
TSAT++: SAT-Based solver for Separation Logic

Marco Maratea

j.w.w. A. Armando, C. Castellini, E. Giunchiglia

Mechanised Reasoning Group

Dipartimento di Informatica, Sistemistica e Telematica - Università di Genova



1

Motivation
Decision procedures able to decide quantifier-free first-order theories are becoming
increasingly important in formal verification and related areas.

Several properties of hardware, timed automata and data-intensive software can
be modelled in quantifier-free first-order theories.

Due to the boost that SAT solvers had in the last years, the SAT-Based approach
to model checking infinite-state systems has become a suitable and efficient way.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



2

Why Separation Logic?
Separation Logic (SL) is a decidable quantifier-free first-order theory.

SL seems to be a good compromise between efficiency and expressivity.

It combines propositional atoms with a restricted form of linear arithmetic via the
standard boolean connectives.

Many benchmarks available are in SL and a lot of properties of systems can be
encoded in this logic.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



3

SL: Definitions (1)
Fix a domain of interpretation D for the arithmetic variables (the set of real or
the set of integer numbers).

An SL-atom is either a propositional variable or an SL-expression x - y ≤ c
(<,>,≥,=, 6= can be (easily) recast in ≤), where x and y range on D and c is a
numeric constant.

An SL-expression is also called difference constraint.

An SL-literal is an SL-atom or its negation.
An SL-clause is a finite disjunction of SL-literals.
An SL-formula is a finite conjunction of SL-clauses.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



4

SL: Definitions (2)
We are restricting our attention on SL-formula in Conjunctive Normal Form
(CNF): This is not a big problem as long as there are efficient algorithms for
transforming a non-CNF in a CNF formula.

Deciding an SL-formula (Is there an SL-assignment to propositional atoms and
arithmetic variables, such that the SL-formula φ is true?) is an NP-complete
problem.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



5

TSAT++: Yet another SAT-Based solver for SL?
Even TSAT++ follows the well-known (SAT-Based) lazy approach for deciding
SL-formulas, it introduces new ideas/optimization techniques like:

1. SAT solver partial assignments (early pruning)

2. detection of the “best” witness of inconsistency

3. propositional assignment reduction

Using these techniques and combinig them, TSAT++ can reach state-of-the-art
results in a very wide range of domains of benchmarks arising from the AI and
Formal Verification communities.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



6

Agenda

• TSAT++’s overview

• TSAT++’s optimization techniques

• Experimental analysis

• Future work

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



7

TSAT++’s architecture

look−backlook−ahead

preprocessing IN
TE

R
FA

C
E

IN
TE

R
FA

C
E

SAT+model / UNSAT

main module

ψ,η

φ

enumerator

checker

parsing + abstraction

satisfiability

µ

YES / NO +η(ξ)

ξ

η (µ)−1

Figure 1: High-level view of TSAT++.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



8

TSAT++’s approach
TSAT++ is implemented under the ACR (abstract-check-refine) paradigm:

1. first the SL-formula φ is abstracted to a boolean formula ψ;

2. the boolean models µs are checked for arithmetic consistency;

3. the boolean formula is refined using ξ in case of arithmetic inconsistency (and
back to step. 2).

TSAT++ employs SIMO for the propositional part, and a modified version of the
Bellman-Ford (BF) algorithm for the arithmetic part.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



9

TSAT++’s basic algorithm
Given an SL-formula φ,

function TSAT++-Solve(φ)
ψ= Abstract(φ)
η= Map(φ)
SIMO.LoadFormula(ψ)
while ((µ = SIMO.Solve(ψ)) != NULL)

if ((ξ = TSAT++.ConsistencyCheck(µ, η)) == NULL)
return SAT

SIMO.BacktrackWithReason(ξ)
return UNSAT

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



10

Optimization 1: preprocessing
One drawback of the generate-and-test approach is that (exponentially) many
trivially inconsistent valuations can be generated and then discarded (e.g., with
x− y ≤ 3 assigned to true and x− y ≤ 5 to false)

To reduce the generation of unfruitful valuations, in TSAT++ for each pair c1, c2
of difference constraints in the same variables and occurring in φ, the consistency
of all possible pairs of literals built out of them, i.e., {c1, c2}, {¬c1, c2}, {c1,¬c2},
and {¬c1,¬c2}, is checked.

