf processor (see [BLS02] and citations therein for a more
detailed explanation).

The formulae are represented as DAGs, and are converted to CNF by letting
each node of the DAG correspond to a new Boolean variable defined as in
the DAG; each definition, using the if-and-only-if operator, generates then at
most three clauses. The DAGs contain up to 110K nodes and the resulting
CNF's up to 330K clauses. Variables range over the integers, so MathSAT has
been excluded from the comparison, since it does not support reasoning on this
domain. Also CVC has a weak support for the integers® and it has anyway
shown a poor performance on an initial round of tests, so it has been excluded
too. Performance of SEP with conjunction matrix is not significantly differently
from the plain configuration, so it is not reported.

5Following a suggestion by Ofer Strichman we have also tried SEP with an option that
disables the use of a specialized data structure called “conjunction matrix” [SSB02]. This
can have a dramatic impact on SEP: Some problems that are solved with conjunction matrix
within the time limit are not solved without, and vice versa.

SPersonal communication by Sergey Berezin.
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Table 8.2: Hardware verification problems.

Instance Lazy Eager
TSAT++ SEP
22s.smv 0.05 -
25s.smv 0.02 -
cache.inv8 0.02 -
cache.inv10 0.11 -
cache.invl2 75.08 -
[ dxic || TIMB| |
elf.rf7 0.02 3.60
elf.rf8 0.74 MEM
elf.rf9 13.92 || TIME
000.rf7 7.42 MEM
000.rf8 231.80 || TIME
000.rf9 TIME || TIME
q2.10 6.40 -
q2.12 44.28 -
q2.14 230.69 -

Consider the Table. SEP looks quite prone to implementation problems,
although on one instance (elf.rf7) it could carry the computation to the end;
on two more instances (22s.smv and 25s.smv) it could finish the encoding phase
(then the CNF converter crashed), showing timings around 19 seconds. Looking
at columns 2 of the Table, one sees that TSAT++ does not incur in any crash,
and performs indeed much better than SEP.

Discussion

Let us remark a few points about these last benchmarks:

1. although it is not tuned on this class of problems, TSAT++ clearly shows
the best performance. Also, it is the most robust system.

2. a further closer look at TSAT++’s output reveals that the branching
heuristics employed in TSAT++ is definitely not optimal for the hard-
ware verification domain, and that getting a better one could make the
solver much faster.

In order to test this latter conjecture, we have re-done the hardware veri-
fication tests with TSAT++ , but trying to give to the systems some domain-
dependent information. We have experimented some static orderings of the
input variables with TSAT++, again based upon the original structure of the
DAGs. This has resulted in TSAT++ actually managed to solve the dlxlc in-
stance in about 577 seconds.
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8.4 Summing up

In this part, we have presented the basic procedure from [ACG99] along with
some key optimizations, and we have presented a new solver, TSAT++. We
have also shown how it is possible to check the satisfiability of valuations in-
volving constraints of the form z — y < ¢ using BF. An extensive comparative
experimental analysis shows that our solver TSAT++, built along the lines de-
scribed in this Chapter, is currently the state-of-the-art on various classes of
problems, including randomly generated, hand-made, and real-world instances.
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Chapter 9

Introduction

In this Part we introduce a new approach for implementing Safe Planning that
rely on a compiler that create a logic program to be solved under the answer set
semantic; we then present a solver for Answer Set programming that is a joint
work between DIST and the University of Texas at Austin; and finally we show
some recent results on the relation between SAT and Answer Set programming.

In the Chapter, we briefly review the basic concepts and definitions about
Answer Set Programming and then we show how to modify the compiler in
order to create a logic program (instead of a propositional formula and/or a SL
formula)

9.1 Answer Set Programming

Answer Set Programming (ASP) is a new programming paradigm [GL88b,
GL91, MT99, SNT02] for knowledge representation and reasoning that has
emerged in the last years. The idea of ASP is to represent a given compu-
tational problem by a logic program whose answer sets correspond to solutions.

A rule element is an expression of the type p or not p, where p is a literal
and the symbol not is the negation as failure operator that is different different
from the classical negation -, and is the “reason” of the non-monotonicity of
the logic.

A rule is an expression of the form:

Head < Boby (9.1)
where Head and Body is a finite set of rule elements. A rule is called
constraint if Head = 0; it is called disjunctive if the |Head| > 1.
If
Head = {py, . .., Pk, n0t Pgy1,...,00t P}

and

BOdy = {pl+17 -+ yPm,; 00t P, ..., 00t pn}

Ixxi
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forn >m >1>k > —1 then we can write the rule as

D03+ - - 3 Pk; Ot Pry15- - -3 N0t P 4= Pit1s- -+, Pms Ot Py -, 00t P (9.2)

We can also drop the « in (9.2) if the body is empty (n =m =1).
A program is a (finite) set of rules.

The notion of an answer set (AS) is defined first for programs that do not
contain negation as failure (I = k and n = m in every rule of the type (9.2) of
the program). Let IT be such a program, an let X be a consistent set of literals.
We say that X is closed under II if, for every rule (9.1) in II, Head N X #
whenever Body C X. We say that X is an answer set for II if X is minimal
among the sets closed under II (relative to set inclusion).

For instance, the program that contains the two rules

Diq 4, T p (9.3)

has two answer sets: {p, -r} and {q}. If we add the constraint:
«q

to (9.3), we will get the program whose only answer set is {p, 7r}. The last
example illustrates a general property of a constraint: Adding a constraint to a
program affects its collection of answer sets by eliminating the answer sets that
“violate” the constraint. This is also true for program with negation as failure.

To extend the definition of an answer set to programs whit negation as
failure, take any program II, and let X be a consistent set of literals. The
reduct IIX of II related to X is the set of rules

Po;---3Pk < Pi+15---5Pm

for all rules (9.2) in II such that X contains all the literals pyy1,...,p but
does not contain any pp,y1,--.,Pn. Thus [IX is a program without negation as
failure. We say the X is an answer set of II if X is an answer set for ITX.

For instance, the reduct of I = p + not ¢ relative to {p} consists of one
rule p «. Since set {p} is an answer set for this reduct, it is an answer set for
IT'. The reduct of I relative to {p,q} is the empty set. Since set {p, ¢} is not
an answer set for this reduct, it is not an answer set for II.

The complexity of finding one answer set of a logic program of the general
type (9.2) is Ei—complete.

In this thesis we will focus of non-disjunctive (normal) logic programs: Logic
programs with |Head| < 1 and with & = [ (no not operator in the Head). In
this case a rule has the form:

Po < Piy---yPm, N0t Py, ..., 00t Py (9.4)

where P is a set of atoms, pg € PU{L}, {p1,.-.,pn} C P. The case pg = L
(false) corresponds to the case Head = ) cited above. Checking the consistency
of a non-disjunctive logic program (i.e., the existence of an answer set if any) is
a NP-complete problem; it is “simpler” that the disjunctive case.

For some purposes, the unavailability of disjunctive rules is an essential
limitation. Nevertheless, a disjunctive rule of the form
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PP (9.5)

can be always replaced by a pair of rules similar to (9.4):

p < not —p,
—-p < notp

Furthermore, the use of classical negation can be always avoided, because a
negative literal —p can be replaced by a new atom p provided that the constraint

’

&p,p

is added to the program, and this is the reason why in (9.4) p; are atoms.

Using these last two tricks, (general) disjunctive logic programs can be turned
into logic programs containing neither disjunction nor —. At the price of adding
rules and/or adding new atoms, it is possible to use system (for non-disjunctie
logic programs) that have some computational advantages (at least from a the-
oretical point of view).

9.2 From SAT formulas to logic programs

As we will see in more details in Chapter 12, there is a simple a modular trans-
lation from SAT (in CNF) to a logic program. We anticipate the translation
here.

Consider a formula I, as a set of clauses. To each clause C = {ly,...,;} (I >
0) in T we associate the rule sat2lp(C) = L < not ly,...,not l;. The translation
of T, denoted with sat2lp(T’), is Ucer sat2lp(C) UUpep{p + not p',p' + not p},
where, for each atom p € P, p' is a new atom associated to p.

All the details that we have presented in Chapter 3, using the Tseitin’s clause
form transformation [Tse70], can be easily recast as a logic program. We will
see in details the transformation in Chapter 12.

Even if related, ASP and SAT are different in many ways. This is the basic
reason why can be interesting to evaluate also this other approach for Safe
Planning.

As we have seen, there is a modular translation from SAT to ASP such that
each solution to a SAT problem is also an answer set of the related logic program,
but for the contrary it is not always the case (unless the logic program is “tight”):
If we translate a logic program into a propositional formula, in general there
exist models of the propositional theory that do not correspond to any answer
set of the logic program.

Moreover, SAT reasoning is a classical monotonic reasoning: Adding rules
(in terms of facts, clauses) to a formula only cause a reduction in the number of
the models (that now are a subset of the models of the formula before having
added the new rules). On the other hand, reasoning under answer set semantic
is a form of non-monotonic reasoning: Adding a rule to a logic program can
result in more solutions (answer sets) as well as different solutions w.r.t. the
program without these new rules.
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Finally, from a representational point of view, some problems are better
represented as logic programs (ex. problems related to graphs), while other are
better represented in propositional logic (ex., formal verification).

It is also important to notices that in general the encoding of a problem
as logic program results in a more compact formula. On the other hand, very
specialized and efficient solver for propositional reasoning exist, and they have
had a tremendous boost in the last years; while decision procedures for logic
programs (under answer set semantic) is not a very mature area.

In order to possibly overcame the last point, we have chosen an approach
to solve logic programs mainly based on reasoning on propositional formulas
(SAT-based reasoning).

9.3 From logic programs to propositional formu-
las

As we will see in more details in Chapter 12, there is also a simple (non-modular)
translation from a logic program ro a propositional formula (not in CNF). We
anticipate the translation here, and in Chapter 12 we will further see how to
convert it to CNF.

If pg is an atom or the symbol L, the completion of II relative to pg is the
formula

pOE\/(pl/\"'/\pm/\_‘pm+1/\"'/\_‘pn)

where the disjunction extends over all rules (9.4) in II with head py. The
completion Comp(II) of II consists formulas Comp(II, py) for each atom py and
the symbol L.



Chapter 10

From DLL to a decision
procedure for ASP

In this Chapter we will see how to turn a decision procedure for SAT (DLL al-
gorithm) to a decision procedure able to find solutions of a logic program under
the answer set semantic.

Fages [Fag94] showed that if a program II is “tight” then its answer sets are
in one-to-one correspondence with the models of its completion [Cla78]. If the
completion is converted to a set of clauses I, state-of-the-art SAT solvers can
be used as answer set generators. Since the size of I' is at most twice the size
of II, and has at most m new variables (where m is the number of rules in the
logic program) this is considered a viable and efficient approach. Fages’ result
was then generalized to include programs with infinitely many rules [Lif96],
programs tight “on their completion model” [BEL00], and programs with nested
expressions in the bodies of the rules [EV03]. Still, these results do not apply
to the whole class of logic programs. It is well known that each answer set
corresponds to a model of its completion, but that the vice-versa in general is
not true.

Ben-Eliyahu and Dechter [RR96] gave a translation from a class of disjunc-
tive logic programs (which includes the one that we are focusing) to SAT. How-
ever, their translation may need O(n?) new variables and O(n®) new clauses
(where n is the number of atoms in the logic program). Lin and Zhao [LZ03a]
recently introduced a translation which needs the introduction of O(n? + m)
new variables and O(n x m) new clauses. In practice, the number of variables
or clauses in the resulting formula can be prohibitive.!

The only reduction to SAT which does not need extra variables was pro-
posed by Lin and Zhao [LZ02]. The drawback of this reduction is that the
resulting formula may blow-up in space. Still, system ASSAT based on such re-
duction outperforms state-of-the-art ASP systems like SMODELS [Nie99, Sim0Q0]
and DLV [ea98] on many interesting problems.

In this Chapter, the question that we positively answer is: Is it possible to

1Lin and Zhao [LZ02] report that the grounding of a program corresponding to the compu-
tation of an Hamiltonian path in a complete graph with 50 nodes, produces a program with
5000 atoms and 240000 rules. For this problem, the new clauses will be more than a billion.

Ixxv
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build an efficient SAT-based answer set generator that (i) deals with any (non-
disjunctive) logic program, (i4) works on a SAT formula without additional
variables (except for those introduced by the clause form transformation), and
(#7) is guaranteed to work in polynomial space? We present a procedure, called
ASP-SAT (based on the DLL algorithm), having the above three but also
others features. In order to show its effectiveness, we integrated ASP-SAT
in CMODELS,? and run a wide comparative analysis with other state-of-the-
art systems. The results show that our procedure has a clear edge over its
competitors.

Tt is well known that if X is an answer set of II, then X satisfies Comp(II),
while the converse is not necessarily true. Lin and Zhao [LZ02] proved that to
have a one-to-one correspondence between the answer sets of II and the models
of its completion, we have to consider also the loop formulas (propositional
formulas that kept the information why a model of the completion is not an
answer set) of II. To state this formally, we need the following definitions.

The dependency graph of a program II is the directed graph G such that
the vertexes of G are the atoms in II, and G has an edge from pg to p1, ..., Pm,
p; € P,1 < i < m, for each rule (9.2) in I, pog # L. A loop of II is a set L of
atoms such that for each pair A, A’ of atoms in L there is a path from A to A’
in the dependency graph of II, whose intermediate nodes belong to L.

Given a loop L, we define R(L) to be the set of formulas

PIN AP AN D1 Ao ANy

for all rules (9.2) in II, with py € L and {p1,...,pm}NL = 0. The loop formula

associated with L is
VLoV R(E)

where \/ L denotes the disjunction of the elements in L, and similarly for \/ R(L).

Theorem 1 [LZ02] Let II be a program, Comp(Il) its completion, and LF(II)
be the set of loop formulas associated with the loops in II. For each set of atoms
X, X is an answer set of I 4ff X is a model of Comp(II) U LF(II).

10.1 SAT-Based Answer Set Solvers

Given Theorem 1, it is clear that if the dependency graph of a program II has
no cycles (in this case we say that II is tight), then the models of Comp(II) are
also answer sets of II. Thus for tight programs answer set systems can use SAT
solvers as search engines. CMODELS used this approach to compute answer sets
for tight programs.

A SAT-based system working also on non tight programs was proposed by
Lin and Zhao [LZ02]. This system, called ASSAT, performs the following steps:

1. Compute Comp(Il) and convert it to a set of clauses I'.

2. Find a model X of I by using a SAT solver. Exit with failure if no such
model exists.

2http:/ /www.cs.utexas.edu/users/tag/cmodels
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3. Compute the set of atoms X~ = X — Cons(IIX), where Cons(ITX) is the
set of atoms derivable from the reduct of II relative to X.

4. If X~ =, then return X.

5. Otherwise, add the clauses corresponding to the loop formulas of all the
maximal (under subset inclusion) loops in X~ to T', and go to step 2.

In their article Lin and Zhao showed that the above simple procedure can outper-
form rival systems, often by orders of magnitude. Still ASSAT has the following
two drawbacks:

1. ASSAT is not guaranteed to work in polynomial space, since there can be
exponentially many loops in a program II. If we assume that each loop
formula cannot be derived from the others and Comp(II), then

e If II has an answer set, then ASSAT performance on II depends on
how lucky the system is in generating the right model first. In the
best case it generates an answer set first. In the worst case it blows
up in space.

e If IT has no answer set, then ASSAT blows up in space. In fact, adding
and keeping already added loop formulas is essential to guarantee
that the SAT solver does not return an already computed model,
and ultimately to guarantee ASSAT termination.

