
July 28 2004 AAAI’04

SAT-Baseb Answer Set Programming

Enrico Giunchiglia DIST, Univ. Genova

Yuliya Lierler Univ. Erlangen-Nürnberg

Marco Maratea DIST, Univ. Genova

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Motivation

1. Propositional satisfiability (SAT) is one of the most studied fields in AI and CS

2. Very efficient and specialized SAT procedures exist

� use SAT solvers for computing answer sets (AS)

� ASSAT, Lin and Zhao [02], the first SAT-Based solver . . .

� . . . not a new idea, but a new approach.

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Compilation methods: tight programs

1. Marek and Subrahmanian [89] showed that the answer sets of a program �

correspond to a subset of the models of the Clark’s completion of �

2. Fages [94] proved that if a program � is “tight” then the answer sets correspond

to the models of the completion of � .

3. This result was extended in various ways by Lifschitz [96]; Erdem, Lierler and

Lifschitz [00]; Erdem and Lifschitz[03]

� Comp � � � does not introduce any new variables, and its size is at most double

wrt the size of �

� Answer Set Programming (ASP) by computing models of Comp � � � is viable and

effective if the program is tight, . . .

� . . . but not in general

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Compilation methods: Introducing variables

1. Starting from Ben-Eliyahu and Dechter [96] various translations from ASP to SAT

were provided, each introducing new variables and clauses.

Their encoding may need � � �	�
��
 ���) new variables and � � �	�
 ��
 ���) new

clauses

2. Janhunen [03] introduced an optimized subquadratic encoding

3. Lin and Zhao [03] provided a translation requiring � � �	�
��
 � � � ���� ��
 � �

new variables and � � �	�
��
 � � �� � ��
 � � new clauses

� Polynomial encodings

� still the number of variables or the size of the resulting SAT formula may become

impractical

� a recent result by Lifschitz and Razborov [04] shows that introducing new

variables is (likely to be) necessary to get a polynomial encoding

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Compilation methods: incremental methods

1. Marek and Subrahmanian [89] showed that the answer sets of a program �

correspond to a subset of the models of the Clarke’s completion of �

2. Lin and Zhao [02] proposed the extension to program’s completion such that

models of completion satisfying the extension are in one-to-one correspondence

with programs answer sets. This extension consists of loop formulas.

� if the program is tight – no formulas are added

� the loop formulas can be added incrementally on demand

� unfortunately, exponentially many loop formulas may be needed

� does not seem viable for computing all answer sets (in general)

� their solver, ASSAT, does not allow optimzed statements as ...

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Question:

Is it possible to build an efficient SAT-Based answer set generator that

1. deals with any (non disjunctive) logic program,

2. works on a SAT formula without additional variables, and

3. is guaranteed to work in polynomial space?

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Outline of the talk

1. Basic preliminaries

2. From SAT solvers to AS solvers (I)

3. From SAT solvers to AS solvers (II)

4. Implementation and experimental analysis

5. Conclusions

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Basic preliminaries

A (logic) program � is a finite set of rules of the form:

� ��� � � ��� � � � � � �! �
 � � " � ��� � � �! �
 � # (1)

where � $ is either % (False) or an atom in & . � � is the head.

Comp � � � consists of formulas of the type

� �(' � � �*) + + +) � �) , � � " �*) + + +) , � # �

for each symbol in & - . % / . In the equation, the disjunction extends over all rules

(1) in � with head � � .

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

From SAT to AS solvers (I): DPLL

SAT �0 � return DPLL � CNF �0 � �1 �2

DPLL �43 �65 �

if3 7 1 then return True2
if1 8 3 then return False2
if . � / 8 3 then return DPLL �:9

; < � � � 3 � � 5 - . � / � 2

� = 7 an atom occurring in3 2

return DPLL �:9

; < � � � 3 � � 5 - . � / � or

DPLL �:9

; < � , � � 3 � � 5 - . , � / ��

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

From SAT to AS solvers (I): DPLL-based AS solvers

ASP-SAT � � � return DPLL � CNF � Comp � � � � �1 � 2

DPLL �43 �65 �
if3 7 1 then return test �5 � � �2

if1 8 3 then return False2
if . � / 8 3 then return DPLL �:9

; < � � � 3 � � 5 - . � / � 2

� = 7 an atom occurring in3 2
return DPLL �:9

; < � � � 3 � � 5 - . � / � or

DPLL �:9

; < � , � � 3 � � 5 - . , � / ��
test �5 � � � returns True if5 > & is an answer set of � , and False, otherwise.

