
Look-Ahead vs. Look-Back Techniques

in a Modern SAT Solver

Enrico Giunchiglia, Marco Maratea, Armando Tacchella

� enrico, marco, tac � @dist.unige.it

MRG-LAB DIST, Università di Genova

MRG-LAB 6 May 2003 1

DLL algorithm

function DLL-Solve()

do

� � LookAhead()

if ��� T then

� � ChooseLiteral()

else

� � LookBack()

while ��� U

return �

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 2

The concept of modern SAT solver

The key aspects of modern SAT solvers (as zChaff, Berkmin, Limmat,

Simo) are:

� efficient data structures (e.g. watched literals)

� an innovative heuristic, based on the information extracted from the look-back

phase

� an innovative look-back method (e.g. UIP-based learning)

� low-level optimizations of the code

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 3

Failed literal detection

� Was introduced in Posit

� Is used in Satz and Relsat, in combination with the heuristic

� It reached good results in different domains, in particular on random problems

� A similar technique is used in 2clseq (HypBinRes)

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 4

Failed literal detection: the question

Is failed literal detection an effective look-ahead technique on modern SAT solver?

In order to answer this question, we introduce 2 versions of Simo:

� Simo-Up, i.e., Simo in its default configuration

� Simo-Fp, i.e., Simo enhanced with failed literal detection in the look-ahead

phase

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 5

Industrials benchmarks: Simo-Up vs. Simo-Fp

0 20 40 60 80 100 120 140 160 180

10
0

10
1

10
2

10
3

10
4

Simo−Fp vs. Simo−Up (CPU times)

Benchmarks

s
e

c
o

n
d

s

Simo−Fp
Simo−Up

0 20 40 60 80 100 120 140 160 180
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Simo−Fp vs. Simo−Up (Branches)

Benchmarks

b
ra

n
c
h

e
s

Simo−Fp
Simo−Up

Figura 1: 483 industrials benchmarks.

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 6

Failed literal detection: two more detailed questions

From the experimental analysis showed, two questions follow:

1. Does there exist a way to make it effective?

2. Are the results due to specific implementation inefficiencies?

We restrict our attention to “complete” failed literal detection algorithms

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 7

Failed literal detection: two more detailed questions

From the experimental analysis showed, two questions follow:

1. Does there exist a way to make it effective?

2. Are the results due to specific implementation inefficiencies?

We restrict our attention to “complete” failed literal detection algorithms

We will see that the answer to both questions in NO

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 8

Agenda

� The oracles

� Answering question 1.

� Answering question 2.

� Conclusions and future work

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 9

Answering the questions: Introducing oracles in Simo-Fp

In order to answer the questions above, we introduce three oracles-based versions

of Simo-Fp, and we assume to have:

� in Simo-Fp(TO), an oracle testing whether a literal will fail in Simo-Fp, thus

saving the time necessary to try the literals which will not be failed

� in Simo-Fp(FO), an oracle returning the sequence of literals which will fail in

Simo-Fp, thus saving also the time necessary to scan the list of open literals

� in Simo-Fp(FRO), an oracle returning the sequence of the literals which will fail

in Simo-Fp and their reasons, thus saving also the time necessary to calculate

the reasons of the failed literals

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 10

Answering question 1.

0 20 40 60 80 100 120 140 160 180
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Simo−Fp with oracles (CPU time)

Benchmarks

se
co

nd
s

Simo−Fp
Simo−Fp(TO)
Simo−Fp(FO)
Simo−Up
Simo−Fp(FRO)

Figura 2: Simo-Up, Simo-Fp and oracles-based versions of Simo-Fp, considering

CPU time.

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 11

Answering the questions: Introducing Tries as measure

In the following, we use tries as CPU independent performance measure, instead of

branches.

A trie happen each time a literal is assigned a value for whatever reason (choice,

unit literal, failed literal, tentative failed literal in the failed literal detection phase).

Moreover:

� Clearly, the number of branches is always less than (or equal to) the number of

tries

� Most of the overall run time of the solver is spent on assigning literals

� (Number of) tries is a better measure of the dimension of the search tree

explored

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 12

Answering question 2.

0 20 40 60 80 100 120 140 160 180
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Simo−Fp with oracles (Tries)

Benchmarks

tri
es

Simo−Fp
Simo−Fp(TO/FO)
Simo−Up
Simo−Fp(FRO)

Figura 3: Simo-Up, Simo-Fp and oracles-based versions of Simo-Fp, considering

Tries.

