
TPLP 19 (5–6): 740–756, 2019. c© Cambridge University Press 2019

doi:10.1017/S1471068419000164

740

Abstract Solvers for Computing Cautious
Consequences of ASP programs

GIOVANNI AMENDOLA and CARMINE DODARO
University of Calabria, Italy

(e-mail: {amendola,dodaro}@mat.unical.it)

MARCO MARATEA
University of Genoa, Italy

(e-mail: marco@dibris.unige.it)

submitted 25 July 2019; accepted 31 July 2019

Abstract

Abstract solvers are a method to formally analyze algorithms that have been profitably used for
describing, comparing and composing solving techniques in various fields such as Propositional
Satisfiability (SAT), Quantified SAT, Satisfiability Modulo Theories, Answer Set Programming
(ASP), and Constraint ASP.

In this paper, we design, implement and test novel abstract solutions for cautious reasoning
tasks in ASP. We show how to improve the current abstract solvers for cautious reasoning in
ASP with new techniques borrowed from backbone computation in SAT, in order to design new
solving algorithms. By doing so, we also formally show that the algorithms for solving cautious
reasoning tasks in ASP are strongly related to those for computing backbones of Boolean for-
mulas. We implement some of the new solutions in the ASP solver wasp and show that their
performance are comparable to state-of-the-art solutions on the benchmark problems from the
past ASP Competitions.

KEYWORDS: Answer Set Programming, Abstract solvers, Cautious reasoning

1 Introduction

Abstract solvers are a method to formally analyse solving algorithms. In this method-

ology, the states of a computation are represented as nodes of a graph, the solving

techniques as edges between such nodes, the solving process as a path in the graph,

and formal properties of the algorithms are reduced to related graph properties. This

framework enjoys some advantages w.r.t. traditional ways such as pseudo-code-based

descriptions, e.g., being based on formal and well-known, yet simple, mathematical ob-

jects like graphs, which helps (i) comparing solving algorithms by means of comparison

of their related graphs, (ii) mixing techniques in different algorithms in order to de-

sign novel (combination of) solving solutions, by means of mixing arcs in the related

graphs, and (iii) stating and proving formal properties of the solving algorithms, by

means of reachability within the related graphs. Abstract solvers already proved to be

a useful tool for formally describing, comparing and composing solving techniques in

various fields such as Propositional Satisfiability (SAT) and Satisfiability Modulo Theo-

ries (SMT) (Nieuwenhuis et al. 2006), Quantified SAT (Brochenin and Maratea 2015b),

Answer Set Programming (Lierler 2011; Lierler and Truszczynski 2011; Brochenin et al.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S1471068419000164
https://orcid.org/0000-0002-2111-9671
https://orcid.org/0000-0002-5617-5286
mailto:{amendola,dodaro}@mat.unical.it
mailto:marco@dibris.unige.it
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

Abstract Solvers for Computing Cautious Consequences of ASP programs 741

2014), and Constraint ASP (Lierler 2014). In ASP, such methodology led even to the

development of a new ASP solver, sup (Lierler 2011); however, abstract solvers have

been so far mainly applied to ASP solvers for brave reasoning tasks where, given an

input query and a knowledge base expressed in ASP, answers are witnessed by ASP

solutions, i.e., stable models (Baral 2003; Eiter et al. 1997; Gelfond and Lifschitz 1988;

Gelfond and Lifschitz 1991; Marek and Truszczyński 1998; Niemelä 1999).

However, in ASP, also cautious reasoning has been deeply studied in the literature:

answers here must be witnessed by all stable models. This task has found a signifi-

cant number of interesting applications as well, including consistent query answering

(Arenas et al. 2003; Manna et al. 2013), data integration (Eiter 2005), multi-context

systems (Brewka and Eiter 2007), and ontology-based reasoning (Eiter et al. 2008). Two

well-known ASP solvers, i.e., dlv (Leone et al. 2006) and clasp (Gebser et al. 2012), have

been extended for computing cautious consequences of ASP programs. More recently,

Alviano et al. (2014) presented a unified, high-level view of such solving procedures,

and designed several algorithms for cautious reasoning in ASP, including those imple-

mented in dlv and clasp, borrowed from the backbone computation of Boolean formulas

(Janota et al. 2015): all these techniques are implemented (and tested) on top of the ASP

solver wasp (Alviano et al. 2015).