2. Considering two successive calls of the SAT solver, the computation done
for finding the first model is completely discarded. Thus some branches
of the search tree may get computed many times.

Further considering the task of computing all answer sets of program II, there
are two ways for doing it in ASSAT:

1. Compute Comp(II) U LF(II) and then call a SAT enumerator, i.e., a
SAT solver able to return all the models of a propositional formula, e.g.,
MCHAFF; or

2. In order to avoid the generation of the same model X, modify ASSAT proce-
dure in step 4. by adding one or both of the clausesin {V 4 x =4,V 4o x A}
to I' and going back to step 2. Indeed, the obvious solution would be to
add the clause \/ 4o x "AV \ 44 x A. However, it is well known that logic
programs of the kind we focus satisfy the following anti-chain property: If
X is an answer set, no strict subset or superset of X is an answer set.

The first approach is unfeasible if there are many loop formulas. The second
approach is also unfeasible when there are many answer sets.

The above drawbacks can be eliminated if we do not use a SAT solver as a
black-box. Instead, we can take advantage that all the state-of-the-art complete
SAT solvers are based on the DLL procedure. Given a program II, we may first
compute the completion of II, and then

e generate models of Comp(IT), and

o test whether the generated models are answer sets of II.



CHAPTER 10. FROM DLL TO A DECISION PROCEDURE FOR ASPlxxviii

pLL(T, S)
if T' = () then exit with true;
if ) € T’ then return false;
if {I} € I then return DLL(assign(l,T),S U {l});
A := an atom occurring in I’
DLL(assign(A,T),SU{A});
DLL(assign(—A,T), S U {-A4}).

Figure 10.1: The DLL procedure

Consider DLL procedure represented in Figure 10.1. This is the same as
in Figure 2.1 and with a similar description. We report again the description
for convenience of the reader. Here [ denotes a literal; " a set of clauses; S an
assignment, i.e., a consistent set of literals. Given an atom A, assign(A,T) is
the set of clauses obtained from I' by removing the clauses to which A belongs,
and by removing —A from the other clauses in I'. assign(—A,T") is defined
similarly. In the initial call to DLL, I" is the set of clauses of which we want to
compute a model, and S is the empty set. DLL(T, D) returns FALSE if " is not
satisfiable, and TRUE otherwise.

Consider a program II. Given DLL, we can obtain a SAT-based answer set
generator for II, by

1. modifying the first line of DLL in the figure, by substituting “exit with
TRUE” with “return test(S,II)”, a new function which has to return

e TRUE, if the set of atoms in S is an answer set of II, and

e FALSE, otherwise.

2. defining a function ASP-SAT(II), that calls DLL(T, (), where I' is the
clausified Comp(II).

Notice that test(S,II) just checks whether the set of atoms in S is an answer set
of II. Given that S may be a partial assignment, the question is whether it is
possible that the set of atoms in any total assignment extending S (i.e., which
is a superset of S) be an answer set. This is not the case, as established by the
following proposition. As a side remark, the proposition generalizes the above
stated anti-chain property.

Theorem 2 Let I be a program, X, X' be two set of atoms satisfying Comp(II).
If X € X' then X' is not an answer set.

ASP-SAT(IT) returns TRUE if and only if IT has an answer set. Moreover,
ASP-SAT (i) performs the search on Comp(Il) and thus does not introduce
any extra variables except for those needed by the clause form transformation;
(i7) is guaranteed to work in polynomial space; (i4i) can deal with both tight
and non tight problems: In the case of tight problems, each generated model
of Comp(II) corresponds to an answer set and thus ASP-SAT behaves as a
standard SAT solver run on Comp(II).

Compared to ASSAT, ASP-SAT is guaranteed to work in polynomial space
and has also the following advantages:
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e It is easily modifiable to return all the answer sets: The only thing that
we have to do is to modify test(S,II) in order to (¢) print the set of atoms
in S if it is an answer set, and (¢7) return FALSE.

e No computation is ever repeated.

On the other hand, ASSAT advantage over ASP-SAT is that in the former the
SAT solver is used as a black-box without any need of even minor modifications.

Compared to other answer set solvers like SMODELS and pLv, ASP-SAT
has the advantage of being SAT-based, and thus it can leverage on the great
amount of knowledge available in SAT. For instance, we are not aware of any
(not SAT-based) answer set solver using the analogous of two-literal watching
data structures for pruning the search tree.
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Answer Set solver
Cmodels2

11.1 Integration in Cmodels

We have integrated our implementation of ASP-SAT in CMODELS. ASP-SAT
was implemented on top of the SIMO system [GMTO03], a MCHAFF-like SAT
solver. As we saw in Subsec. 2.4.2, sIMO features a two-literal watching data
structure, 1-UIP learning and VSIDS heuristics (see [MMZ101]). However, it
does not feature the low level optimizations of MCHAFF, and thus it is within
a factor of 3 slower than MCHAFF. Our implementation of ASP-SAT inherits
all the above features, and in particular the learning mechanism. It is thus of
fundamental importance that each call to test(S,II) does not just return FALSE
(resp. TRUE) if the set atoms(S) of atoms in S is not (resp. is) an answer set of
II. Indeed,

o if atoms(S) is not an answer set of II, we have to return a “reason” for this,
i.e., a subset S’ of S such that for any total assignment S”, (i) extending
S’ and (i) satisfying Comp(IT), atoms(S") is guaranteed to be not an
answer set of II. By Proposition 2, one such set S’ is atoms(S). However,
in order to take advantage of the backjumping and learning mechanisms
in SIMO, it is important that S’ be as small as possible. For computing
such ', the test(S,II) procedure

1. computes the loop formulas associated with the loops in atoms(S) —
Cons(natoms(S)),

2. returns a subset of S which falsifies one of the loop formulas computed
in the previous step.

With such a simple procedure, we are able to compute reasons which are
often less than 1% of the size of S.

e analogously, if atoms(S) is an answer set of II and we want to compute
all answer sets of II, we have to return a subset S’ of S such that for
any assignment S” extending S’, atoms(S") is guaranteed to be either
not an answer set of II, or an already computed answer set. Our simple
implementation returns atoms(S).

Ixxx
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The reason returned by test(S,II) will be learned (i.e., added to the set of
input clauses) and eventually deleted according to some criteria from the SAT
literature. The added clauses avoid the repetition of the same mistakes in
different part of the search tree.

At the same time we modify SIMO in two ways:

1. To call the test(S, II) routine whenever a set of literals S satisfying Comp(II)
is generated.

2. While branching, siMm0O will first choose among the literals whose atom
occurs in the negation as failure operator not; when all such atoms are
assigned, branching will first try to assign the remaining atoms to FALSE.
The intuition behind this few-lines modification in SIMO code, is that we
should first get to a set of clauses corresponding to a program II without
negation as failure, and then we should try to satisfy the remaining set of
clauses by assigning the fewest possible atoms to true.

To appreciate the behavior of our procedure, assume to have a program II
consisting of the two rules!

A — A Ajp1 — A

for each i € {0,2,...,2k}. Comp(Il) has 2*¥ models, while the only answer set
is the empty set:

e The naive implementation of test(S,II) which returns atoms(S), may still
generate 2* satisfying assignments.

e The implementation of test(S,II) which returns the subset of S falsifying
one of the loop formulas in atoms(S) — Cons(I1%°™5(5)) may generate at
most k satisfying assignments.

e With the modification in the heuristics, the first satisfying assignment
that is generated has all the atoms assigned to false, corresponding to the
only answer set of the program.

The integration of ASP-SAT in CMODELS posed some challenges related to
CMODELS expressivity. In fact CMODELS uses LPARSE? as front-end and thus
its input may contain cardinality expressions (also called “constraint literals” in
LPARSE manual®) and choice rules — two constructs widely used in answer set
programming.* Operationally, CMODELS performs the following steps:

1. Simplifies the given LPARSE program, performing operations similar to
those involved in the operation of SMODELS.

2. Eliminates cardinality expressions by introducing auxiliary atoms and
rules. Eliminates choice rules in favor of nested expressions in the sense
of [Lif99]. This is done using a procedure defined in [PV05].

n this paragraph, for simplicity, we assume that the clauses corresponding to the reasons
returned by test(S,II) are stored and never deleted.

2LPARSE is a grounder for logic programs. It has a nice and rich input language, and it
grounds in output the input problem.

3http ://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

4The input can also contain general weight expressions (“weight literals”) However, opti-
mize statements (see LPARSE manual) are not allowed.
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3. Verifies that the resulting program with nested expression is tight: the
definition of tightness is generalized to such programs in [EV03].

4. Forms the program’s completion (see [LT84] for the definition of comple-
tion of a program with nested expressions) and calls a SAT solver.

As for CMODELS, the integration implied simply calling our procedure instead
of the SAT solver. As for our procedure, we had to take into account that
programs with nested expression do not satisfy Proposition 2. For instance, the
program

A+ not not A (11.1)

(corresponding to the translation of the choice rule “{A} +”) has two answer
sets: ), {A}. The violation of Proposition 2 implied two modifications in our
procedure. Consider a program II, resulting from the last of the above steps.

The first modification, is that we have to guarantee that each set S of literals
in test(S,II) is total. Assuming that the input set of clauses is satisfiable,
SIMO always returns total assignments but in the signature of the set of clauses
resulting after SIMO preprocessing. However, SIMO (like most of the SAT solvers)
removes tautological clauses in the pre-processing. Tautological clauses can
naturally arise during the completion process, and removing them may cause
the generation of partial (w.r.t. the signature of the input program) satisfying
assignments. This is not a problem if II does not have nested expressions (see
Proposition 2); it may be a problem otherwise. In fact, the completion of the
program (11.1) is A = == A, which, once translated in a set of clauses and after
the removal of tautological clauses, corresponds to the empty set of clauses. In
order to be able to “generate” both the assignment {A} and {—A4}, we had to
modify SIMO pre-processing in order to keep tautological clauses.

The second modification involves the function test(S,II). Indeed, it has to
consider loop formulas as defined in [LLO03] for nested programs. Further, in the
case atoms(S) is an answer set and we are interested in finding all answer sets
of II (since any superset or subset of the atoms in S can be an answer set of II),
test(S,II) has to return the entire set S as reason.

11.2 Experimental Results

In order to evaluate the effectiveness of our procedure, called CMODELS2, we
comparatively tested it against other state-of-the-art systems on a variety of
benchmarks. The benchmarks we considered are both basic and non basic logic
programs, the former being the ones without cardinality constraints and choice
rules. The systems we considered are SMODELS version 2.27, ASSAT version
1.52, DLV release of 2003-05-16.° It worths remarking that while SMODELS,
ASSAT and CMODELS2 use LPARSE as preprocessor, and thus can be run on
the same problems, DLV does not. This explains why DLV appears only in few
tables. Further, ASSAT only can deal with basic programs. Finally, for DLV we
have to mention that it is a system specifically designed for disjunctive logic
programs, and that very different results can be obtained depending on the
specific encoding being used.

5A detailed description of these solvers is given in Chapter12 as well as their URL.
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Basic programs Non basic programs
#b|#s||sMoDELS[AsSAT|CMODELS2||sMODELS|CMODELS2
8 |i-1| 12.32 | 0.80 1.19 0.81 0.47
11(i-1| 71.78 | 2.97 4.19 2.97 1.01
811 40.87 | 0.89 2.18 1.56 1.40
117 i 71.42 | 3.17 4.52 3.41 1.16
8 |i+1| 23.35 | 0.96 0.97 4.99 0.31
11|i+1|| 107.48 | 3.54 3.33 5.21 0.75

Table 11.1: Blocks world: “#b” is the number of blocks. Finding one solution.

All the tests were run on a Pentium IV PC, with 1.8GHz processor, 512MB
RAM DDR 266MHz, running Linux. For SMODELS, ASSAT and CMODELS2, the
time taken by LPARSE is not counted.® Further, each system was stopped after
3600 seconds of CPU time on an instance, or when it exceeded all the available
memory. In the tables, these cases are denoted with “TIME” and “MEM”
respectively. Otherwise, the tables report the CPU times in seconds needed by
each solver to solve the problem, or a “—” to denote an abnormal exit of the
program. Finally, we run many more examples than those showed: for lack of
space we report only the results for the instances in which at least one of the
systems solved it and in more than 1 second.

11.2.1 Finding one answer set

We start our analysis considering blocks world planning problems, encoded as
both basic and non basic logic programs, the latter formulation due to Er-
dem ([Esr02]). The results are represented in Table 11.1. In the table, () the
numbers in the column “#b” represent the number of blocks; (i7) an “/” in the
“#s” (standing for “number of steps”) column means that the instance corre-
sponds to the problem of finding a plan in “” steps, where “” is the minimum
integer for which a plan exists. Thus, the instances with “/” and “i +1” in the
“#s” column admit at least one answer set, while those with “/ —1” do not have
answer sets.

These blocks world planning problems are tight on their completion mod-
els [BELO0O], and thus every model of the completion corresponds to an answer
set. As it could be expected, SAT-based systems like ASSAT and CMODELS2
perform (sometimes significantly) better than SMODELS, both on basic and non
basic programs. On basic programs ASSAT performs slightly better than CMOD-
ELS2, and this corresponds to the fact that, on average, MCHAFF is better than
SIMO.

We also considered Hamiltonian circuit problems on complete graphs, using
both the basic encoding of Niemela ([Nie99]), and the non basic encoding in the
“benchmark problems for answer set programming systems””. These problems
are particularly interesting because they are non tight and have exponentially
many loops. Thus, one would expect these problems to be difficult for ASSAT,

6 Adding the times of LPARSE will not change the picture for DLV when compared to CMOD-
ELS2.
Thttp://www.cs.engr.uky.edu/ai/benchmark-suite/ham-cyc.sm
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Basic program Non basic programs

SMODELS|ASSAT| DLV |CMODELS2[|SMODELS|CMODELS2
np30c|| 11.70 | 1.14 | 22.08 0.69 0.36 0.36
np40c || 62.89 |41.81| 97.96 1.63 2.48 0.87
np50c || 219.56 | 14.51 | 314.46 3.37 8.39 1.79
np60c || 594.46 |48.80 | 770.07 5.81 20.47 3.41
np70c || 1323.61 [291.60(1679.12]  8.22 39.41 5.87
np80c || 2354.28 | 32.51 [3407.35| 14.20 75.36 9.18
np90c || TIME (779.06] TIME 22.23 122.53 14.19
npl00c|| TIME — | TIME 28.63 185.52 20.76
npl20c|| TIME — | TIME 53.33 418.15 41.84

Table 11.2: Complete graphs. npXc corresponds to a graph with “X” nodes.
Finding one solution.

but also for CMODELS2 in the case it generate and then reject (exponentially)
many candidate answer sets. The results are in Table 11.2. As can be observed,
on this test set CMODELS2 performs best, being faster (sometimes by orders of
magnitude) than all the other solvers both on basic and non basic problems.

Non tight real-world problems are shown in Table 11.3. The problems cor-
respond to the bounded model checking (BMC) of asynchronous concurrent
systems, as described in [KI03].2 As for the blocks world, these problems are
about proving a certain property in a given number of steps, represented as the
last number in the instance name. The problems in the first five rows do not
have answer sets, while the remaining (obtained by incrementing the number
of steps) do. Here the results are mixed, even though on average CMODELS2
performs better. Of particular interest are the number of sets that CMODELS2
generates before finding an answer set (shown in parentheses). As can be ob-
served, there is no obvious correlation between the number of generated sets and
the CPU times. Indeed, given the relatively small time needed to check a set of
literals, a failure in the search tree due to a test invocation is not very different
from a failure due to the generation of the empty clause. Thus, the number of
invocation to test is not a better indication of CMODELS2 performances than
the number of CMODELS2 backtracks.