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 13

No compensation effects

Benchmarks Simo Tries (x1000)

Family Sat Tot At# Cl# Up Fp Fp(FRO) Fp(TO)

Beijing-1996 8 8 8,226 53,390 1,151 4,475,504 113 5,141

bmc 14 30 10,466 52,995 95,253 5,006,227 33,669 290,623

des 7 7 3,285 20,539 3,073 85,967 786 13,554

fev 0 3 1,324 3,819 1,636 168,740 786 2,814

fpga 10 30 32,612 194,786 10,326 960,441 9,232 48,375

fvp-unsat.2.0 0 5 1,468 15,206 8,370 1,047,241 5,438 52,900

mediator 2 2 561.50 12,086 3,689 22,472 1,289 12,833

miters 3 12 2,261 6,119 27,398 2,505,136 23,478 72,405

sss-sat.1.0 79 79 5,022 51,043 75,227 17,553,074 56,333 601,287

vliw-sat.1.1 5 5 20,780 284,509 242 2,657,969 127 8,374

Tabella 1: Tries arranged by benchmark family, note that Fp(FO) = Fp(TO).

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 14

Conclusions

� We have presented strong empirical evidence that enhanced look-ahead based

on failed literal detection does not pay off in a modern SAT solver

� We have shown that this result is independent of the specific implementation of

failed literal detection

� Preliminary results seem to point out that heuristic and look-back techniques

account for a great part of the effectiveness of modern SAT solvers

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 15

Future work

� confirm our results with additional tests

� evaluate the (in)effectiveness of other look-ahead techniques (recursive failed

literal detection, dilemma) in a modern SAT solver

� evaluate the impact of look-ahead based heuristics (using informations that

arise from the look-ahead step) instead of look-back based

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 16

References

Learn more about Simo at the STAR project homepage available from:

http://www.mrg.dist.unige.it/star

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 17

Failed literal detection: the algorithm

function FailedPropagate()

for each open atom �

� � UnitPropagate(�)

LookBack()

if ��� F then

� � UnitPropagate(� �)

if � � F then return F

else

� � UnitPropagate(� �)

LookBack()

if � � F

UnitPropagate(�)

return T

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 18

Adding failed literal detection to unit propagate

The LookAhead() step, composed only by unit propagation in modern SAT solvers,

is changed in the following way:

function LookAhead()

� � UnitPropagate()

if ��� F then

return F

else

return FailedPropagate()

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 19

Introducing timers and counters in Simo-Fp

� Total time (resp. tries), 	
 (resp. �
), is the sum of the run times (resp.

tries) of each call to FailedLiteral

� Time (resp. Tries) spent on failed, 	 � (resp. � �), is the sum of the run times

(resp. tries) spent to perform literal propagations when the literals are failed

� Time (resp. Tries) wasted on failed, 	
 (resp. �
), the same as above, but

when the literals are not failed

� Time (resp. Tries) spent on reason, 	 � (resp. � �), is the sum of the run times

(resp. tries) spent to calculate the reason of each failed literal when the literal

is failed

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 20

Calculating performances of oracles-based versions

The performances of oracles-based versions can be calculated as follow.

In terms of CPU time:

	 � 	 � �� 	�� 	

	 ��� � �� 	�� 	
�� 	 �

	 ��� � � �� 	�� 	
� 	 �� 	 �� 	 �� � �� 	 �

Instead, in terms of tries:

� � 	 � �� � �� � �� � � �

� �� � � �� � � �
 � � �� � �

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 21

Simo-Fp(TO): the algorithm

function FailedPropagate()

for each open atom �

� � UnitPropagate(�)

LookBack()

if ��� F then

� � UnitPropagate(� �)

if � � � then return F

else

� � UnitPropagate(� �)

LookBack()

if � � F

UnitPropagate(�)

return T

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 22

Simo-Fp(FO): the algorithm

function FailedPropagate()

for each open atom �

� � UnitPropagate(�)

LookBack()

if ��� F then

� � UnitPropagate(� �)

if � � � then return F

else

� � UnitPropagate(� �)

LookBack()

if � � F

UnitPropagate(�)

return T

DIST - Università di Genova SAT 03

MRG-LAB 6 May 2003 23

Simo-Fp(FRO): the algorithm

function FailedPropagate()

for each open atom �

� � UnitPropagate(�)

LookBack()

if ��� F then

� � UnitPropagate(� �)

if � � � then return F

else

� � UnitPropagate(� �)

LookBack()

if � � F

UnitPropagate(�)

return T

DIST - Università di Genova SAT 03