In this paper we design, implement and test novel abstract solutions for cau-

tious reasoning tasks in ASP. We show how to improve the current abstract solvers

(Brochenin and Maratea 2015a) for cautious reasoning in ASP with further techniques

borrowed from backbone computation in SAT, in order to design new solving algorithms.

In particular, we import a technique called “chunk”, which generalizes over- and under-

approximation by testing a set soft atoms simultaneously for being added in the under-

approximation, and core-based algorithms, which can be considered either a solution per

se, or a way for pruning the set of atoms to be considered, given that they can not guaran-

tee completeness. By doing so, we also formally show, through a uniform treatment, that

the algorithms for solving cautious reasoning tasks in ASP are strongly related to those

for computing backbones of Boolean formulas. Finally, we implement some of the new

solutions in the ASP solver wasp: results of a wide experimental analysis confirm that

abstract solvers are a useful tool also for designing abstract solving procedures, given the

performances of the related implementations are overall comparable to state-of-the-art

solutions on the benchmark problems from the past ASP Competitions.

The paper is structured as follows. Section 2 introduces needed preliminaries, including

a review in Section 2.3 of current algorithms for cautious reasoning trough abstract

solving methodology. Section 3 shows how the algorithms for computing backbones of

Boolean formulas can be imported into ASP, to design new solving algorithms. It also

contains a general theorem showing the relation between backbones computation in SAT

and cautious reasoning in ASP.1 Section 4 then presents the results of the new solutions

on devoted ASP benchmarks. The paper ends by discussing related work in Section 5,

and by drawing conclusions in Section 6.

2 Preliminaries

In this section, we first recall basics on (ground) non-disjunctive answer set program-

ming (ASP) and Boolean logic formulas in Conjunctive Normal Form (CNF). Then, we

1 Proofs can be found in the supplementary material corresponding to this paper at the TPLP archives.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

742 G. Amendola et al.

introduce the abstract solvers framework and its methodology. Finally, we recall existing

abstract solvers for computing cautious consequences of ASP programs.

2.1 Boolean Formulas and Answer Set Programs

We define (ground) non-disjunctive ASP programs and CNF formulas so as to underline

similarities, in order to make it easier in later sections to compare algorithms working

on CNF formulas with those working on ASP programs.

Syntax. Let Σ be a propositional signature. An element a ∈ Σ is called atom or positive

literal. The negation of an atom a, in symbols ¬a, is called negative literal. Given a literal

l, we define |l| = a, if l = a or l = ¬a, for some a ∈ Σ. For a set of atoms X ⊆ Σ, a literal

relative to X is a literal l such that |l| ∈ X, and lit(X) is the set of all literals relative to

X. We set l̄ = a, if l = ¬a, and l̄ = ¬a, if l = a. A clause is a finite set of literals (seen as a

disjunction). A CNF formula is a finite set of clauses (seen as a conjunction). Given a set

of literals M , we denote byM+ the set of positive literals ofM , byM− the set of negative

literals of M , and by M the set {l̄ | l ∈ M}. We say that M is consistent if it does not

contain both a literal and its negation. A (non-disjunctive) rule is a pair (A,B), written

A ← B, where B is a finite set of literals and A is an atom or the empty set. We may

write a rule as A← B+, B−, as an abbreviation for A← B+ ∪B−, and A← l, B as an

abbreviation for A← {l}∪B. A program is a finite set of rules. Given a set of literals M ,

a program Π, and a CNF formula Φ, we denote by atoms(M), atoms(Π), and atoms(Φ)

the set of atoms occurring in M , Π , and Φ, respectively. It is important to emphasize

here that the interpretation of negation is different in propositional formulas and in ASP

programs. Indeed, in propositional formulas ¬ represents the classical negation, while in

ASP programs it represents the negation by default.