The problems in Table 11.4 are real-world non tight problem related to check-
ing requirements in a deterministic automaton, and are described in [SEMO03].°
Two types of problems are considered and encoded in logic programs. The first
type is called IDFD and the results on such problems are reported in the first
two rows of the table. The second type of problem is called “Morin”, and the
results are shown on the last three rows. As can be seen, CMODELS2 times out
on one instance that is easily solved by all the other solvers. This is due to
the dimension of the related propositional formula. On the other hand, for any
other solver, there are one/two instances on which CMODELS is at least 1 order
of magnitude faster. Interestingly, ASSAT blows up in memory on one instance

8Some of the benchmarks and their generator are available at http://www.tcs.hut.fi/
“kepa/experiments/boundsmodels/

9These benchmarks are available at http://www.fmi.uni-stuttgart.de/szs/research/
projects/synthesis/benchmarks030923.html



CHAPTER 11. ANSWER SET SOLVER CMODELS?2 Ixxxv

| BMC | smopELS | CMODELS2 |

dp-10.i-02-b11 || 382.72 | (73)450.38
dp-10.5-02-b8 15.24 (76)13.88
dp-12.5-02-b9 || 336.03 | (232)135.12
dp-8.i-02-b9 8.08 (94)12.64
dp-8.5-02-b7 1.19 (26)2.12

dp-10.i-02-b12 445.47 | (350)139.18
dp-10.5-02-b9 || 2887 (46)18.22
dp-12.s-02-b10 || 971.50 (237)90.64
dp-8.i-02-b10 5.05 (66)6.76
dp-8.5-02-b8 1.76 (13)2.28

Table 11.3: Bounded Model Checking Problems. Finding one solution.

| | sMoDELS | assaT | pLv | CMODELS2 |
mutexd || 33.92 (0)0.62 | 840.60 | (0)0.68
phid 0.24 (168)2.98 | 1.44 TIME
mutex2 || 0.0 (88)1.78 (0)0.12
mutex3 || 229.57 MEM (0)24.16
phi3 287 | (704)236.91 (57)3.91

Table 11.4: Checking requirements in a deterministic automaton. Finding one
solution. DLV was not run on the last 3 instances.

(and also on other instances, not showed here because all the other systems
timeout on them).

Summing up, the 4 tables show the performances on 45 problems: CMOD-
ELS2

e times out on 1 problem, while the other systems do not conclude on at
least 3 problems;

e performs better than all the three solvers on 30 problems, and on 26 it is
at least a factor of 2 faster; and,

o except for the problem on which it times out, CMODELS2 is either the top
performer or within a factor of 2 from it.

11.2.2 Finding all answer sets

We also considered the problem of generating all the answer sets. We run
the same experiments (the ones that admit solutions) for all domains, but the
complete graphs. In this domain, all the solvers were unable to find all the
answer sets within the timeout for all the benchmarks we used. In order to
evaluate also this category, we generated smaller instances. Tables 11.5 - 11.8
report the results, and they have the same meaning as the tables for the problem
of computing one answer set. There is only one more column in each table,
“#sol”, that indicate the number of answer sets found.
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Basic program Non basic program
#b || #s [ #sol || sMoDELS | CMODELS2 | SMODELS | CMODELS2
8 i 28 75.38 2.98 5.29 4.64
11 i 2 171.39 4.88 10.79 2.68
8 || i+1 || 3374 586.98 103.30 39.03 217.59
11 || i+1 || 263 888.11 58.76 57.04 110.16

Table 11.5: Blocks world:

“#b” is the number of blocks. Finding all solutions

Basic program Non basic program
#sol || smopELs | pLv | CMODELS2 | SMODELS | CMODELS2
np8c 5040 1.10 3.35 4.68 0.38 4.36
np9c 40320 10.52 31.79 111.52 3.60 170.19
nplOc || 362880 111.17 | 330.71 TIME 38.07 TIME

Table 11.6: Complete graphs. npXc corresponds to a graph with “X” nodes.
Finding all solutions.

In Table 11.5 there are results for blocks world problems. Also here, as it
could be expected, SAT-based answer set solver CMODELS2 performs (some-
times significantly) better than SMODELS in all the problems proposed, but in
the non basic programs with i+1 steps. In this domain, each check for loops
fails, and each model of completion is also an answer set.

In Table 11.6 there are results for complete graphs. As we anticipated before,
this was the only domain in which we could not run the same experiments as for
the problem of finding one answer set (if any). We present results for instances
with “8”, “9” and “10” nodes. Starting from “11” nodes, none of the solvers is
able to find all the solutions within the timeout. In this domain, SMODELS and
DLV are much faster than CMODELS2, both on basic and non basic programs.
Here the point is that, in order to find all the answer sets, CMODELS2 has to
check (and most of the times reject) a very high number of propositional model.
Moreover, the dimension of the SAT formula grows quite fast.

The analysis on BMC problems can be found in Table 11.7. In this domain,
the timing of the solvers are comparable, SMODELS being slightly better than
CMODELS2, of around a factor of two. Moreover, SMODELS can solve (with the
meaning here of “finding all solutions”) one (out of five) more problem than

| BMC | #sol || sMODELS | CMODELS2 |
dp-10.i-02-b12 || 12600 1892 TIME
dp-10.s-02-b9 17280 115.54 292.44
dp-12.s-02-b10 ? TIME TIME
dp-8.i-02-b10 360 42.22 76.18
dp-8.s-02-b8 720 5.83 10.03

Table 11.7: Bounded Model Checking Problems. Finding all solutions.
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| | #sol || smopELS | DLV | CMODELS2 |

mutex4 ? TIME TIME TIME
phi4 134 37.54 48.21 TIME

mutex2 28 0.11 0.49

mutex3 ? TIME TIME
phi3 18 9.81 16.85

Table 11.8: Checking requirements in a deterministic automaton. Finding all
solutions.

CMODELS2. Both sSMODELS and CMODELS2 can not solve the biggest problem
in the suite.

Finally, in Table 11.8 there are the results on real-world non tight problem
related to checking requirements in a deterministic automaton. The results of
the solvers here are quite similar, but for the phi4 benchmark in the IDFD
category (we noticed a similar “abnormal” result for it also when we considered
the problem of finding one answer set). For this problem, SMODELS and DLV
perform much better than CMODELS2. For two of the problems presented, none
of the solvers that can tackle the problem is able to return all the solutions
within the time limit.

Summing up about the feature of finding all the solutions, some considera-
tions can be drawn. Here the results are less in favor to CMODELS2 when com-
pared in particular to SMODELS, and especially on non basic programs. For these
programs, SMODELS takes advantages from the (more compact) representation
of the problem, while CMODELS2 does not. We believe that the main reason is
because of our very naive implementation of test(S,II) that, if atoms(S) is an
answer set, just returns the entire set of literals S. This will be investigated in
the near future.

Nevertheless, CMODELS2 is the first SAT-based answer set solver that can find
all the answer sets of a logic program.

11.3 Summing Up

We have presented a SAT-based procedure that (i) can deal with any logic
program (i7) works on a SAT formula without additional variables, (4i7) is guar-
anteed to work in polynomial space. Further, we have evidenced that ASP-SAT
can be easily modified in order to generate all the answer sets. We have shown
how to implement ASP-SAT on top of a MCHAFF-like solver, and discussed the
modifications needed in the case of non basic programs. The experimental eval-
uation shows that CMODELS2, has a significant edge over other state-of-the-art
systems when the problem is to find one answer set, and is competitive when
solvers have to find all solutions. Still, we believe that there is a lot of space for
improvements, especially in the heuristics, and in the way reasons are computed.



Chapter 12

On the relation between
SAT and ASP

ASP and SAT are highly related. As we have seen in the last Chapters, there
is modular translation from SAT to ASP (such that a “solution” of the logic
program is also a “solution” of the related propositional theory), but in general,
unless the logic program is “tight”, there is no such a modular translation (some
of the “solutions” of the propositional theory are not answer sets of the related
logic program).

In order to have a 1-1 correspondence between ASP and SAT we have to
add “loop formula” to the initial propositional theory. The number of these
loop formula can be exponential (as proved in[LR04]), but this is a viable way,
considering the loop formula one by one selectively, as used by two emerging
SAT-based ASP solvers ASSAT and CMODELS2.

In several paper (among others [Sim00, FLP01]), has been noticed and ar-
gued that the SAT-based solvers (ASSAT and CMODELS2) and the other state-of-
the-art solvers (like SMODELS and DLV) are “similar”. But this has never been
proved formally before.

In this Chapter, we study the relation between Answer Set (AS) and propo-
sitional satisfiability (SAT) solvers, both from a theoretical and a “practical”,
implementation oriented, point of view.

On the theoretical side, given a tight logic program II, we first define ASP,
a complete recursive procedure for computing the answer sets of II. Besides
its simplicity, the main feature of ASP is that its pruning strategies are ex-
actly (resp. very similar to) the ones used by SMODELS [Sim00, SNT02], (resp.
DLV [Fab02, LPF*02]) for solving a logic program II. Thus, ASP is a sim-
ple, recursive presentation of SMODELS (and, to a certain extent, of DLV) for
tight programs. Then, if Ip2sat(IT) is the standard conversion to SAT based on
Clark’s completion and Tseitin’s [Tse70] clausal form transformation, we show
that Asp(II) and DLL(Ip2sat(Il)) are equivalent, i.e., that they explore search
trees with the same branching nodes. Vice-versa, given a set of clauses T, if
sat2lp(T) is its “naive” conversion to a tight program, we show that also DLL(T")
and AsP(sat2lp(T')) are equivalent. As a consequence, results related to DLL can
be easily shown to hold also for ASP, and vice-versa. For instance, we have that

Ixxxviii
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o sat2lp(PHP? ) are exponentially hard for Asp, where PHP]} are the
pigeonhole formulas from [Hak85];

e deciding the “best” literal to branch on, is both NP-hard and co-NP hard
for Asp, and in PSPACE for tight programs; and

e when considering sat2lp(T") programs, where I' are randomly generated
3-SAT formulas with a ratio of clauses to variables above 5.6, ASP has an
exponential behavior.

These are just a few of the many results that are already known for DLL (DLL is
one of the most studied procedure in automated reasoning), and that —thanks to
our results— can be easily shown to hold also for ASP, and thus also for SMODELS
(and DLV).

The above mentioned theoretical results show that Asp(sat2lp()) and DLL(),
(resp. ASP() and DLL(Ip2sat()) on tight programs) are, to a certain extent, the
same procedure. However, on the practical side, there is not a unique way of
realizing an ASp-based (resp. a DLL-based) AS (resp. SAT) solver. Current
state-of-the-art AS solvers are different for (i) the more-or-less optimized im-
plementation; and/or (ii) the “look-ahead” strategy used while descending the
search tree; and/or (#i7) the “look-back” strategy used for recovering from a
failure in the search tree; and/or (iv) the heuristic used for selecting the next
literal to branch on. In SAT the same holds, but to a less extent. Indeed,
current state-of-the-art SAT solvers can be divided in two main categories:!

e “look-ahead” solvers, featuring a rather sophisticated look-ahead based
on “failed literal”, a simple look-back (essentially backtracking) and a
heuristic based on the information gleaned during the look-ahead phase.
These solvers are best for dealing with “small but relatively difficult”
instances, typically randomly generated according to the “Fixed Clause
Length” model (FCL).

e “look-back” solvers, featuring a simple but efficient look-ahead (essentially
unit-propagation with 2 literal watching), a rather sophisticated look-back
based on “learning” and a constant time heuristic based on the information
gleaned during the look-back phase. These solvers are best for dealing
with “large but relatively easy” instances, typically encoding real-world
problems.

Right now, in order to advance the state-of-the-art, SAT developers focus either
on randomly generated problems and develop a look-ahead solver, or on real-
world problems and develop a look-back solver. This is the result of various SAT
competitions, of the development of systems tuned for specific classes, and of
various papers assessing the benefits of the different search strategies in different
domains.

In AS programming (ASP) the situation is different. Considering randomly
generated programs, thanks to the richer structure that programs have if com-
pared to formulas, there are various ways to generate them, each somehow

IThe phrases “small but relatively difficult” and “large but relatively easy” are used just
to convey the basic intuitions about the instances. However, consider that in the SAT2003
competition, instances in the random and industrial categories had, on average, 442 and 42703
variables respectively [LS03].
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corresponding to the SAT FCL model (see [LZ03b]). Considering real-world
benchmarks, the ones that are most used in SAT and in AS have different char-
acteristics: While in SAT most of them have tens or hundreds of thousands of
variables (see, e.g., [LS03]), in AS most of them have far fewer variables. As
a consequence, it is not clear whether the combination of the reasoning strate-
gies that currently dominate in SAT, are bound to dominate also in ASP, this
despite of the tight relation (proved in this paper) that exists between AS and
SAT solvers. In order to answer this question, we conducted an extensive exper-
imental evaluation. Our results point out that on randomly generate problems,
look-ahead solvers are best; while for real-world problems, there is not a single
winning combination of look-ahead and look-back strategies and heuristic. A
closer analysis of the results reveals that large problems are best tackled by look-
back solvers, while the others are best dealt with a combination of look-ahead
and look-back strategies. Given that the majority of the AS problems that are
currently available have a relatively small number of variables, we expect that
future development (resp. comparison) of AS solvers for (resp. on) real-world
problems should feature (resp. reward) a combination of look-ahead and look-
back techniques. On the other hand, we also expect that as soon as more large
(but relatively easy) problems will become available, look-back solvers will start
to prevail over the others. Using the terminology in [GMTZ01], our comparison
is “fair” because all the reasoning strategies are realized on a common platform
(thus, our experimental evaluation is not biased by the differences due to the
quality of the implementation) and is “significant” because our solver imple-
ments current state-of-the-art procedures for look-ahead and look-back, and we
considered a wide variety of benchmarks.

12.1 On the relation between ASP and SAT

Let P be a set of atoms. If p is a an atom, P is the negation of p (to be intended
as negation as failure not ), and p is p. We will also use the logical symbols |
and T (standing for FALSE and TRUE respectively), and assume that L = T and
T = L. Atoms, their negations, and the symbols L, T form the set of literals.
If S is a set of literals, we define S = {I:1 € S}.

12.1.1 Answer Set Programming

We report in this subsection, for convenience of the reader, some notation we
will use in this Chapter. They have been already introduced in Chapter 9.

A rule is an expression of the form

DPo <_p17"'7p7rwﬁm+17"'7pn (121)

where po € PU {L}, and {p1,...,pn} C P (0 <m < n). If ris arule (12.1),
head(r) = po is the head of r, and body(r) = {p1,...,PmsDPm1>---+Pn} is the
body of r. A (logic) program is a finite set of rules.

Consider a program II, and let X be a set of atoms. In order to give the
definition of an answer set we consider first the special case in which the body
of each rule in IT contains only atoms. Under these assumptions, we say that
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e X is closed under II if for every rule (12.1) in II, py € X whenever
{pla v apm} - X, and that

e X is an answer set for II if X is the smallest set closed under II.