Assuming, e.g., {c1, c2} is inconsistent, the clause {¬c1,¬c2} is added to φ before
the search starts (in our example, we would add the clause {¬x− y ≤ 3, x− y ≤
5}).

This dramatically speeds-up the search, especially on randomly generated
problems.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



11

TSAT++’s algorithm with opt 1.
Given an SL-formula φ,

function TSAT++-Solve(φ)
ψ= Abstract(φ)
η= Map(φ)
SIMO.LoadFormula(ψ)
while ((µ = SIMO.Solve(ψ)) != NULL)

if ((ξ = TSAT++.ConsistencyCheck(µ, η)) == NULL)
return SAT

SIMO.BacktrackWithReason(ξ)
return UNSAT

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



12

Optimization 2: early pruning
In CSP, this technique has been shown to be very effective on randomly generated
problems.

How is this technique imported in SL? The SAT solver must have the feature of
returning also partial (but consistent) boolean model µp (even they do not satisfy
yet ψ), other than total boolean model µ satisfying ψ.

If µp leads to an arithmetic inconsistence, there is no need to go on this branch,
and the procedure can backtrack.

If µp does not lead to an arithmetic inconsistence, we have to go on this branch;
if µp was total, we are done.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



13

TSAT++’s algorithm with opt 2.
Given an SL-formula φ,

function TSAT++-Solve(φ)
ψ= Abstract(φ)
η= Map(φ)
SIMO.LoadFormula(ψ)
while ((µp = SIMO.Solve(ψ)) != NULL)

if ((ξ = TSAT++.ConsistencyCheck(µp, η)) == NULL)
if (IsSatisfying(µp))

return SAT
else

SIMO.BacktrackWithReason(ξ)
return UNSAT

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



14

Optimization 3: detecting reason (1)
Slightly modifying the BF algorithm, after the detection of a negative cycle, we
are able to extract the “best” reason ξ under given condition looking among the
available cycles.

The following three options are currently implemented in TSAT++:

• plain: pick the first reason non-deterministically

• shortest: pick the minimal reason under cardinality

• shallowest: pick the minimal reason under the order induced by the
propositional stack

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



15

Optimization 3: detecting reason (2)
In the analysis, we have used the “shortest” option because it seems to lead to
slight better results.

Nevertheless, the differences between reasons are not considerable, because there
are very few available negative cycles for each failure.

This is due to the single-source nature of the BF.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



16

TSAT++’s algorithm with opt 3.
Given an SL-formula φ,

function TSAT++-Solve(φ)
ψ= Abstract(φ)
η= Map(φ)
SIMO.LoadFormula(ψ)
while ((µ = SIMO.Solve(ψ)) != NULL)

if ((ξ = TSAT++.ConsistencyCheck(µ, η)) == NULL)
return SAT

SIMO.BacktrackWithReason(ξ)
return UNSAT

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



17

Optimization 4: assignment reduction
Given µ propositional satisfying φ, it may be the case that some of the literals in
µ may be not necessary to satisfy φ. This is in particular true when SAT solvers
use lazy data structure like watched literals.

We compute a prime implicant µr of the formula φ such that µr ⊆ µ .

We call the above procedure reduction, and it may be useful because

– if µ leads to a satisfying SL-assignment ,so is µr, and we are done;
– if µ does not lead to a satisfying SL-assignment, it may nevertheless be the
case that µr does, and we can still interrupt the search because we are done;
– if µ and µr do not lead to a satisfying SL-assignment, checking the consistency
of µ instead of µr can cause exponentially many more consistency checks.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



18

TSAT++’s algorithm with opt 4.
Given an SL-formula φ,

function TSAT++-Solve(φ)
ψ= Abstract(φ)
η= Map(φ)
SIMO.LoadFormula(ψ)
while ((µ = SIMO.Solve(ψ)) != NULL)

µr = TSAT++.reduction(µ)
if ((ξ = TSAT++.ConsistencyCheck(µr, η)) == NULL)

return SAT
SIMO.BacktrackWithReason(ξ)

return UNSAT

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



19

Experimental settings
For all the solvers:
TIME : 1000 sec
MEM : 512MB
“–” : segmentation fault

In TSAT++:
– j : preprocessing
– p : prime implicant generation (assignment reduction)
– 2 : shortest reason

SEP-m : SEP with internal conjunction matrix off (suggested by O. Strichman)

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



20

Disjunctive Temporal Problem (DTPs)
These are well-known random problems from the AI community.