Semantics. An assignment to a set X of atoms is a total mapping from X to {⊥,�}. We

identify a consistent set M of literals with an assignment to atoms(M) such that a ∈M

iff a is mapped to �, and ¬a ∈ M iff a is mapped to ⊥. A classical model of a CNF

formula Φ is an assignment M to atoms(Φ) such that for each clause C ∈ Φ, M ∩C 	= ∅.
A classical model of a program Π is an assignmentM to atoms(Π) such that for each rule

(A,B) ∈ Π , A∩M 	= ∅ or B 	⊆M . We denote M(Φ) (resp. M(Π)) the set of all classical

models of Φ (resp. Π). The reduct ΠX of a program Π w.r.t. a set of atoms X is obtained

from Π by deleting each rule A← B+, B− such that X ∩ atoms(B−) 	= ∅ and replacing

each remaining rule A ← B+, B− with A ← B+. An answer set (or stable model) of a

program Π is an assignment M to atoms(Π) such that M+ is minimal among the M+
0

such that M0 is a classical model of ΠM+

. We denote by AS(Π) the set of all answer sets

of Π. Given a formula Φ and a program Π, we define backbone(Φ) =
⋂

M∈M(Φ) M
+and

cautious(Π) =
⋂

M∈AS(Π) M
+.

Example 1

Consider the following program Π = {a ← ¬b, b ← ¬a, c ← a, c ← b}. Π has two

answer sets, namely A1 = {¬a, b, c} and A2 = {a,¬b, c}. Hence, A+
1 = {b, c} and A+

2 =

{a, c}. Therefore, cautious(Π) = {b, c} ∩ {a, c} = {c}. Now, consider the following CNF

formula Φ = {a∨ b,¬a∨ c,¬b∨ c}. Φ has three classical models, namely M1 = {¬a, b, c},
M2 = {a,¬b, c}, and M3 = {a, b, c}. Hence, M+

1 = {b, c}, M+
2 = {a, c}, and M+

3 = M3.

Therefore, backbone(Φ) = {b, c} ∩ {a, c} ∩ {a, b, c} = {c}.
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

Abstract Solvers for Computing Cautious Consequences of ASP programs 743

2.2 Abstract Solvers for Solving CNF Formulas and ASP Programs

Now, we introduce the abstract solvers framework and its methodology employed

later on in Section 2.3 and Section 3 for computing cautious consequences of ASP

programs. As we have mentioned in the introduction, abstract solvers are graphs

that represent the status of the computation, and how it changes in response to an

application of a technique in a search for a solution with certain properties, e.g., the

satisfiability of a formula. Correspondingly, in the next paragraphs we first present the

concept of a state, i.e., all possible paths of the computation in terms of assignments,

then the transition rules are introduced, that showing how the state changes as a

consequence of an application of a search technique if some conditions are met. The

last paragraph of this subsection introduces abstract solver graphs , where the states are

the possible nodes of the graph, while transition rules define arcs among reachable nodes.

States. Given a set of atoms X, an action relative to X is an element of the set A (X) =

{over , under∅} ∪ {under{a} | a ∈ X}. For a set X of atoms, a record relative to X is a

string L from lit(X) without repetitions. A record L is consistent if it does not contains

both a literal and its negation. We may view a record as the set containing all its elements

stripped from their annotations. For example, we may view ¬ab as {¬a, b}, and hence as

the assignment that maps a to ⊥ and b to �. Given a set X of atoms, the set of states

relative to X, written VX , is the union of:

(i) the set of core states relative to X, that are all LO,U,A such that L is a record

relative to X; O, U ∈ X; and A ∈ A (X);

(ii) the set of control states relative to X, that are all the Cont(O,U) where O, U ∈ X;

and

(iii) the set of terminal states relative to X, that are all Ok(W), where W ∈ X.