Now we consider the case in which II is an arbitrary program. The reduct
II¥X of II relative to X is the set of rules

Po < DP1,---,Pm

for all rules (12.1) in IT such that X N {pmy1,---,Pn} = 0. X is an answer set
for IT if X is an answer set for TIX.

12.1.2 Propositional reasoning

A clause is a finite set of literals different from L, T, and a formula is a finite
set of clauses. An interpretation is a set of atoms. An interpretation X satisfies
a formula T if for each clause Cin T, CN(X U{pP|p & X}) # 0. If X satisfies
o then we also say that X is a model of ¢ and that ¢ is satisfiable.

12.1.3 Translation from ASP to SAT

Consider a program II. Tt is well known that if X is an answer set of I then
X satisfies the completion of II, and that the converse is true if the program is
“tight” [Fag94]. The standard definition of the completion of a program II is not
directly representable as a set of clauses. However, we can use well known linear
time conversion methods and obtain an equi-satisfiable set of clauses. Here, in
particular, we use Tseitin’s conversion [Tse70].

If po is an atom, the translation of II relative to pg, denoted with Ip2sat(I1, po),
consists of

1. for each rule r € II of the form (12.1) and whose head is pg, the clauses:

{pOJI_)la s aﬁmapm-f-la s 7pn}7
{nTaﬁla ree az_jmapm-f-l; te ;pn};
{ﬁﬁpl}a LR} {ﬁﬁpm}7 {ﬁﬁpm+l}7 LR} {ﬁﬁpn}a

where n, is a newly introduced atom,? and

2. the clause {py,nr,,...,n,,} Where n,,...,n, (¢ > 0) are the new sym-
bols introduced in the previous step.

The translation of II relative to L, denoted with Ip2sat(Il, L), consists of a
clause

{1_)17 .- 7ﬁm7pm+17 s ,pn}a

one for each rule in II of the form (12.1) with head L. The translation of II,
denoted with Ip2sat(II), is Upe pug1}ip2sat(Il, p).

A program II is tight if there exists a function A from atoms to ordinals
such that, for every rule (12.1) in IT whose head is not L, A(pg) > A(p;) for
each ¢ = 1,...,m. The following theorem is an easy consequence of Fages’ and
Tseitin’s results.

2In the definition of Ip2sat(II,po), we can replace the first clause with the clause {po,n,}:
The resulting formula would be equivalent, and the results in the paper would still hold.
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Theorem 3 LetII be a program. If X is a an answer set of II then there exists
a unique model Y of Ip2sat(I1) such thatYNP = X. IfY is a model of Ip2sat(II)
and IT is tight, then Y N P is an answer set of II.

12.1.4 Translation from SAT to ASP

We review here the translation introduced in Chapter 9.

Consider a formula I'. To each clause C' = {l1,...,;} (I > 0) in I we asso-
ciate the rule sat2lp(C) = L « I,...,I;. The translation of T', denoted with
sat2lp(T), is Ucer sat2lp(C)UUyep{p + p',p' <+ P}, where, for each atom p € P,
p' is a new atom associated to p.

Theorem 4 Let T be a formula. sat2lp(T) is tight. Further, if Y is a model of
T then there exists a unique answer set X of sat2lp(T) such that XNP =Y. If
Y is an answer set of sat2lp(T), then Y N P is a model of T.

12.2 On the relation between ASP and DLL

In this section, we restrict our attention to tight logic programs. Consider
a tight logic program II. In the last few years, several systems for answer
sets computation have become available, including SMODELS, DLV, ASSAT and
CMODELS.> While the first two are native procedures working directly on TI,
the last two (¢) compute the completion of II; (i¢) convert it to a set of clauses;
and (i4¢) exploit the efficiency of SAT solvers, most of which are based on the
Davis-Logemann-Loveland procedure (DLL). Though apparently different, we
show that these two approaches are strongly related (if using Tseitin’s clausal
form transformation).

An assignment is a set of literals. Given an assignment S, we say that a
literal | is assigned by S if {I,1} NS = 0.

12.2.1 ASP

Given a program II, both SMODELS and DLV search for answer sets by extending
an assignment S till either S becomes inconsistent (in which case backtracking
occurs) or each atom is assigned by S (in which case S N P is an answer set).
SMODELS and DLV differ in many ways, e.g., for the language considered. Still, at
an high-level of abstraction and when considering tight logic programs, SMODELS
and DLV are similar to the procedure ASP-REC represented in Figure 12.1. In
the figure,

e Il is a program, initially set to the program of which we want to determine
the existence of answer sets; S is an assignment, initially set to {T}.

e p denotes an atom, r a rule, and [ a literal.

3 All the systems work also on non-tight programs. See, http://www.tcs.hut.fi/Software/
smodels, http://www.dbai.tuwien.ac.at/proj/dlv, http://assat.cs.ust.hk, http://wuw.
cs.utexas.edu/users/tag/cmodels.html, respectively.
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function AsP-REC(II,S)

1 (I, S) := simplify(IL, S);

2 if ({I,I} C S) return FALSE ;

3if ({p:p€ P,{p,p} NS # 0} = P) return TRUE ;
4 p := ChooseLiteral(S);

5 return ASP-REC(p-assign(p,II)), S U {p}) or

6 ASP-REC(p-assign(p, I1)), S U {p});

function simplify(I1,5)
7 if (r € II and body(r) = @ and head(r) € S)
return simplify(p-assign(head(r), 1), S U {head(r)});
8 if ({p,p} NS =0 and Ar € I : head(r) = p)
return simplify(p-assign(p,11), S U {B});
9 if (r € IT and head(r) € S and body(r) # § and
Arl e L, r" # 7 : head(r') = head(r))
return simplify(p-assign(body(r), 1), S U body(r));
10 if (r € IT and head(r) € S and body(r) = {I})
return simplify(p-assign(l,11)), S U {1});
11 return (II, S);

Figure 12.1: The algorithm of AsP-REC for tight logic programs.

e p-assign(l,IT) returns the program obtained from II by (i) deleting the
rules r such that [ € body(r); and (ii) deleting [ from the body of the
other rules in II.

e If[y,...,1, are the literals in a set S’,
p-assign(S’, 1) is p-assign(ly, - .., p-assign(l,, 1) . ..).

e For simplicity, ChooseLiteral(S) returns the first, according to a fixed total
order on P, unassigned atom by S.

The computation of ASP-REC(II, S) proceeds as follows (in the following, we
say that a set of atoms X extends an assignment S if SNP C X and SNX = §:

e Line 1: The program II is simplified and the assignment S is extended by
the routine simplify(IL, S), explained below.

e Line 2: if S is inconsistent, no answer set extending S exists, and FALSE
is returned,

e Line 3: if each atom p € P is assigned, then (i) SN P is an answer set of
the initial program, and (i¢) TRUE is returned.

e Lines 4-6: if none of the above applies, an atom p is selected (line 4), an
answer set extending S U {p} is searched first (line 5), and, upon failure,
we search for an answer set extending S U {p} (line 6).

The simplification steps of the procedure simplify(I1, S) encode the following
facts:
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function DLL-REC(T,S)

1 (T, S) := unit-propagate(T, S);

2 if ({I,I} C S) return FALSE ;

3if ({p:p€ P,{p,p} NS # 0} = P) return TRUE ;
4 p := ChooseLiteral(S);

5 return DLL-REC(s-assign(p,I')), S U {p}) or

6 DLL-REC(s-assign(p,I')), S U {P});

function unit-propagate(T,S)
7 if ({l} € T) return wunit-propagate(s-assign(l,T), S U {l});
8 return (I, S);

Figure 12.2: The algorithm of DLL-REC.

e Line 7: if there exists a rule r whose body is empty, then every answer set
extending S includes the head of r.

e Line 8: if an unassigned atom p is not the head of any rule, then every
answer set extending S does not include p,

e Line 9: if there is only one rule with head p, and p € S, then each answer
set extending S, also extends S U body(r).

e Line 10: if there is a rule with head p and whose body consists of a single

literal [, then if p is in S, then every answer set extending S also extends
Su{l}.

When no further simplification is possible, the pair (II,S) is returned by
simplify(I1, S) (line 11).

Notice that the rules used by ASP-REC to extend the assignment S in lines
(7)-(10) are exactly the same used in SMODELS (procedure expand, see [Sim00]
pagg. 17,32-37)* and are very similar to those used by DLV (procedure DetCons,
see [Fab02], pagg. 40-43).

In the following, ASP is the procedure which, given a program II, returns
ASP-REC(IL, {T}).

Theorem 5 Let II be a tight logic program. ASP(II) returns TRUE if Il has an
answer set, and FALSE otherwise.

12.2.2 DLL

DLL-REC is at the basis of most of the state-of-the-art SAT solvers, and is
presented in Figure 12.2. We report here again the algorithm and also how
unit-propagate() is implemented for convenience of the reader. Here, DLL-REC
is slightly modified (we will see shortly the reason). In the figure,

4More in details, expand calls two functions, AtLeast and then AtMost, the first of which
corresponds to simplify, and the second allowing to derive additional negative literals. How-
ever, in the case of tight programs, AtMost does not allow to derive any additional literal
(see [Sim00], pag. 44).
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e T'" is a set of clauses, initially set to the formula of which we want to
determine the satisfiability; S is an assignment, initially set to the empty
set.

e p and / denote an atom and a literal respectively.

o s-assign(l,T) returns the formula obtained from I' by® (i) deleting the
clauses C' € T with [ € C, and (ii) deleting [ from the other clauses C € T
with |C] > 2.

The name of s-assign(l,T") here is a bit misleading, because this is the Simplify()
procedure presented in past parts. But in this Chapter, following the notation
of the original paper, we refer to simplify() as the simplification procedure of
ASP-REC. Moreover, the definition of s-assign(l,T’) which does not consider
the unit clauses (i.e., consisting of a single literal) in T, allows us to have a
termination condition for FALSE similar to that of the procedure ASP (see line 2
in Figure 12.1). This will make easier the formal statement of our results in the
next subsection. We call DLL the procedure which, given a formula I', returns
pLL-REC(T, ().

Theorem 6 Let I' be a formula. DLL(T') returns TRUE if I' has a model, and
FALSE otherwise.

Notice that Theorem 6 is very similar to Lemma 1 in Chapter 2.

12.2.3 ASP, DLL and their relation

Our goal is to prove that ASP and DLL computations are tightly related when
given a program II and Ip2sat(Il) respectively, or sat2lp(T') and a formula T
respectively. The first problem is that both translations (lpZ2sat and sat2lp)
introduce additional atoms not in P: In the following we assume that both
ASP and DLL operate in the signature of the input program and formula respec-
tively (i.e., in the possibly extended signature). However, we still assume that
ChooseLiteral(S) returns the first atom in P which is unassigned by S: Notice
that once all the atoms in P are assigned, also the atoms introduced by Ip2sat
(resp. sat2lp) will be assigned by unit-propagate (vesp. simplify).

Given this, one possibility for achieving our goal would be to consider the
search trees corresponding to the assignments generated by the two procedures,
and try to prove that they are the same. However, this is not the case:

e Both Ip2sat and sat2lp introduce additional atoms not in P and also these
atoms get assigned, and

e The order followed by simplify and unit-propagate to assign literals may
differ.

However, if we do not take into account the above differences, we have that the
two procedures generate the “same” search tree. In order to formally state this
result we introduce the following definitions.

5We assume that s-assign(l,T’) does not eliminate I from {I} because this allows us to have
a termination condition for FALSE analogous to the one used in ASP (see line 2 in Figure 12.1).
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Consider a program II and a formula I', possibly with atoms not in P.
We say that a set of literals S in the signature of II (resp. I') is a branching
node of ASP(II) (resp. of DLL(T)) if there is a call to Asp-REC(IT',S) (resp.
DLL-REC(I", S)), following the invocation of ASP(II) (resp. DLL(I")). If proc is
ASP(IT) or DLL(T"), we define

Br(proc) = {SN(PUP): S is a branching node of proc}.
Finally, we say that ASP(II) and DLL(T") are equivalent if Br(Asp(II)) = Br(DLL(T")).

Theorem 7 For each tight program I, Asp(Il) and DLL(Ip2sat(I1)) are equiva-
lent. For each formula T, DLL(T') and asp(sat2lp(T)) are equivalent.

The idea underlying the proof is that the atoms in P assigned by simplify
correspond exactly to those assigned by wunit-propagate on the translation of the
program. Then, ChooseLiteral is guarantee to return the same atom in the two
procedures.

Theorem 7 establish a strong relation between ASP and DLL: To a certain
extent, ASP(sat2lp()) and DLL(), AsP() and DLL(lp2sat()) are the same pro-
cedure (at least on tight programs). Further, the results hold independently
from the specific heuristic used by Asp and DLL, as long as they are guaran-
teed to return the same literal at every point of the two search trees. Because
of this, similar results would hold if we enhance ASP and DLL with more pow-
erful look-ahead techniques based on simplify and unit-propagate respectively.
For instance, SMODELS before branching, for every unassigned literal [ in the
program, checks whether assigning [ would “fail”, i.e., in our terminology, if
simplify(p-assign(l,II), S U {l}) returns (as second argument) an inconsistent
set of literals: if this is the case, we can safely assign I before branching. How-
ever, if [ fails, then also branching on [ would fail, and the tree generated by
ASP extended with such “failed literal” strategy corresponds to the tree gen-
erated by ASP with a specific heuristic. Using the same heuristic in DLL (i.e.,
using a similar “failed literal” strategy based on unit-propagate) would lead to
an equivalent search tree.

Thanks to these results, we can directly derive lower/upper bounds, average
case results for ASP, which are already known for DLL, such as:

o sat2lp(PHIP" |) are exponentially hard for Asp. Consider the pigeon-
hole formulas PHP}. It is well known that any resolution proofs of the
unsatisfiability of PHP[_; is exponential [Hak85]. Given that each DLL
search tree corresponds to a regular tree resolution, we can immediately
conclude that Asp(sat2lp(PHP! ,)) is exponential.

e In ASP, deciding the optimal literal to branch on, is both NP-hard and co-
NP hard, and in PSPACE for tight programs. Define a literal [ as optimal
for a formula T if there exists a minimal search tree of DLL(T') whose
root is labeled with . Liberatore [Lib00] showed that deciding whether a
literal is optimal is both NP-hard and co-NP hard, and in PSPACE. The
definition of optimal for a program II is analogous, and, given our results,
the derivation of the above mentioned bounds for ASP, are easy.

e sat2lp(k-SAT) are asymptotically exponentially hard, in probability, when
d > 0.7 x 2%, If we consider randomly generated SAT formulas with m
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clauses and k literals per clause, (as done, e.g., in [FLP01, SNT02, WS04]),
with probability tending to one as the number of the number of variables
n tends to infinity, ASP has an exponential behavior (in n) if the density
d=m/nis d > 0.7 x 2k, This result easily follow again from our results
and the results in [CS88].

Since, in their SAT formulation, the first and third result hold for any proof
system based on resolution, and since ASP (on tight programs) and DLL search
trees correspond to a form of resolution, these results hold also if Asp and DLL
were using “learning” look-back strategies (as, in AS, does SMODELS-CC [WS04]
and CMODELS2 [GML04]).

There are many other results in the SAT literature studying the proof-
complexity of DLL and/or resolution that are applicable also to ASP. See,
e.g., [Mon04] for a study on the average complexity of coloring randomly gen-
erated graphs with DLL, and [ABMO1], which derives exponential lower bounds
on the running time of DLL on randomly generated 3-SAT formulas also for den-
sities significantly below the satisfiability threshold d = 4.23. The first result
applies also to ASP when run on a program II being the standard tight formu-
lation of a graph coloring problem:® Ip2sat(TI) is the standard formulation in
SAT considered in [Mon04]. Analogously for the second.