DTPs are randomly generated by fixing the number k of expressions x - y ≤ c per
SL-clause, the number n of arithmetic variables, a positive integer L such that
all the constants are taken in [−L,L]. Then:

1. the number of clauses m is increased in order to range from satisfiable to
unsatisfiable instances from 2*n to 14*n step n,

2. for each tuple of values of the parameters, 100 instances are generated and
then given to the solvers, and

3. the median of the CPU time is plotted against the m/n ratio.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



21

TSAT++’s performances (1): DTPs

2 4 6 8 10 12 14
10−2

10−1

100

101

102

103

ratio

cp
u 

tim
e

DTP: 35 variables on integer domain

TSAT++
Epilits
SEP

2 4 6 8 10 12 14
10−2

10−1

100

101

102

103

ratio

cp
u 

tim
e

DTP: 35 variables on real domain

TSAT++
MathSAT
CSPi
Tsat
SEP

Figure 2: Evaluation on the DTP on 35 variables. Integer domain (left) and real
domain (right). Setting: k = 2, L = 100.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



22

TSAT++’s performance (2): postoffice problems

Instance SAT? TSAT++ jp2 MathSAT SEP
P04-6-P04 NO 0.07 0.36 16.02
P04-7-P04 NO 0.11 0.36 134.21
P04-11-P04 NO 1.01 2.13 TIME
P04-12-P04 YES 0.58 0.91 TIME
P05-10-P05 NO 2.41 5.32 −
P05-11-P05 NO 3.44 9.23 −
P05-12-P05 NO 4.79 22.06 −
P05-13-P05 NO 8.88 54.17 −
P05-14-P05 YES 2.99 11.36 −

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



23

Diamonds problems
Given a parameter D (number of diamonds), these problems are characterized
by an exponentially large (2D) number of boolean models µ, some of which
correspond to satisfying SL-assignments; hard instances with a unique satisfying
SL-assignment can be generated.

A second parameter, S (related to the number of edge in each diamond), is used
to make µ larger, further increasing the difficulty.

Variables range over the reals.

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



24

TSAT++’s performance (3): diamonds problems

Instance Lazy Eager
D S u? TSAT++ p2 M.SAT ICS CVC SEP SEP-m

250 5 NO 0.08 5.40 0.05 MEM 52.20 0.95
250 5 YES 0.21 TIME 150.02 3.26 0.77 288.30
500 5 NO 0.29 21.22 0.11 MEM 742.99 5.92
500 5 YES 1.05 TIME MEM 6.99 4.85 TIME
1000 5 NO 1.07 – 0.28 MEM TIME 27.52
1000 5 YES 6.45 – MEM 15.68 22.53 TIME
2000 5 NO 3.76 – 0.82 MEM – –
2000 5 YES 29.90 – MEM 37.53 – –

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



25

TSAT++’s performance (4): real-world problems
from UCLID

Instance Lazy Eager
TSAT++ p2 ICS SEP

cache.inv10 0.11 5.29 –
cache.inv12 75.08 53.83 –

dlx1c TIME – –

elf.rf8 0.74 2.68 MEM
elf.rf9 13.92 39.24 TIME

ooo.rf7 7.42 16.26 MEM
ooo.rf8 231.80 265.16 TIME

q2.14 230.69 479.65 –

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE



26

Future work
From the point of view of the basic research:

• Extending TSAT++’s theory with uninterpreted functions, lists, arrays

and, on the “applications” side, using TSAT++ as an effective back-end solver
for:

• Software Model Checking

• Planning/Scheduling

Menlo Park, SRI, April 26 2004 TSAT++: SAT-Based solver for Separation Logic MRG-DIST - UniGE