Intuitively, these states represent computation steps of the algorithms that search for

assignments with certain properties, in our case being backbone or cautious consequence.

The computation starts from a specific core state, called initial state, depending on the

specific algorithm (concrete examples are given later when presenting the techniques).

Other core states LO,U,A and the control states Cont(O,U) represent all the intermediate

steps of the computation, where L is the current state of the computation of a model; O is

the current over-approximation of the solution; U is the current under-approximation of

the solution; and A is the action currently carried out: over (resp. under∅ or under{a}) if
over-approximation (resp. under-approximation) is being applied. Intuitively, a core state

represents the computation within a call to an ASP oracle, i.e., an ASP solver, while a

control state controls the computation between different calls to ASP oracles, depending

on over-approximation and under-approximation. The terminal states represent the end

of the computation, i.e., the termination of the algorithm.

For instance, consider the following set of atoms X = {a, b, c}. Hence, lit(X) =

{a, b, c,¬a, ¬b,¬c}. Therefore, ¬ab{a,b},∅,over is an example of core state relative to

X where a is assigned to false and b to true, the over-approximation is the set {a, b}
while the under-approximation is empty, and the action executed is over. Other exam-

ples of core states are ∅{a},{b},under∅ and ¬a¬b¬c∅,∅,under{a} . Instead, Cont({a, b}, {a}),

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

744 G. Amendola et al.

Cont({a, b, c}, ∅), Cont(∅, ∅) are examples of control states relative to X, where e.g., in

the first example the over-approximation is the set {a, b} and the under-approximation

is {a}. Ok({a, b, c}) and Ok(∅) are examples of terminal states relative to X, where set

{a, b, c} and ∅ are solutions.

Transition Rules. Transition rules are represented with the following structure:

ruleName S =⇒ S′ if { conditions
where, (i) ruleName is the name of the rule; (ii) S =⇒ S′ represents a transition from

the starting state S to the arriving state S′ (if the rule is applied); and (iii) conditions

is a set of conditions for the rule to be applicable.

We also consider a special transition rule, called Oracle, which starts from a state

LO,U,A and arrives to a state L′
O,U,A, if L = ∅. In symbols:

Oracle LO,U,A =⇒ L′
O,U,A if { L = ∅

Intuitively, the Oracle rule represents an oracle call to an ASP [resp., SAT] solver by

providing as result a set of literals L′ corresponding to the output of an ASP [resp.,

SAT] solver, i.e., L′ will correspond to an answer set of a logic program [resp., a classical

model of a Boolean formula], if such an answer set [resp. classical model] exists, and to

an inconsistent set of literals, otherwise. Transition rules in our paper are organized into

Return and Control rules. Return rules deal with the outcome of an oracle call, or the

application of a given technique, depending on the status of the set of literals L returned,

while Control rules start from a control state an direct the computation depending on

the content of the over- and under-approximation.

Abstract Solver Graphs. Given a set of atoms X and a set of transition rules T , we define

an abstract solver graph GX,T = 〈VX , ET 〉, where (S, S′) ∈ ET if, and only if, a transition

rule of the form S =⇒ S′ can be applied. We also denote the set of edges ET by the set of

transition rules T . We say that a state S ∈ VX is reachable from a state S′ ∈ VX , if there

is a path from S′ to S. Every state reachable from the initial state is called reachable

state, and represents a possible state of a computation. Each path starting from the

initial state represents the description of possible search for a certain model. We say that

no cycle is reachable if there is no reachable state which is reachable from itself. Finally,

note that transition rules T and the set X will depend from the specific input program

Π, thus instead of writing GX,T , we will write just GΠ.

2.3 Naive Abstract Solvers for Computing Cautious Consequences

In this section, we recall the abstract over-approximation, under-approximation and

mixed strategies for computing cautious consequences of ASP programs.