12.3 On the relation between AS and SAT solvers

Given the results established in the previous Section, it is easy to show that
the numbers nagp and npy, of literals assigned by an AS solver based on ASp
and a SAT solver based on DLL respectively, if run on a tight program II and
Ip2sat(Il) respectively (or on sat2lp(T) and a formula T respectively) are such
that min(nasp,npLL) < maz(nasp,nprL) < 2 x min(nasp,nprr) (this of
course assuming that the two solvers use “equivalent” look-ahead, look-back and
heuristic). Because of this, we can expect that the combinations of reasoning
strategies that work best in SAT, should also work best in AS. However, as we
already anticipated in the introduction, this is only partially the case. We now
report about an extensive experimental comparison that we have conducted on
a wide variety of programs, and using the combinations of reasoning strategies
that, along the years, proved to be more effective in ASP or in SAT. When
deciding how to implement the system, we had two possibilities: Either develop
a native AS solver based on ASP, or start from a SAT solver and evaluate
the performances on the translation to SAT of each program. We opted for
the second. In particular, we started from CMODELS2 [GMLO04] because (i) its
front-end is LPARSE [Sim00]; (i) its back-end SAT solver already incorporates
some of the state-of-the-art strategies (like lazy simplification based on literal
watching, 1-UIP learning, VSIDS heuristics) that we want to test; and (i4¢) can
be also run on non-tight programs. There is no other publicly available system
(be it an AS or a SAT solver) having the above features, and that we know of.
Given this, the reasoning strategies that we considered are:

e Look-ahead: Basic unit-propagation (denoted with “U”); and
unit-propagation+failed-literal (denoted with “F”).

6See, e.g., the formulation in http://www.tcs.hut.fi/"ini/papers/
niemela-iclpO4-tutorial.ps.gz.
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[ [PB[#VAR] uv | fiv | flu | fou | ulp |
4] 300 || 0.41 | 052 | 0.85 | 0.66 | 21.79

45| 300 | TIME | TIME |81.92]22.53 | TIME
5 | 300 | 448.21|485.36| 8.27 | 4.72 | 452.75
55| 300 73 | 38.61 | 2.26 | 1.7 | 38.48
6 | 300 | 20.94 | 12.01 | 0.95 | 0.81 | 7.83

G | o DN =

Table 12.1: Performances on tight randomly generated logic programs.

e Look-back: Basic backtracking (denoted with “B”); and backtracking+1-
UIP learning from [MMZ101] (denoted with “L”).

e Heuristic: VSIDS from [MMZ%101] (denoted with “v”); unit (given an
unassigned atom p, while doing failed literal on p we count the number u(p)
of unit-propagation caused, and then we select the atom with maximum
1024u(p) x w(P) + u(p) + u(p). This heuristic is denoted with “vU”.

We start our analysis considering 4 combinations of reasoning strategies: ulv,
flv, flu and fbu, where the first, second and third letter denote the look-ahead,
look-back and heuristic respectively, used in the combination. ulv is a standard
look-back, “zChaff”-like, solver, similar to SMODELS-CC and CMODELS2. fbu is
a standard look-ahead solver. flv and flu have both a powerful look-ahead and
look-back but different heuristic. All the tests were run on a Pentium IV PC,
with 2.8GHz processor, 1024MB RAM, running Linux. The timeout has been
set to 600 seconds of CPU time for random problems, and 3600 for real-world
problems.

Tables 12.1, 12.2, 12.3 and 12.4 show the results on a wide variety of bench-
marks.” In particular, benchmarks (1-5) in Table 12.1 are programs being the
translation of randomly generated 3-SAT instances with “# VAR” variables and
a ratio of clauses to variables as in the column “PB”. The number in the column
PB for instances (24-28) in Table 12.3 has the same meaning, being instances
randomly generated according to the methodology proposed in [LZ03b]. For
each ratio, we randomly generated 10 instances and show the median results.
All the other benchmarks are real-world problems. For all problems but Ta-
ble 12.1 the number of variables after LPARSE of each is shown in the column
M# VAR” .

For each row, the best result is in bold, and the results within a factor of 2
from the best, are underlined.

The first observation is that on random benchmarks, learning does not help,
and fbu has an edge. These results confirm what we know from the SAT lit-
erature. Considering the non-random, the situation is far less clear. Indeed,
look-back solvers perform quite well on a wide variety of benchmarks, but not
as well as one would expect. In particular, the performances on the bounded
model checking (BMC) instances (problems (9-17) in Table 12.2) of ulv (resp.
flv and flu) are worse (resp. better) than expected: In SAT, BMC instances are
the benchmarks where look-back (resp. solvers with powerful look-ahead) give

"We considered far more benchmarks than those we show. Most of the benchmarks that
we considered are from http://www.tcs.hut.fi/Software/smodels/tests/, http://www.tcs.
hut.fi/"kepa/tools/boundsmodels/.
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| | PB | # VAR || ulv | flv | flu | fbu | ulp |
queens21 925 786.14 | 1864.49 | 384.87 | 47.33 0.24
queens24 1201 TIME | TIME | TIME | 368.76 0.28
queensb0 5101 TIME | TIME | TIME | TIME | 347.98

9| d*12*i*9 1186 || 223.93 | 383.66 | 353.53 | TIME | 2910.96
10 k*i*29 3199 || 415.54 | 204.87 | 44.14 | 589.45 | 1329.53
11 k*s*29 3169 353.69 | 1028.77 | 59.99 | TIME | 509.29
12| m*3**10 1933 16.23 32.23 | 26.71 16.55 6.19
13| m*4*i*12 3475 || 1063.15 | 867.49 | TIME | 3229.09 | TIME
14| m*4*s*8 1586 17.02 27.59 | 421.30 | 327.55 | 13.79
15 q*i*17 2201 || 1539.96 | 505.15 | 259.05 | 816.26 | TIME
16 | e*3*i*15 7832 || 479.28 | TIME | 7.15 6.87 | TIME
17| e*4**13 6447 87.63 | 567.27 | 20.02 | 19.41 | 104.45
18 | bw-large.d9 | 9956 1.02 5.84 2.69 2.75 1.01
19 | bw-large.e9 | 12260 0.98 191 1.92 1.93 1.03
20 | bw-large.el0 | 13482 1.29 7.51 5.03 4.95 1.55
21 p1000 14955 0.48 37.86 15.41 15.23 3.69
22 p3000 44961 8.86 | 369.27 | 144.12 | 142.83 | 223.62
23 p6000 89951 || 99.50 | TIME | 583.55 | 578.98 | 2549.50

| 3| S

Table 12.2: Performances on non-randomly generated logic programs. (6-8) are
queens; (9-17) are bounded model checking; (18-20) are blocks-world; (21-23)
are 4-colorability;

PB | # VAR ulv flv flu fbu ulp

24| 4 300 || 265.43|218.48 | 41.97 | 31.05 | 77.41
2514.5| 300 TIME | TIME | 190.73 | 135.11 | TIME
26| 5 300 TIME | TIME | 136.67 | 99.75 | 439.71
2715.5| 300 TIME | TIME | 129.29 | 78.63 | TIME
281 6 300 TIME | TIME | 107.34 | 65.83 | 591.3

Table 12.3: Performances on non-tight randomly generated logic programs.

PB # VAR || ulv flv flu fbu | ulp

29| bw-basic-i 5301 | 2.16 | 1554 | 6.07 | 5.79 | 2.54
30 | bw-basic-i-1 | 4760 | 1.64| 4.92 247 | 2.44 | 1.86
31 | bw-basic-i+1| 5842 || 2.49 | 24.27 |22.01|19.71|2.41
32 npd0c 7452 || 1.66 | 544.45 | 17.74|17.84 | 2.38
33 np60c 10742 || 2.83 | 1611.32 | 44.12 | 44.12 | 4.77
34 np70c 14632 || 4.69 | TIME | 97.44 | 97.89| 5.91

Table 12.4: Performances on non-randomly generated non-tight problems.
Problems (29-31) are blocks-world; (32-34) are Hamiltonian Circuit on com-
plete graphs.
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their best (resp. their worst). This is indeed explained if we look at the number
of variables “# VAR” of these instances, which is in the order of a few thou-
sands. Indeed, for such “# VAR” it still make sense to perform an aggressive
look-ahead at each branching node. On the other hand, as “# VAR” increases,
this is no longer the case, as the results on the 4 colorability instances (lines 21-
23) show in Table 12.2.

We implemented a 5th combination of reasoning strategies (called ulp) which
is similar to flu, except that (i) we first select a pool of 10 “most watched” vari-
ables, and (i¢) we perform failed literal and score accordingly only the variables
in the pool. The results are shown in the last column. As it can be seen, ulp
performs well on some benchmarks in which flu is not competitive, this despite
our non optimal pooling criteria.® This is not surprising, given that we know
from SAT that performing failed literal on a restricted pool of most promising
variables is often a better idea than doing failed literal on all the unassigned
variables. (As a side remark, SMODELS has criteria which allows it not to try
literals that will not fail). We expect that better performances for ulp can be
obtained by using more sophisticated pooling criteria. Thus, given the rela-
tively low number of variables in most instances, we believe that if the goal is
to develop a general purpose AS solver, an ulp-based solver is, at the moment,
the way to go. Nonetheless, as soon as the “# VAR” in challenges benchmarks
increase, we except that ulv-based solvers will become the best performing on
real-world benchmarks, as in SAT.

8Qur pooling criteria is motivated by the fact that we are using a solver with literal watch-
ing. While this data structure is good for fast unit-propagation, does not allow to properly
select the “most promising” variables using better criteria which take into account all the
occurrences of a variable. To have such pooling criteria without sacrificing the efficiency of
unit propagation, the obvious solution is to have an additional data structure to be used just
for pooling.
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Chapter 13

Introduction

In this Chapter we investigate the approach of performing Safe Planning via
reduction to some interesting problems related to the SAT problem. We now
briefly see the definitions of these problems. The problems we are interested in
are:

1. Max-SAT [dGLMSO03]: Given an unsatisfiable SAT instance, find how
many clauses can be satisfied at most (at the same time).

2. Min-One [ARMSO00]: Given a satisfiable SAT instance, find the satisfiable
assignment with the highest number of variables set to 1 (true).

(problems Min-SAT and Max-One are defined similarly).

SAT is a decision (or yes/no) problem. This means that, in order to answer
this problem, it is sufficient that the solver returns “yes” if the formula is satis-
fiable, and “no” if the formula is unsatisfiable. In SAT, a very important class
of problems are randomly generated problems. As showed in previous Chapters
and Sections, these problems usually have a classical “phase transition” with
respect to the ratio between clauses and variables (each clause having a fixed
number of literals). For low ratio (under-constrained region), almost all the
problems are “satisfiable” (it is quite easy to find a satisfiable assignment). Af-
ter a region (for “medium” ratio) in which there is a transition between “almost
all” satisfiable and “almost all” unsatisfiable problems, for “high” ratio (over-
constrained region) almost all the problems are unsatisfiable (and it is quite
easy to show it).

The Max-SAT and Min-One problems introduced above are the related “op-
timization” problems to SAT on the under- and over-constrained regions respec-
tively. It is not enough for them a yes/no answer, but they need some kind of
“optimization” w.r.t. the number of clauses or the number of variables.

Consider now in particular a Min-SAT problems, and the Safe Planning via
Propositional Logic approach presented in Chapter 3. In order to define the
new approach, all the considerations made for the former approach are still
valid. Moreover, we can associate to each propositional variable A; (that, we
remember, corresponds to the ground action A at time i) a “weight” to the
variable. In this way we can construct a functional cost defined on the (ground)
actions of the planning problem. The compiler outputs a propositional formula
(exactly the one we saw in Chapter 3), plus a functional cost that must be

cii
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minimized (using some informations on top of the CNF formula, for details
refer to Chapter 15). Now “propositional formula+ functional cost” represents
the optimization problem (Min-One in our case). The problem is weighted if at
least one weight is > 1.

A solution returned by a (Weighted) Min-ONE solvers has the following
properties.

e the plan is safe

e the plain is minimal w.r.t. the number of actions in the plan, if the problem
is un-weighted, or w.r.t. a functional cost defined on the actions, if the
problem is weighted.



Chapter 14

From optimization
functions to CNF formulas

This section is devoted to showing some state-of-the-art encodings for opti-
mization functions to CNF formulas. We will focus on optimizations related to
functions of the type

Zi a;xT;

where a; are numeric (integer) constants and z; are variables ranging over {0,1}.

Moreover, in this Chapter we will focus our attention to functions with
general a; = 1 (also called cardinality constraints): Nonetheless, when possible
we will show how to extend the encoding to deal with general coeflicients. For
each encoding, we will also show pros and cons of the encoding, some complexity
issues, and an example.

The final goal of each encoding is a bits-based representation of the opti-
mization function.

14.1 Naive encoding

This is probably the simplest encoding one can think of and it uses (full) adders
in order to implement the encoding.

A full adder is a circuit showed in Figure 14.1 where z and y are the inputs
that are to be added, b is the sum of the bits and C' is the carry. b in defined as
r®yand C as x Ay.

In order to generalize to n bits, using zg...T,—1, we can put “in cas-
cade” several full adders in order to build the encoder. In the end, the bits
that characterize the sum of the cardinality constraint are the outputs of the
“most external” full adders, called bo, bjog,(n—1); this means that Z?;ol T; =
St ") 2%

From the complexity-side, the number of new variables that are to be added
ist (n—1) 4+ (n—2)+ ...+ 1, a quadratic number of new variables.

We will not show here examples regarding how the encoding works: It is
sufficient to say that the encoding of the sum of 4 bits (or integer variables

civ
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Figure 14.1: Full adder.

ranging over {0, 1}) with unitary coefficients consists of a CNF formula with 42
clauses.

Pros
e easy to implement
Cons
e could be a naive approach

In fact, some preliminary analysis using this encoding have shown that it
leads to non-positive results in terms of CPU time.

For these reasons, the experimental evaluation showed in Chapter 16 will
not include this encoding.

14.2 Warners’s encoding

This encoding was presented in [Waa96].
It is characterized by a binary representation of the coefficients a; as:

Ekoak

where, given G, = max; a;, M is the maximum natural number such that
M<1+ l092(amaz)-

We associate a propositional letter p, with each coefficient at, and transform
a; as follow

trans(a;) = /\ L A /\ -, (14.1)
k€Ba,; k¢Ba,

Furthermore, we associate a propositional letter p,, with the (binary) vari-
able z;. Recall that B,, is the set of indexes j for which aj, = 1.
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Moreover, given I a set of indexes, we introduce the sets || C I and [I] C I,
such that the following holds:

Lo =1, LI =0, |LZ]| = [[1], [ =[] < 1,

The bits that represent the sum are denoted with {pz}kzo,___, M;, where M =
M + loga(]I]), this means that

My
Z a;T; = Zp}ﬂk (14.2)
i k=0
The transformation of ) . a;x; over the set of indexes I is defined recursively like:

trans(d ey aiwi) =

trans(3,e ) aiwi) A trans(3crp aizi) A T+(p£,p,LcIJ,p,Eﬂ) if [I] > 2

trans(a;) A T*(pi,al, ;) if 1= {2}

with operator T7(.) that defines the addiction of two numbers in binary
notation and 7*(.) that defines the multiplication of a number in binary notation
with a binary number.