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

From SAT to AS solvers (I): Discussion

1. ASP-SAT � � � returns True iff � has an answer set

2. ASP-SAT � � � can be easily modified in order to compute all answer sets of a

program �

3. Most SOTAC SAT solvers are a (non-recursive) implementation of DLL

4. Most SOTAC SAT solvers are based on “learning” in order to backjump irrelevant

nodes while backtracking and avoid the exploration of useless parts of the

search tree

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

From SAT to AS solvers (II): Computing reasons

1. Learning procedures require test �5 � � � to return a5@? A 5 such that for no5? ?

entailing Comp � � � and with5? A 5? ? ,5? ? > & is ensured not to be an AS of �

2. One such set is5 , but it is important that5 be as small as possible:

� one possibility it to return5 > & , or (better)

� we can compute the subset of5 which falsifies one of the loop-formulas in �

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

From SAT to AS solvers (II): Example

Assume � is

� $� � $ " � � $ " �� � $; 8 .�B ��C �� � � ��C D /

Then E �� F � � � includes

� $' � $ " � �; 8 .�B �C ��� � � ��C D / �

G ASP-SAT without learning or with learning in which test �5 � � � computes

5 > & as reason, may generateCIH assignments entailing E �� F � � � .

G ASP-SAT with learning in which test �5 � � � computes as reason the subset of

5 falsifying one of the loop formulas, may generate at most D assignments

entailing E �� F � � � .

G ASP-SAT modified in order to assign the atoms in & to False while branching,

generates the only answer set of � .

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Implementation

1. ASP-SAT has been implemented on top of the learning SAT solver SIMO and

integrated in CMODELS.

2. The implementation and integration posed some non trivial problems described

in details in the paper.

3. The resulting system is called CMODELS2.

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Experimental results: Blocks world

Standard programs Extended programs

#b #s SMODELS ASSAT CMODELS2 SMODELS CMODELS2

8 i-1 12.32 0.80 1.19 0.81 0.47

11 i-1 71.78 2.97 4.19 2.97 1.01

8 i 40.87 0.89 2.18 1.56 1.40

11 i 71.42 3.17 4.52 3.41 1.16

8 i+1 23.35 0.96 0.97 4.99 0.31

11 i+1 107.48 3.54 3.33 5.21 0.75

Table 1: Blocks world: “#b” is the number of blocks.

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Experimental results: H.C. complete graphs

Standard programs Extended programs

SMODELS ASSAT DLV CMODELS2 SMODELS CMODELS2

np30c 11.70 1.14 22.08 0.69 0.36 0.36

np40c 62.89 41.81 97.96 1.63 2.48 0.87

np50c 219.56 14.51 314.46 3.37 8.39 1.79

np60c 594.46 48.80 770.07 5.81 20.47 3.41

np70c 1323.61 291.60 1679.12 8.22 39.41 5.87

np80c 2354.28 32.51 3407.35 14.20 75.36 9.18

np90c TIME 779.06 TIME 22.23 122.53 14.19

np100c TIME J TIME 28.63 185.52 20.76

np120c TIME J TIME 53.33 418.15 41.84

Table 2: Complete graphs. npXc corresponds to a graph with “X” nodes.

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Experimental results: FV problems

SMODELS ASSAT DLV CMODELS2

mutex4 33.92 (0)0.62 840.60 (0)0.68

phi4 0.24 (168)2.98 1.44 TIME

mutex2 0.09 (88)1.78 (0)0.12

mutex3 229.57 MEM (0)24.16

phi3 2.87 (704)236.91 (57)3.91

Table 3: Checking requirements in a deterministic automaton.

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Experimental results: BMC problems

BMC SMODELS CMODELS2 CMODELS2’

dp-10.i-02-b11 382.72 1476.72 442.14

dp-10.s-02-b8 15.24 8.20 14.22

dp-12.s-O2-b9 336.03 65.41 137.34

dp-8.i-O2-b9 8.08 12.62 10.69

dp-8.s-O2-b7 1.19 1.02 2.28

dp-10.i-O2-b12 445.47 3295.72 163.29

dp-10.s-O2-b9 28.87 16.07 15.03

dp-12.s-O2-b10 971.50 209.29 48.73

dp-8.i-O2-b10 5.05 40.01 6.44

dp-8.s-O2-b8 1.76 1.99 2.03

Table 4: Bounded Model Checking Problems.

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Computing all solutions: Summing up

G Overall SMODELS and DLV perform better than CMODELS2 when all solutions

are computed.

G CMODELS2 is competitive (and even better) whenever number of loops in the

program is small.

G More work is needed, in particular on the design of new SAT heuristics.

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Conclusions

We have presented a SAT-Based polynomial space algorithm for Answer Set

Programming that

1. it is relatively easy to implement of SAT solvers with/without learning,

2. it is easy to extend to compute all the AS,

3. shows good results when computing one AS

STAR-Lab DIST Univ. Genova

July 28 2004 AAAI’04

Ongoing work on Cmodels

1. Extend the SAT-based approach to disjuntive logic programs (viable approach?)

2. Working on logic programs structure to enhance SAT search (one of the Mirek’s

proposed challenge at NMR’04)

STAR-Lab DIST Univ. Genova