Definition 1

Given a program Π [resp., a CNF formula Φ], we say that an abstract solver graph GΠ

[resp., GΦ] solves cautious reasoning [resp., backbone computation], if (i) GΠ [resp., GΦ]

is finite and no cycle is reachable; and (ii) the unique terminal reachable state in GΠ

[resp., GΦ] is Ok(cautious(Π)) [resp., Ok(backbone(Π))].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

Abstract Solvers for Computing Cautious Consequences of ASP programs 745

Return rules
Failover LO,U,over =⇒ Cont(O,O) if

{
L is inconsistent

Find LO,U,A =⇒ Cont(O ∩ L,U) if
{
L is consistent and L �= ∅

Control rules
Terminal Cont(O,U) =⇒ Ok(O) if

{
O = U

OverApprox Cont(O,U) =⇒ ∅O,U,over if
{
O �= U

Fig. 1. The transition rules of ov .

In the following, without loss of generality, we only focus on the computation of cautious

consequences for an ASP program Π.

General Structure. Given a program Π, over-approximation is set to all atoms in the pro-

gram, i.e., O = atoms(Π), while the under-approximation is empty, i.e., U = ∅. Note that
U ⊆ cautious(Π) ⊆ O. Iteratively either under-approximation or over-approximation are

applied. When they coincide, i.e., U = O, the set of cautious consequences, i.e., O, has

been found and the computation terminates. It means that the state Ok(O) is a reachable

state. Hence, the full extent of states relative to X becomes useful. The unique terminal

state is Ok(W), where W is the set of all cautious consequences of Π.

Over-approximation. Let ΠO,U,over = Π ∪ {← O}. The initial state is ∅atoms(Π),∅,over .
We call ov the set of all the rules reported in Figure 1, that is ov = {Failover ,Find ,
Terminal ,OverApprox}. Intuitively, Failover means that a call to an oracle did not find

an answer set, so O is the solution. If Find is triggered, instead, we go to a control

state where O is updated according to the answer set found: then, if O = U a solution is

found through Terminal , otherwise the search is restarted (L = ∅) in an oracle state with

OverApprox . For any Π , the graph OSΠ is (Vatoms(Π), {Oracle} ∪ ov). Thus, in OSΠ ,

the oracle is called to find answer sets that reduce the over-approximation O in the over

action, unless no answer set exists. If an answer set M is found, then M ∩ O 	= ∅, as
ΠO,U,over = Π ∪ {← O}.
Indeed, assume by contradiction that M ∩ O = ∅, then O ⊆ M . Hence, M is not a

model of the rule (∅, O), as M ∩ ∅ = ∅ and O ⊆M . Therefore, M should not be a model

of ΠO,U,over , against the assumption that M is an answer set of ΠO,U,over .

Under-approximation. Let ΠO,U,under{a} = Π ∪{← a} and ΠO,U,under∅ = Π . The initial

state is ∅atoms(Π),∅,under∅ . We call un the set {Failunder ,Find ,Terminal ,UnderApprox}
containing the rules presented in Figure 2 plus Find and Terminal from Figure 1. Intu-

itively, Failunder updates over- and under-approximations in case a test on the atom a

failed, and leads to a control state, while UnderApprox restarts a new test if Find is not

applicable. For any Π , the graph USΠ is (Vatoms(Π), {Oracle}∪un). In USΠ , again, a first

oracle call takes place with the action under∅, which provides first over-approximation,

then calls with actions under{a}, where the element a is the tested atom. Figure 3 shows

a possible path in USΠ for the program Π of Example 1. For compactness, the syntax

in which the path is presented is slighly different, with “=⇒” replaced by “:”, and with

the initial state not explicitly tagged.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

746 G. Amendola et al.

Return rule
Failunder LO,U,underS =⇒ Cont(O,U ∪ S) if

{
L is inconsistent, and S = ∅ or S = {a}

Control rule
UnderApprox Cont(O,U) =⇒ ∅O,U,under{a} if

{
a ∈ O \ U

Fig. 2. The transition rules of un that are not in ov .