In more details, the transformation T+ (pY,py,p}) with U=V U W, V
and W non-empty, is given by:

(g (P > —p5)) A (14.3)

(b1 ¢ (g Apo)) A (14.4)

/\ f < @ <Pl & cil1k) A (14.5)
k=1,...,My

/\ (ckU+,k+1 “ 0 APV (X A cllc]—l,k) vV (py A Cllc]—l,k:)) A (14.6)
kzl,...,MU—l
(St —1,0m0 € Diry) (14.7)

The transformation operator T%(.) is given by:

M;

T* (D i o) = \ Wi ¢ (B A Da2)) (14.8)
k=0

Till now we have been quite accurate, but a number of simplifications are
possible by relaxing same requests.

Consider (14.3): We need for p§ to be true that either p§ or p} is true we
require equivalence. It is possible to relax the equivalence as an implication

((p§ < —pY) = pY) (14.9)

py might be true when both p} and p§’ are false.
We can also replace the equivalences by implications in expression (14.4) to
(14.7).
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Moreover, by unit resolution between (14.1) and (14.8) we obtain

N\ @ ep)n N\ -0 (14.10)

k€EB, k¢B.,

which has the CNF

(_'p;c pri) A (p;c \Y% _'pivi)a\-/k € Bai
—pL,Vk ¢ By, .

From the complexity point of view, for the general case, the number of
new added variables var,, is (m log2(amaez)), and (more precisely) var,, <
2m(2 + log2(@maz)); the number of newly introduced clauses cl,, has a similar
complexity, and precisely cl,, < Tm(3 + 2log2(amaz))-

Assuming that a4, is bounded, the procedure adds a linear number (over m)
of variables and clauses.

Pros
e linear-time transformation

e same optimizations (described in [Waa96]) that lead to a less number of
(variables and) clauses introduced by the encoding are possible

Cons
e the “theory” behind it is not simple
¢ maybe not so easy to implement

In order to clarify the above encoding, we report here the encoding of the sum
of 4 bits.

Example 9 We start by transforming each x; into a propositional formula:
trans(z1) = (py € Pey) N ﬁpl = (po V 7Par) A (-5 V Pey) A7
trans(zz) = (py € Pas) AP} = (B§ V 7Pas) A (7P V Pas) A D]
tTanS('Z'B) = (pg < pw3) A _‘p? = (pg \Y% _‘pws) A (_‘p(s) prs) A _'p?
trans(zs) = (P4 € Pas) A PE = B) V ~Pzs) A (705 V Pas) A —pi

Now, each of the sum 1 + o and x3 + x4 is translated in a CNF too:
trans(zy + x2) =
(po? ¢ (pb ¢ 13 ) 001 © SP(? AD})) 6 (pt ot o)Ay ©
(P} APV (E A o) V (03 A o) /\(Pz H 122)_

1,2 1,2 1,2

(py> Vo v ﬁp3)2/\ (=g V' pg V p5) A (po V=g Vpg) A (=pg” V pg V pg) A

(001 _‘po _‘Po) 2(_‘001 Vzpo) (_‘001 \ Pg)

(_'pl Vv pi Vpl \ CO% ) A (pl _‘P1 Vp% \2/ coi ) A (571 VP1 —|p1 \ 03’1 YA (P%

pLVpiV _‘001 )/\ (P V=pt Vopd Vo) A (o V opt VpE Vi) A (<prt v
1 1,2 1 2 1,2

"%92171 _'lpl \ 001 ) _‘2171 \ _‘p1 Vlgl _'COE A 1o Lo ) )

(01’21 ;/ _‘p% _‘p}) (c13 V —|p1 _‘0011)2/\ (C12 ViV el ) A (e Vo Vp) A

(mery VPV megt) A (mery VpE v e A
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1,2 1,2 1,2 1,2
(c13 Vpy" A (mepy Vipy'®)

trans(xs + x4) =

3,4 3.4 3,4
(Pg <—Z (0§ <_3> P3)3)4/\ (Co1 « (Pg /\Po)) (P1 ) 1—) (0} & pi & ) A(cy
(Pl/\pl)V(P1/\coi)V(pl/\cm))/\(Pz < crh)

with the set of CNF clauses following the same lines as in trans(xy + ).

Finally, conszdemng U=1{1, 2 3, 4 trcms (1 + 22 + x3 + 374)

0 < (" ) A ch 6 057 A s ) AGE 6 () 6 B e ) A
(e, © (pi %) A (p21 AV (0" A )Y (Pz & Py & cy) Ay ©
(P2 /\Pz )V (Pz Acfy) V (P2 5 ) A (c5s < pY)

(the correspondent CNF clauses are not reported here).

It is sufficient to say that the encoding of this part is composed by 37 clauses.

The Warners encoding is composed by all the CNF clouses we have seen in
this example.
*

What we have presented now is the “accurate” translation. Using (some
of) the tricks described in the seminal paper we can substantially reduce the
number of variables and clauses needed by the encoding.

14.2.1 Extension to general coefficients

There is no need to extend the procedure to work with general coefficients
because the method presented already can do it. On the other hand, it is quite
simple to adapt the method in the case of unitary coefficients (in order to be
specific for this class, just considering aqe = 1)-

14.3 Bailleux and Boufkhad encoding

This encoding was presented in [BB03].

It does not use a binary representation of integers, but a unary representa-
tion. The value of an integer x such that 0 < x < n is represented by 1 x times
followed by 0 n - x times. The integer variable v with domain 0...n is repre-

sented by a set V = {v1,va,...,v,} of n propositional variables. Each possible
value of v is encoded as a complete instantiation of V, as described above. If
v=2zx,thenv; =1,ve =1,...,v, =1 and vy41 =0,...,v, =0.

Consider now three set of variables:
- X ={z1,...,2,}: The set of input variables
- B ={b1,...,by}: The set of output variables
- a set L of variables called linking variables

These sets of variables can be described by a binary tree built as follow. We
start from an isolated node labeled by the integer n and we proceed iteratively:
To each terminal node labeled by m > 1, we connect two children labeled by
|m/2] and m - |m/2], respectively. This procedure produces a binary tree
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with n leaves labeled by 1. Next, each variable in X is allocated to a leaf in a
bijective way. The set B of output variables is allocated to the root node. To
each internal node labeled by an integer m, a set of m new variables is allocated
which will be used to represent a unary value belonging to 1...m. The union
of the set of variables allocated to the internal nodes is the set L of linking
variables.

We will now define a set of clauses that ensures that in any complete instan-
tiation of the variables, the set of variables related to any non-leaf node r with
children p and ¢ encode the unary representation of o + 3, where a and 3 are
the integers encoded by the sets of variables related to p and gq.

Let r be an internal node related to children p and g. Let R = {r1,...,7n}
be the set of variables related to r, P = {p1,...,pm,} be the set of variables
related to p, and @ = {q1,.-.,qm,} be the set variables related to ¢

The following conjunction of clauses is related to the node r:

/\ Ci(a, B,0) A Ca(a, B,0) (14.11)

where 0 < a <m;, 0 < B <mq, 0< o <mand a+ f = o, and with the
following notations:

Po=3qo =70 =1, Pmi4+1 = Gmot1 = Tmt1 =0 (14.12)
Cl (aa Ba U) = pa V —qp Vry (1413)
Co(a, 3,0) = Pat1 Va1 V Toyq1 (14.14)

Notice that Ci(a, 8, 0) is the CNF representation of the relation o > a +
and Cy(a, B, 0) is the CNF representation of the relation o < a + .

The obtained formula is simplified according to the values in (14.12). Notice
that each clause includes at most three literals.

The bits that encode the sum are the bits in B following the unary repre-
sentation of this encoding.

There are two main Lemmas that show the “good” properties of the encod-
ing w.r.t. unit-propagation.

Lemma 1 (forward propagation)

Let ¢(X) be a sum of n input variables. If p input variables are fixed to 1, q
input variables are fixed to 0, and all the other variables of the sum are free
then the partial instantiation I's of B obtained after unit propagation in ¢(X)
is pre-unary and such that min(Ig) = p and max(Ig) =n - q.

Lemma 2 (backward propagation)
Let ¢(X) be a sum with n input variables. If:

- p input variables are fixed to 1, q input variables are fixed to 0 (p+¢ < n),
the remaining input variables being free,

- and the output variables s,11 to s,_, are all fixed to the same value € (0
or 1)
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(b1, b2, b3, b4)
(Vi,vi) (v:,vz)
x1 X2 X3 x4

Figure 14.2: Example of Boufkhad with 4 bits.

then all the input variables remaining free are instantiated to e by unit propa-
gation.

We will not prove these Lemmas in details, because they are already proved
in [BBO3]. Nevertheless we will use these Lemmas to give the related intuitions
when we will optimize the encoding (in Subsec. 14.3.1), and when we will adapt
it to work with general coefficients (in Subsec. 14.3.2).

Pros
e The proposed encoding is efficient with respect to unit propagation
e It is simple to implement
e The encoding seems to have a “compact” representation

Cons

e For high input/output variables n, the number of clauses generated could
not be manageable because it grows quadratically

From the complexity side, the binary tree used to specify the encoding has
f(nloga(n)) levels. Each of these levels requires n linking variables. Let us
consider, for simplicity, that n is a power of 2. For each node related to a set of
m linking (or output) variables, there are less than 2m? clauses. Let us number
the levels from 1 to I, where [ is the number of the root level. For any ¢ such that
1 < i <1, the level I — i includes 2¢ nodes, each related to n/2? variables. Then
the level n — i includes less than 2¢(2(n/2%)?) = 2n?/2¢ clauses. So the encoding
includes O(n?) clauses. Given that the root node requires w(n?) clauses, so the
encoding requires 6(n?) clauses.

We make the same example as in Section 14.2, regarding the encoding of the
sum of the four bits 1 + z2 + 23 + x4 in CNF.

Example 10 Consider Fig. 14.2. The tree has x1,%2, T3, 24 as input variables,
vi,v?, 03,02 as linking variables and by, by, bz, by as input variables. Following
the same schema as in Example 9,
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trans(vi +v?)
(v Vo Vo)A
trans(vi + v3)
(—0IVZzVEg) AV —z3) AV V-zs) AWV T3V Th) A(—03 VE3) A (-2 V)
trans(by + be + bz + by) =

(=by Vol Vo) A (by V—wi) A (b V=02)A (by V —032) A (=by Vol V2) A (mby V
vIVU2) A (ba V=0l =02) A (by V —wld) (mb3 V=wl) A (b3 V—vl V—-03) A (=bs ViV
V) A (b3 V=0l =02) A (mbs V 2) (mby Vi Vu2) A (g V —0d) A (by V —03)

—~

iV =z A (v V—Z2) A(WEV 3y Voze) A(mvE Vi ) A(—w? Vi)

14.3.1 Optimizing the encoding

Following the properties of Lemma 1 and Lemma 2, the encoding takes informa-
tion preferentially from the input variables. There is the possibility to improve
the encoding imposing some conditions on the values of the output variables.
Starting from the unary representation of the integers, we know that:

if bj=1, for each j <i,b; =1 (14.15)

if bj=0, for each j >i,b;=0 (14.16)

The two constraints together indicate that there exists a relation of the type
bj — bi(=b; V b;) for j > i. The relation behind it is that if b; = 0 the clause
is satisfied no matter the value of b;, but if b; = 1 also b; has to be set to 1
as well in order to satisfy the clause and in syncrone with the semantic of the
encoding. Similar consideration can be done when we fix b;.

It is sufficient a simple example with 4 bits to show that, giving some values
assigned to some z;, new unit propagations get assigned with these additional
constraints that would not have been assigned without them.

Example 11 The encoding is composed by all the clauses in the “basic” version
in the Example 10, plus the following clauses:
(b2 — bl) A (b3 — bz) A (b4 — b3) = (_|b2 \% b1) A (_|b3 \% b2) A (ﬁb4 Vv b3) *

How can these new clauses add reasoning? This is quite simple to see: Sup-
pose by gets assigned to TRUE using the basic form of the encoding, some of
clauses including b, are simplified, others are satisfied, but no other simplifica-
tions can be performed. Otherwise, if we add these further clauses, once by is
assigned to TRUE also b; can be assigned to TRUE by unit propagation leading
to other simplifications in the clauses where b; appears.

Note
The additional clauses (and the additional reasoning) added by this modification
do not hit the correctness of Lemma 1 and Lemma 2.

14.3.2 Extension to general coefficients

A simple way to extend the encoding to general coefficients (the same can be
applied also to the naive encoding) is to consider, for each i, a;z; as Z;’:l Tij,
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to have a; different z; variables with coeflicient 1. Now we can simply run the
algorithm on a problem with ), a;z; input variables with unitary coefficients.
Moreover, we know that all the a; variables related to the same original variable
x; are the same, even if they have different “name”. So, we can safely add the
equivalences:
Tij € Tjj+1 fOT j=1,...,a; — 1. (1417)
Still. the good properties of the encoding w.r.t. unit propagation remain
unchanged. We re-formulate the Lemmas in Section 14.3

Lemma la (forward propagation with general coefficients)

Let ¢(X) be a sum with n input variables, with coefficients a1, ...,a,. If p
input variables are fixed to 1, q input variables are fixed to 0, and all the other
variables of the sum are free then the partial instantiation Iy of B obtained
after unit propagation in ¢(X) is pre-unary and such that min(Ig) = Y7 _; a;z;
and max(Ip) = Z?:n_q ai%;.

In the above Lemma we have seen each variable associated with the related
coefficient. There is an alternative formulation that is more related to the par-
ticular translation of the problem with general coefficients to a problem with
unitary coefficients explained in this section.

Lemma 1b (forward propagation with general coefficients) Let ¢(X)

be a sum with n input variables, with coefficients a1, ...,a,. If qy = > 7_; a;z;
input variables are fixed to 1, qup = E?:n_ g @i input variables are fixed to

0, and all the other variables of the sum are free then the partial instantiation
Ip of B obtained after unit propagation in ¢(X) is pre-unary and such that
min(Ig) = Zf:l a;x; = qp and max(Ig) = E?:niq AT = Qup-

Lemma 2a (backward propagation with general coefficients)
Let ¢(X) be a sum with n input variables with coefficients aq, ..., a,. If:

- p input variables are fixed to 1, q input variables are fixed to 0 (p+¢ < n),
the remaining input variables being free,

- and the output variables from x4, 41 to z4,,—1 are all fixed to the same
value € (0 or 1)

then all the input variables remaining free are instantiated to e by unit propa-
gation.

As for the Lemma 1, there is an alternative formulation.
Lemma 2b (backward propagation with general coefficients)
Let ¢(X) be a sum with n input variables. If:

- g = Yo, input variables are fixed to 1, quy = Y1, , @i input vari-

ables are fixed to 0 (p + ¢ < n), the remaining input variables being free,

- and the output variables from x4, 41 to z4,,—1 are all fixed to the same
value € (0 or 1)

then all the input variables remaining free are instantiated to € by unit propa-
gation.



Chapter 15

The OPTSAT solver

The OPTimal SATisfiability (OPTSAT) solver is based on propositional sat-
isfiability for solving optimization problems related to SAT. The schema, of the
system is presented in Figure 15.1.

The OPTSAT main module takes in input a propositional formula in CNF
format ¢ and a functional cost F' (that has to be minimized). The functional
cost is then encoded in a CNF formula ¢onp (via the encoder). The encoder
also outputs the “preferential” variables by, ..., b,,, that are fed to the SAT
solver with the extended CNF formula ¢ A ¢cnF (¢ must be modified if we deal
with a Max(Min)-SAT problem).

The informations needed by the SAT solver are given via file in CNF format
improved with an header that describe the type of optimization we want to
perform on the formula (.optsat file). The header of the .optsat file looks like:
c
¢ min/max SAT/ONE
c
¢ WEIGHT p
cwiwy...wp 0
c
penfnm

Where:

e the 2 bits min/max and SAT/ONE are used to define the type of problem
we want to solve

e p is the number of variables that characterize the functional cost

e wi ... wp is the list of weights associated with the variables that define the
functional cost. The list is O-terminated.

e “p cnf n m” is the header of the propositional CNF formula.

If a problem is a Min(Max)-SAT problem, p = m, if it is a Min(Max)-ONE
problem p = n. If the problem is un-weighted, wy = wy = ... = wp = 1,
otherwise w; > 1, w; € N (is a natural number), 1 <7 < p.

cxiii
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CNFformula @
"0 cnf
SAT result
(pcnf >
minF
solver
Endoder
b, ..., bm

Figure 15.1: The OPTSAT system.

Given the CNF formula ¢ defined in the input file, and ¢onp the CNF
formula that results from the encoding using one of the algorithm described in
Chapter 14, the optimization problem boils down (under some assumption that
we will describe later) to check the satisfiability of the improved propositional
formula:

Popt 1= ¢ Adonr

where ¢ is ¢ if we are dealing with a Min(Max)-ONE problem, otherwise ¢
is the formula ¢ in which each clause C; € ¢ is modified as —s; V C; with
s; a newly introduced variable. The newly introduced variables sq,..., s, are
called clause selectors. Intuitively, a clause C; is (not) in the best solution if the
correspondent s; is assigned to FALSE (TRUE).

The functional cost is defined on the input variables of ¢ for the Min(Max)-
ONE problem, and on the s; variables for the Min(Max)-SAT problem.

The main property of the approach we are proposing (w.r.t. all the other
approaches that use “branch and bound” or “branch and cut” algorithms) is that
the first satisfying assignment the (back-end) SAT solver finds is the “optimal”
one: But if we just run a SAT solver on ¢y, we would probably find a solution
very quickly, but unfortunately, the solution will not be optimal.

In order to guarantee! the property, we have to impose to some variables
a particular order and value: This is done by modifying the heuristic of the
underlined solver.

What are the variables we have to impose their values? In each encod-
ing we have presented, there is a bunch of variables that represent the value
of the related optimization function. For Boufkhad encoding 14.3, the vari-
ables are simply the output variables of the encoding (denoted as the set B =
{b1,...,b,}). For Warners encoding (in Sec. 14.2), these variables are the p},
variables (easily follow from Equ. 14.2). For the naive encoding, they are the
bits bo, - - -, bogs(n—1), With n the number of bits/input variables to be added.

1We do not have yet a formal statement about the correctness of the approach, but we
give here precise intuition for it.
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Consider now that, independently from the encoding, by being the most
significant bit (MSB) and by (Warners and naive encoding) or b; (Boufkhad
encoding) being the least significant bits (LSB).

The algorithm has to assign, in order, from the variables b, (MSB) to by or by
(LSB). The variable b; has to be assigned to TRUE if we are dealing with a Max
(SAT or ONE) problem, or to FALSE if we are working with a min (SAT or ONE)
problem. Consider the “max” case, and the Boufkhad encoding. Assigning by
to TRUE means to check if the result of the optimization problem is b; in general
assigning b; to TRUE means to check if the result of the optimization problem
is i. To be noticed that, given the particular nature of the encoding, as soon as
the first 4 = 1...b does not lead to any contradiction (and a solution to ¢gpt
is found), the solution to the problem is found. For the “min” case, and for
similar reason, the variables are set to FALSE. In the “max” case, and using
the Warners or naive encoding, setting a variable b; to TRUE means to check
if the solution is between 2¢ and 2! — 1. When a contradiction is found, is
known that the solution is within the complementary bound; in any case a large
portion of the search space is cut.

In order to implement the above described procedure, we have modified
again the DLL algorithm described in Sec. 2.3. The resulting algorithm, called
OPTSAT, is described in Fig 15.2.

function OPTSAT (¢popt, i, pref, ismazx)
1 if {} € ¢opt then return FALSE;
if ¢opr = 0 then return ComputeSolution(u;)
if {l} € ¢opt then return DLL(Simplify(l,¢opt )1 A 1);
I := ChooseLiteralPref(¢,p, pref, ismaz);
return DLL(Simplify(l,¢op:), 1t A1) or

DLL(SlmpllfY(Zv¢opt)7u A l)

Tk LN

Figure 15.2: The OPTSAT algorithm.

From Fig. 15.2, we can see that the DLL algorithm is modified not only in
one of the basic cases when the formula is satisfiable (as happened in the last 2
Parts), but also in the heuristic. The algorithm takes is input the propositional
formula ¢op:, the stack of assigned literals g (initially empty), the list pref =
{LSB,...,by}, and the boolean variable ismaz that is TRUE if the we are dealing
with a “max” case, and FALSE if we are dealing with a “min” case.

When the formula is satisfiable, function ComputeSolution(u) takes in in-
put the satisfying assignment p and just counts the number of input variables
in p that are assigned to TRUE (or, depending how the problem with general
coefficients is dealt, summing the weight of the variables assigned to TRUE).

In Fig. 15.3, the algorithm refers to the new implementation of the function
CHOOSELITERAL (called here CHOOSELITERALPREF) that chooses the next
variable to work on, taking into account the order on the variables that the
approach uses. Let, given a list a, a.size() be the number of elements in a, and
a[i] the i-th element of a.

The procedure looks for “preferential” variables (in a given order) not yet
assigned. If there exists such a variable in this status, it is assigned according to
the type of problem (“min” or “max”) we are dealing. If all the “preferential”
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function CHOOSELITERALPREF(¢ops,prefismaz)
1 for (i = (prefsize() - 1);1 >=0;i—-)
2 if prefi] = UNDEF then return (ismax ? pref[i] : —prefli]);
3 1 := ChooseLiteral(¢opt);
4 returnl!

Figure 15.3: The CHOOSELITERALPREF function.

variables are assigned, a “default” heuristic is called in order to choose the next
variable.

The CHOOSELITERALPREF presented here (and the implementation in OPT-
SAT) is not optimal because the pref list is scan every time the procedure is
called. A simple way to optimize the computation would be to maintain a
pointer to the last assigned variable in the list.

15.1 Propositional solvers tested

In order to decide the satisfiability of the back-end CNF formula resulting
from our approach, we have modified and used two SAT solvers: SIMO and
zChaff. While SIMO is our home made SAT solver (described in Section 2.4),
zChaff [MFMO5] is the winner of the last SAT 2004 Competition [LS05] on
“real-world ” CNF formulas.

(The new version of) zZChaff and SIMO are quite similar, but zChaff can rely
on efficient low level optimizations of the code (e.g., profiling-based implemen-
tation in order to minimize the missing in cache), and very recent advancements
in all the principal components of DLL-based solvers.

In order to test several heuristics (and optimizations), we have implemented
some well-known state-of-the-art heuristics (CHOOSELITERAL) in SIMO:

e VSIDS from [MMZ*01] (denoted with “v”);

e unit (given an unassigned atom p, while doing failed literal on p we count
the number u(p) of unit-propagation caused, and then we select the atom
with maximum 1024u(p) X u(p) + u(p) + w(p). This heuristic is denoted
with “U”).

e unit with pool, where (i) we first select a pool of 10 “most watched”
variables, and (ii) we perform failed literal and score accordingly only the
variables in the pool.? This heuristic is denoted with “pP”). The idea of
this heuristic comes from [LA97]

zChaff uses an heuristic that is an evolution of the VSIDS heuristic.

2Qur pooling criteria is motivated by the fact that we are using a solver with literal watch-
ing. While this data structure is good for fast unit-propagation, does not allow to properly
select the “most promising” variables using better criteria which take into account all the
occurrences of a variable. To have such pooling criteria without sacrificing the efficiency of
unit propagation, the obvious solution is to have an additional data structure to be used just
for pooling.
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Experimental analysis

In this Chapter, we first present the benchmarks used for testing the optimiza-
tion problems; than we present the state-of-the-art systems we evaluated; and
finally some comparative experimental evaluation we conducted.

16.1 Benchmarks

In order to test the efficiency of the approach, we have tested our system (as
well as other systems we will see in details in Section 16.2), both on randomly
generated benchmarks and on “real-world” problems (CNF formulas arising
from real applications). In the next two subsections we will see in details the
benchmarks used.

In the description, we focus on the Max-SAT and Max(Min)-One problems.
Moreover we will focus on the un-weighted version of these problems.

It is important to note that we have used different benchmarks for solving
the two problems: This is because, in general, the Max-SAT problem needs
formulas to be unsatisfiable in order to be “significant”, while the Min(Max)-
One problem needs formulas to be satisfiable.

16.1.1 Randomly generated problems

Random propositional benchmarks are generated using the model of generation
proposed in [SLM92]. Given three parameters:

e the number of propositional variables n
e the number of clauses m
e the number k of literals that appear in each clause

a formula is generated by randomly choosing k different variables in the pool
of n, negating each variable with probability 0.5. The k literals together form
a clause that is added to the formula. The procedure continues until m clauses
are generated.

The ratio r = m/n characterizes the difficulty and the nature of the problem
(for each k). There are values of r (given k) for which the benchmarks are
expected to be “harder” than other ratios. These particular ratios occur in a
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“region” where the probability that a formula is satisfiable drops (more or less
rapidly depending on k) from near 1 to near 0.

As long as these benchmarks are randomly generated, for each triple
< n,m,k > several (100 for Max-SAT, 10 for Min(Max)-ONE) benchmarks are
generated.

We will see in more details in the experimental section (16.3) the precise
data we have tested: As a general intuition we concentrated in a region near
to the phase transition (where the correspondent propositional formula is sup-
posed to be harder), because we were interested in studying the behavior of the
algorithms in this region. Study the problems in this area means, e.g. for the
Max-SAT problems, that most of the problems are unsatisfiable and the results
(number of satisfiable clauses) is the number of clauses minus 1.

In general, the problems in this area are not the hardest that can be gener-
ated for Max-SAT. Usually, the higher is the constraindeness r of the problem,
the harder the formula.

16.1.2 Real-world problems

For real-world problems. we have tested well-known problems that come from
several application domains. In particular, for Max-SAT we have used:

bme 30 instances from CMU described in [BCCZ99];

miters 25 instances encoding problems of Combinational Equivalence Checking
described, e.g., in [SG99].

For the Min(Max)-One problem:

Beijing’96 some of the 16 instances from the Beijing’96 SAT competition, a
mixture of scheduling [CB94], planning and circuit verification problems;

DES 24 Data Encryption Standard problems, see [MMO00, Li00];
Planning planning problems generated by BlackBox [KS98];

QGroup Quasi group problems.

16.2 Rival systems

Beyond testing different options in OPTSAT, we have also tested other state-
of-the-art systems, and compared the result w.r.t. the results of our system.
The systems we have considered are, for the Max-SAT problems:

bf a DLL-based solver developed by Borchers and Furman [BF99];

sz a DLL-based solver developed by Shen and Zhang [SZ04];

MaxSolver a DLL-based solver developed by Xing and Zhang [XZ05];

PBS a Pseudo-Boolean Optimization solver. developed by Aloul [ARMS00]
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At the moment. we have taken into account only the BF solver: This is
because, SZ can work only on Max-SAT problems with two literal per clause
(Max-2SAT); MaxSolver can only deal with problems that contain up to 200
variables and 1000 clauses, otherwise it incurs in memory overflow;! and PBS
(beyond that is best suited for the Min(Max)-One problem) was not competitive
(especially on randomly generated problems).

The systems we have considered for the Max-SAT problems, are

PBS;
opbdp a solver developed by P. Barth [Bar95].

16.3 Results

In this section we will see some (preliminary) results about the analysis we have
conducted on our system OPTSAT and on the rival systems. The analysis will
be divided in two parts: The analysis for Max-SAT? and for Min(Max)-ONE
problem.

In the Tables, “b”, “bm” and “w” indicate the Boufkhad, Boufkhad modified
and Warners (without any optimizations) encoding respectively. #CNF is the
number of clauses that are fed to the SAT solver. optz and opts indicate that
the OPTSAT solver is using the SAT solvers zChaff and SiMO respectively.
Time out (“T”, “TIME”) is set to 600 sec for each problem (but the real-world
Max-SAT where is 1800 sec), and memory limit (“MEM”) is set to 900 MB.

Heuristic “U” has not been shown because clearly not competitive w.r.t. the
others, as well as Warners encoding with opts.

16.3.1 Analysis on Max-SAT problem
In the Table 16.1:

#var and #cl are the number of propositional variables and clauses of the
starting propositional formula respectively.

ub (upper bound) is the result (ub = i means that the Max-SAT result is #cl

- 1)
#ist is the number of instances that have the correspondent result.
line marked by “T” is the number of instances that reached the time limit.

The other columns being the CPU time of the various versions of the solver.
A dash line “-” indicates that the solver can not solve the instance(s) with the
correspondent value of “ub” within the time limit.

In Table 16.1, the analysis on randomly generated benchmarks for the Max-
SAT problem. We have generated problems with 1500 and 2000 variables, with
1800 and 2400 clauses respectively, 100 instances per point. The benchmarks
we have generated contain 2 literals for clause.

17. Xing, personal communications
2We do not consider here the Min-SAT problem. This is because usually the analysis on
this type of problem is performed on the Max case.
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#var #cl ‘ #CNF b ‘ #CNF bm | #CNF w ‘
ub Fist bf optz b optz bm optz w opts b V opts b P opts bm V opts bm P
[ 1500 [ 1800 [ 3279104 | 3280903 [ 66567 | [ [ [ [ |
0 24 3.94 5.2 5.24 26.76 6.52 9.64 6.35 9.41
1 33 7.96 5.55 5.49 27.93 6.90 10.21 6.70 9.96
2 22 8.29 5.90 5.80 28.31 7.31 11.07 7.07 10.83
3 14 29.27 7.50 6.78 29.90 8.56 14.48 8.57 13.54
4 6 131.44 42.82 13.95 46.16 28.42 28.48 31.61 26.43
5 1 - 569.10 107.74 145.85 288.67 137.50 239.49 134.57
T 1 0 0 0 0 0 0 0
[ 2000 | 2400 | 5814208 | 5816607 [ 93281 | [ [ [ [ |
0 13 9.89 9.88 9.73 50.71 12.40 18.35 11.84 17.64
1 30 14.12 10.55 10.20 51.11 13.22 19.44 12.51 18.59
2 29 15.05 11.34 10.80 52.87 14.09 21.14 13.22 20.13
3 13 76.88 17.00 12.65 55.45 15.68 25.52 14.64 25.19
4 10 180.59 143.18 34.30 142.33 124.91 67.86 105.46 74.72
5 1 - 351.25 135.53 273.13 473.47 294.76 334.09 261.04
T 12 4 2 2 4 1 1 0

Table 16.1: Randomly generated benchmarks. 2SAT problems.

All the versions of OPTSAT presented perform better than bf; in particular
optz with “bm” encoding outperforms bf up to one order of magnitude and solve
more instances. The efficiency seems to rely on the additional clauses (and
reasoning) that the encoding add w.r.t. the “plain” “b”. Quite interesting are
also the performances of optz with Warners encoding. From the comparison
between the columns related to opts “b” and “bm” we can see that heuristic
“p” performs better than heuristic “v”.