Π = Π{a,b,c},∅,under∅ =

⎧⎪⎨
⎪⎩

a← ¬b
b← ¬a
c← a
c← b

⎫⎪⎬
⎪⎭

Π{a,c},∅,under{c} = Π ∪ {← c}

Π{a,c},{c},under{a} = Π ∪ {← a}

∅{a,b,c},∅,under∅
Oracle : ac¬b{a,b,c},∅,under∅
Find : Cont({a, c}, ∅)

UnderApprox : ∅{a,c},∅,under{c}
Oracle : ¬c¬abc{a,c},∅,under{c}
Failunder : Cont({a, c}, {c})

UnderApprox : ∅{a,c},{c},under{a}
Oracle : ¬abc{a,c},{c},under{a}
Find : Cont({c}, {c})
Terminal : Ok({c})

Fig. 3. A path in USΠ .

Mixed strategy. An abstract mixed strategy can be obtained by defining MixSΠ as

(Vatoms(Π), {Oracle}∪un ∪ov). Therefore, it is possible to combine techniques described

by the graph for over-approximation and those in the graph for under-approximation,

by envisaging the design of new additional algorithms. Here, we have two potential ini-

tial states, i.e., ∅atoms(Π),∅,A, where A ∈ {over , under∅}, i.e., depending whether over-

appoximation or under-approximation is first applied.

3 Advanced Abstract Solvers for Computing Cautious Consequences

In this section we import in ASP further algorithms from (Janota et al. 2015) through

abstract solvers. First, we generalize the concepts of under- and over-approximation via

chunks, which consider a set of atoms simultaneously. Then, we model core-based al-

gorithms. Finally, we state a general theorem, which includes all previous results, that

shows how the techniques presented can be combined to design new solving methods for

finding cautious consequences of ASP programs, and states a strong analogy between al-

gorithms for computing cautious consequences of ASP programs and those for backbones

of CNF formulas.

The sets of states now include also the following: {chunkN |N ⊆ atoms(Π)}, chunk
and {coreN |N ⊆ lit(atoms(Π))}.

3.1 Chunking

In (Janota et al. 2015) a more general technique for under-approximation that allows

to test multiple literals at once is presented (see, Algorithm 5 in (Janota et al. 2015)).

We define ch as the set {Failchunk ,Find ,Terminal ,Chunk} containing the rules pre-

sented in Figure 4 plus Find and Terminal from Figure 1. The newly introduced rules

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

Abstract Solvers for Computing Cautious Consequences of ASP programs 747

Return rules
Failchunk LO,U,chunkN

=⇒ Cont(O \N,U ∪N) if
{
L is inconsistent

Control rules
Chunk Cont(O,U) =⇒ ∅O,U,chunkN

if
{
N ⊆ O \ U and N �= ∅

Fig. 4. The transition rules of ch that are not in ov .

Π = Π{a,b,c,d},∅,chunk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a← ¬b
b← ¬a
c← a
c← b
d← c

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Π{a,c,d},∅,chunk{c,d} = Π ∪ {← c, d }

Π{a,c,d},{c,d},chunk{a} = Π ∪ {← a}

∅{a,b,c,d},∅,chunk
Oracle : ac¬bd{a,b,c,d},∅,chunk
Find : Cont({a, c, d}, ∅)

Chunk : ∅{a,c,d},∅,chunk{c,d}
Oracle : ¬abcd¬d{a,c,d},∅,chunk{c,d}
Failchunk : Cont({a, c, d}, {c, d})

Chunk : ∅{a,c,d},{c,d},chunk{a}
Oracle : ¬abcd{a,c,d},{c,d},chunk{a}
Find : Cont({c, d}, {c, d})
Terminal : Ok({c, d})

Fig. 5. A path in CSΠ .

in Figure 4 model the new technique. In particular, Failchunk updates the over- and

under-approximations accordingly in case the test on the set N fails (the ASP oracle

call failed, thus all literals in N must be cautious consequences), and goes to a control

state. Meanwhile, Chunk restarts a new ASP oracle call with a new (nonempty) set N

such that N ⊆ O \ U in case the computation must continue (cf. condition of this tran-

sition rule). For any Π , the graph CSΠ is (Vatoms(Π), {Oracle} ∪ ch). The initial state is

∅atoms(Π),∅,chunk . We define ΠO,U,chunkN
as Π ∪ {← N}.