We have also run some experiments with randomly generated problems with
three literals per clause: We do not report any result here because the study
is still at an early stage. Preliminary results point out that bf performs better
than OPTSAT, and probably some specific domain reasoning should be added
in order for OPTSAT to become competitive also on this domain.

In Table 16.2, the analysis on real world problems. The problems bar* (bar-
rel), long* (longmult) and que* (queueinvar) are unsatisfiable bounded model
checking problems (described in [BCCZ99]). The c* are encoding problems of
Combinational Equivalence Checking described, in [SG99];

Again, result using heuristic “u” has not been shown because not competi-
tive w.r.t. the other version. We also do not show any results for “bm” encoding
encoding: The results are very similar to the one for “b”. We do not report
results on opts w for lack of space and because they are always worse in com-
parison with optz w. A comparison between “v” and “p” is outlined using “b”
encoding.

In order to tackle the problems of these domains, we had to modify bf in
order to enhance its static limits on #var and #cl.

In the Table, column “ist” refers to the instances, and the second column
#CNF reports the number of clauses of ¢ope, using “b” / “w” encodings re-
spectively. A dash line “~” here indicates that the number of clauses generates
exceeded the memory limit imposed.

For the bme problems, in the easiest instances of each sub-domain (bar*,
long* and que*) bf performs better than any option of OPTSAT. Among the
OPTSAT’s options, optz with “b” heuristic is the best, and the VSIDS heuristic
“v” is slightly better than “p” (even there are no significant differences). When
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[ st ] #CNF I bf | optzb | optzw [optsbV [ optsb P |
bar2 27631 / 5950 0.02 0.05 0.13 0.06 0.06
bar3 906000 / 35519 0.23 1.46 6.36 1.75 1.92
bar4 > 4108 / 82124 0.65 6.92 40.41 8.72 9.2
barb — / 202480 21.42 MEM 260.97 MEM MEM
long0 > 1108 / 46721 0.39 2.53 9.56 3.07 3.20
longl > 5100 / 91626 22.26 10.07 51.52 12.43 12.92
long2 -/ 129998 57.11 MEM 117.47 MEM MEM
long7 — / 393514 — MEM 1061.61 MEM MEM
long8 - / 435148 - MEM 1729.87 MEM MEM
que2 166157 / 14418 0.04 0.3 0.56 0.34 0.37
qued 930987 / 36234 0.17 1.51 6.55 1.80 2.11
queb > 5 10° / 89636 0.47 8.65 49.86 12.07 13.71
que8 > 5 10° / 89852 0.62 9.80 50.36 12.92 15.24
quelO — / 208933 2.21 MEM 409.09 MEM MEM
quel4 - / 365920 - MEM 1145.27 MEM MEM
quel6 -/ 237459 - MEM 517.46 MEM MEM
c432 >110° / 44264 131.06 2.33 9.99 2.81 6.97
c432-s > 1108 / 44615 157.25 2.38 10.64 2.98 6.53
c499 > 310° / 70417 TIME 6.49 29.91 77.11 743.55
c499-s > 310° / 70856 TIME 6.46 33.78 32.49 651.97
c880 > 6 10° / 98411 TIME 12.65 56.86 MEM MEM
c880-s > 6 10° / 98411 TIME 12.64 56.77 MEM MEM
cl355 -/ 136707 TIME MEM 138.80 MEM MEM

c1355-s -/ 137147 TIME MEM 142.95 MEM MEM
c1908 7/ 194731 TIME MEM 237.09 MEM MEM
c1908-s — / 195055 TIME MEM 229.22 MEM MEM
c1908.b — / 194839 1705.69 | MEM 232.01 MEM MEM

Table 16.2: Real world problems. Max-SAT problem.

the hardness of the instances increase, bf and optz start to incur in segmentation
faults (denoted with “-”) and memory overflow (due to the very high number
of propositional clauses generated with the encoding); Warners encoding gives
his best and (in conjunction with optz) can solve within the time limit all the
instances presented. This is because, thanks to the size of the formula ¢y, the
solver does not incur in any memory problems on these instances.

For the miters (c* in the Table) instances, OPTSAT solver performs much
better than bf. In particular, optz with Boufkhad encoding performs best, out-
performing bf up to three orders of magnitude in the “smaller” instances. And,
given the results in the last two columns, the “Vv” heuristic is much powerful
on these benchmarks than “P” heuristic. optz using Warners encoding is about
a factor of 5 slower than the same version using Boufkhad, but as soon as the
dimension of the problem causes the Boufkhad encoding to exceed the memory
limit, “optz w” is the only version that it is able to solve the “bigger” instances
presented (but the last row), and however if outperforms bf also in the last
instance presented.

16.3.2 Analysis on Min(Max)-ONE problem

In this Subsection we report on some results that we have obtained on Min(Max)-
ONE problem, using our solver, PBS and opbdp. PBS has been run with the
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[ #var | #cl ]| #CNF b | #CNF bm | #CNF w [ PBS | opbdp | optzb | optz bm [ optz w |
200 50 42938 43137 7019 0.19 0.76 0.17 0.17 0.96
200 100 42988 43187 7069 47.12 16.91 4.73 3.76 TIME
200 150 43038 43237 7119 16.87 14.54 7.63 10.04 148.30
200 200 43088 43287 7169 26.46 45.95 5.84 6.37 TIME
Table 16.3: Randomly generated benchmarks. Min-ONE 2SAT problems.

[ #var | #cl ]| #CNF b | #CNF bm | #CNF w [ PBS | opbdp | optzb | optz bm [ optz w |
200 50 42938 43137 7019 0.08 0.29 0.16 0.16 1.2
200 100 42988 43187 7069 40.35 24.17 1.42 1.68 107.96
200 150 43038 43237 7119 35.66 45.4 6.67 6.8 267.41
200 200 43088 43287 7169 18.66 16.66 8.44 8.59 165.22

Table 16.4: Randomly generated benchmarks. Max-ONE 2SAT problems.

option “-D 1”7 as suggested by the authors.?

Among the OPTSAT options, we have used only the optz because it almost
always leads to the best results (w.r.t. opts).

In Tables 16.3, 16.4 16.5 and 16.6 the analysis on randomly generated Min-
ONE and Max-ONE problems using the same model generation we introduced
in Subsec. 16.1.1. The 2SAT instances we have run contain 200 variables, and
50, 100, 150, and 200 clauses respectively, while the 3SAT instances contain 120
variables, and 120, 240, 360 and 480 clauses respectively. For each ratio, 10
instances were generated.

For Min-ONE 2SAT benchmarks (Table 16.3), optz with “b” and “bm”
encodings perform best (especially on problems with 100 clauses), but for the
case with 50 clauses where PBS is faster than optz (but these problems are quite
easy to solve). “w” encoding is not effective on this domain. For Min-ONE 3SAT
benchmarks (Table 16.5), opbdp seems to be the best performing solver overall,
while optz with “b” encoding performs best than opbdp on problems with 120
and 240 clauses. optz with “w” encoding and PBS are not competitive on this
domain but PBS with problems with 480 clauses.

For the Max-ONE benchmarks (Tables 16.4 and 16.6) the situation is similar
w.r.t. the Min-ONE problem, “w” encoding seems to have less negative results
on this domain in the 2SAT instances.

In Tables 16.7 and 16.8 the analysis on real-world benchmarks, for Min-
ONE and Max-ONE problem respectively. For Min-ONE, optz (with “b” or
“bm” encodings) performs better than PBS and opbdp on Beijing (2bit*) and
much better on QGroup (qg*) problems. On planning problems (sat*, huge-r
and *blocks*) result are mixed. On DES problems, PBS performs better than
optz and much better than opbdp, even if optz with “w” is quite competitive.
For Max-ONE, the picture is very similar.

We also tried to (further) optimize the encodings presented. We modified
the CHOOSELITERALPREF function in order to preferentially choose among the
variables contained in the original formula ¢. The results were not positive: The
performances are often worse, and increase only on same problems in the case of
the “u” heuristic (that always had the worst results, and even this enhancement

3The suggestion is in the README file down-loadable with the binary of the solver.
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[ #var | #cl [ #CNF b | #CNF bm | #CNF w [[ PBS [ opbdp [ optz b | optz bm [ optz w |
120 120 16064 16183 4463 14.61 4.50 0.55 0.46 11.39
120 240 16184 16303 4583 TIME 30.52 22.66 90.62 TIME
120 360 16304 16423 4703 TIME 3.81 85.7 79.6 TIME
120 480 16424 16543 4823 0.64 0.08 5.73 5.15 5.84
Table 16.5: Randomly generated benchmarks. Min-ONE 3SAT problems.

[ #var [ #cl ]| #CNF b | #CNF bm | #CNF w [| PBS [ opbdp [ optzb | optz bm [ optz w |
120 120 16064 16183 4463 75.61 37.45 12.01 7.00 70.70
120 240 16184 16303 4583 TIME 62.92 109.02 87.07 TIME
120 360 16304 16423 4703 TIME 2.65 187.66 231.27 TIME
120 480 16424 16543 4823 0.6 0.08 5.09 4.86 7.56

Table 16.6: Randomly generated benchmarks. Max-ONE 3SAT problems.

did not help it to reach results comparable with “b” and “bm” heuristics). We
encoding trying to minimize the number of variables
and clauses needed following some of the suggestions in the original paper. As a
results, we obtained a reduction of variables and clauses needed by the encoding
of about a factor of 2, and often this leads to a similar reduction in the CPU

also optimized the

time.

[43
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| instance | #var | #res | PBS | opbdp [ optzb | optz bm [ optz w |

2bitcomp-5 125 39 8.02 0.95 1.78 1.82 10.69
2bitmax-6 252 61 TIME 120.5 60.59 48.64 183.08
3blocks 283 56 0.14 296.92 6.75 5.09 0.14
4blocks 758 66 0.25 TIME 4.14 8.72 7.46
4blocksb 410 66 52.57 TIME TIME TIME TIME
huge-r 927 118 0.23 0.88 14.93 14.57 0.22
sat-bw-large.b 1087 131 0.18 1.78 15.16 11.31 0.22
sat-bw-large.c | 3016 136 34.97 | TIME | MEM MEM 3.56
sat-logistics.a 828 135 MEM TIME 14.66 14.06 11.52
sat-logistics.b 843 138 TIME | TIME | 364.34 200.21 TIME
cnfri-bi-ki.1 | 307 | 36 76 | 86.13 | 114 1.22 0.88
cnfori-b3-k1.1 | 851 | 86 0.05 | 137.18 | 3.04 172 0.14
cnf-r2-b3-k1.1 1495 141 0.05 67.14 13.41 12.85 0.25
cnf-r3-b1-k1.1 1461 119 6.88 TIME 289.75 200.91 12.97
el 512 | 49 || TIME | TIME | 64.03 | 10559 | 89.24
9g2-8 512 | 64 || TIME | TIME | 41.75 | 38.97 | 31.02

Table 16.7: Real world problems. Min-ONE problem.

| instance | #£var | #res | PBS [ opbdp [ optzb | optz bm | optz w |

2bitcomp-5 125 85 8.02 0.46 0.82 0.83 2.24
2bitmax-6 252 146 TIME 48.16 216.23 47.35 249.24
3blocks 283 63 0.11 301.55 20.04 11.63 7.82
4blocks 758 66 0.24 TIME 35.05 55.11 17.13
4blocksb 410 66 52.64 TIME TIME TIME TIME
huge-r 927 118 0.23 0.87 302.8 135.75 0.77
sat-bw-large.b 1087 136 0.16 1.74 216.22 147.18 0.42
sat-bw-large.c 3016 265 35.07 TIME MEM MEM TIME
sat-logistics.a 828 135 MEM TIME 61.74 60.57 4.7
sat-logistics.b 843 138 TIME TIME 385.36 546.13 14.17
cnf-r1-bl-k1.1 307 52 7.62 84.93 4.53 4.42 1.01
cnf-r1-b3.k1.1 851 87 0.05 137.7 29.02 28.29 0.32
cnf-r2-b3-k1.1 1496 141 0.05 68.7 140.71 91.99 0.24
cnf-r3-b1-k1.1 1461 119 6.88 TIME TIME TIME 435.02
qg1-8 512 | 64 || TIME | TIME | 36.89 | 21.24 | 47.31
qg2 8 512 | 64 || TIME | TIME | 33.54 | 21.96 | 36.65

Table 16.8: Real world problems. Max-ONE problem.



Chapter 17

Conclusions

In this thesis we have dealt with the problem of Safe Planning. Safe Planning
is the task of generating/validating plans that not only achieve the goal, but
verify also a set of other user-defined properties, e.g., safety properties. This
is particularly important in the context of space applications, where autonomy
and safety are indeed two crucial properties any system has to guarantee. The
task has been studied via the integration of

e Planning, a research area in Artificial Intelligence (AI) aiming at the
construction of systems — called planners — that enable a robot to au-
tonomously synthesize a series of actions that will achieve its goals.

e Model Checking, a research area in Computer Science devoted to the def-
inition of procedures for the automatic verification of programs and spec-
ifications.

two push-button technologies.

In the literature, the problem of Safe Planning has been solved starting from
a planning problem described in STRIPS language, and a set of safety proper-
ties expressed in LTL, and rely on a compilation into a SAT formula. Then, the
formula is fed to a SAT solver in order to check if the plan is “safe”.

In this thesis we have advanced the state-of-the-art of Safe Planning in sev-
eral directions, both “theoretical” and “practical”.

On the theoretical side, we have introduced three new approaches for imple-
menting Safe Planning

Safe Planning via Temporal Reasoning where the problem of Safe Plan-
ning is compiled into a Temporal Reasoning problem via a formula in
Separation Logic

Safe Planning via Answer Set Programming where the problem of Safe
Planning is compiled into a logic program to be solved under the Answer
Set semantic

Safe Planning via SAT Optimization where the problem of Safe Planning
is compiled into an optimization problem composed by a propositional
formula and a functional cost to be minimized defined on a subset of

CXXV
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the variables of the propositional formula (the actions of the planning
problem)

On the “practical”, implementation oriented side, we have designed, imple-
mented and experimented four systems:

SIMO (Satisfiability Internal Modulo Object-oriented), an efficient new gen-
eration decision procedure for propositional satisfiability. SIMO is the
evolution of the SIM solver.

Cmodels2 (Computing models), a decision procedure, based on propositional
satisfiability, for finding AS of logic programs.

TSAT++ (Temporal SATisfiability), a decision procedure , based on proposi-
tional satisfiability, for solving formula expressed in SL.

OPTSAT (OPTimal SATisifability), a decision procedure for optimization
problems related to propositional satisfiability.

The implemented systems have shown performances competitive and often
superior w.r.t. state-of-the-art systems working in the same area implemented
by other groups in several universities and research institutions.

17.1 Future work

There is other, further work that should be done in this research area as a result
of the thesis.

Surely, would be interesting and useful to develop other types of compilers
and solvers for other logics. In particular, we can think about of having arith-
metic constraints “more expressive” than the ones we can deal with Separation
Logic, and we can simply think of other types of “optimizations” rather the one
introduced in the last part.

Moreover, until now the decision procedures have been tested using the chal-
lenging benchmarks that are known in the literature for the underlined logic.
It would be useful to evaluate the approaches starting from a “real” planning
problem in STRIPS and with safety properties to be maintained by the plan.
This task could give an indication about the most promising approach.
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