Theorem 1

Let Π be a program. Then, the graph CSΠ solves cautious reasoning.

In order to design a meaningful example of Chunk, we slightly modify our running

example adding the rule d ← c. Figure 5 shows a possible path in CSΠ for the new

defined program.

3.2 Designing New Abstract Solvers

The composition of techniques described in Section 2.3 and 3.1 can be readily applied

to computing cautious consequences of a program, but actually is not included in any

solver. This outlines another important feature of the abstract solvers methodology, i.e.,

its capability to design new solutions by means of combination of techniques implemented

in different solvers.

More generally, it is possible to mix under-approximation, over-approximation, and

chunking technique, and apply them for computing either cautious consequences or

backbones. We next state a general theorem that subsumes all the techniques previ-

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

748 G. Amendola et al.

ously described, showing a strong analogy among the algorithms for computing cautious

consequences and those for backbones.

Theorem 2

For any program Π , and for any set S ⊆ {un, ov , ch} such that S 	= ∅, the graph

(Vatoms(Π), {OracleASP} ∪
⋃

x∈S x) solves cautious reasoning, and the graph (Vatoms(Π),

{OracleSAT} ∪
⋃

x∈S x) solves backbone computation, where OracleASP and OracleSAT

represent an oracle call to an ASP solver and to a SAT solver, respectively.

3.3 Core-based Methods

We now model core-based algorithms from (Janota et al. 2015) in terms of abstract

solvers, in particular Algorithm 6, and apply it to the computation of cautious con-

sequences of ASP programs. First, note that ΠO,U,coreN
is Π ∪ {← l|l ∈ N}, and

∅atoms(Π),∅,core
atoms(Π)

is the initial state. Moreover, given a logic program Π, we say

that a set C ⊆ lit(atoms(Π)) is a core of Π, if Π ∪ {← l|l ∈ C} is incoherent. It is

important to emphasize here that this definition is in line with the one proposed by

Alviano et al. (2018). In particular, unsatisfiable cores have two important properties:

• if C is an unsatisfiable core of Π then all of its supersets are also unsatisfiable cores

of Π;

• an atom p ∈ atoms(Π) is a cautious consequence of Π if and only if {¬p} is an

unsatisfiable core (Proposition 4.1 of (Alviano et al. 2018)).

Moreover, in general unsatisfiable cores are not guaranteed to be minimal, albeit several

strategies can be used to obtain a minimal unsatisfiable core (Lynce and Silva 2004;

Alviano and Dodaro 2016; Alviano et al. 2018).

Example 2

Consider the program Π of the Example 1 and let N = {¬a,¬b,¬c}. Hence, {¬c},
{¬a,¬c}, {¬b,¬c}, {¬a,¬b}, and {¬a,¬b,¬c} are all cores of ΠO,U,coreN

.

First, we consider a transition rule, called CoreOracle, which starts from a state

∅O,U,coreN
and arrives to a state L′

O,U,coreN
. In symbols:

CoreOracle LO,U,coreN
=⇒ L′

O,U,coreN
if { L = ∅

The CoreOracle rule represents an oracle call to compute a set of literals L′, which is

an inconsistent set of literals such that the set L̂′ = {¬a | {a,¬a} ⊆ L′} is a core of

ΠO,U,coreN
and a subset of N , whenever ΠO,U,coreN

is incoherent; and is an answer set

of ΠO,U,coreN
, otherwise. Then, we define in as the set of rules of Figure 6. Therefore,

we consider a graph FSΠ = (Vatoms(Π), {CoreOracle} ∪ in) which represents Algorithm

6 in (Janota et al. 2015). Here, we need to introduce two intermediate control states:

PreN and Eval . In particular, PreN is reached in case of inconsistency, where N is the

set of literals that may be used for the potential upcoming core action; while Eval is

reached in case of consistency. From an outermost state, of the type Eval , a new core is

started with NewSet , whenever there is a gap between over- and under-approximation;

otherwise, the Final control rule leads to the terminal state. Fail1pre and Fail2pre lead to

the intermediate type of control state, PreN , that can either restart a core action with

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

Abstract Solvers for Computing Cautious Consequences of ASP programs 749

Return rules
Fail1pre LO,U,coreN =⇒ PreN\{l}(O,U ∪ {l̄}) if

{
L is inconsistent and L̂ ∩N = {l}

Fail2pre LO,U,coreN =⇒ Pre
N\̂L

(O,U) if
{
L is inconsistent and |L̂ ∩N | > 1

Findpre LO,U,coreN =⇒ Eval(O ∩ L,U) if
{
L is consistent and L �= ∅

Control rules
Main PreN (O,U) =⇒ Cont(O,U) if

{
N = ∅

Continue PreN (O,U) =⇒ ∅O,U,coreN if
{
N �= ∅

NewSet Eval(O,U) =⇒ ∅O,U,core
O

if
{
O �= U

Final Eval(O,U) =⇒ Ok(O) if
{
O = U

Fig. 6. The transition rules of in.

Π{a,b,c},∅,core{¬a,¬b,¬c} =

⎧⎪⎨
⎪⎩

a← ¬b
b← ¬a
c← a
c← b

⎫⎪⎬
⎪⎭ ∪

⎧⎨
⎩
← a
← b
← c

⎫⎬
⎭

Π{a,b,c},{c},core{¬a,¬b} =

⎧⎪⎨
⎪⎩

a← ¬b
b← ¬a
c← a
c← b

⎫⎪⎬
⎪⎭ ∪

{← a
← b

}

∅{a,b,c},∅,core{¬a,¬b,¬c}
CoreOracle : c¬c{a,b,c},∅,core{¬a,¬b,¬c}
Fail1pre : Pre{¬a,¬b}({a, b, c}, {c})
Continue : ∅{a,b,c},{c},core{¬a,¬b}

CoreOracle : ab¬a¬b{a,b,c},{c},core{¬a,¬b}
Fail2pre : Pre∅({a, b, c}, {c})
Main : Cont({a, b, c}, {c})

Fig. 7. A path in FSΠ.

Continue, or continue with the Main rule. Figure 7 shows a possible path in FSΠ for

the program Π of Example 1.

Theorem 3

Let Π be a program, and let O and U be two set of atoms. Then, (i) the only reachable

terminal states are either Cont(O,U) or Ok(O); (ii) if Ok(O) is reachable in FSΠ,

then FSΠ solves cautious reasoning; (iii) if Cont(O,U) is reachable in FSΠ, then U ⊆
cautious(Π) ⊆ O.

Chunking and core-based methods can be combined using our methodology to abstract

Algorithm 7 from (Janota et al. 2015). Such a combination will be employed in the

experiments.

4 Experimental Analysis

The abstract solvers reported in this paper have been used for implementing several

algorithms in the ASP solver wasp (Alviano et al. 2015; Alviano et al. 2019), resulting

in the following new versions of wasp:

• wasp-chunk-2, i.e., wasp running the algorithm based on chunking, with the size

of the chunk set to 2;

• wasp-chunk-20%, i.e., wasp running the algorithm based on chunking, with the

size of the chunk set to the 20% of the initial number of candidates, where the

initial set of candidates is the whole set of atoms;

• wasp-cb, i.e., wasp running the algorithm based on cores.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

750 G. Amendola et al.

• wasp-cb-2, i.e., wasp running the algorithm based on cores and chunking, with

the size of the chunk set to 2;

• wasp-cb-20%, i.e., wasp running the algorithm based on cores and chunking, with

the size of the chunk set to the 20% of the initial number of candidates.

Benchmark selection. The performance of these versions of wasp was measured on the

benchmarks considered in (Alviano et al. 2018). In particular, (Alviano et al. 2018) in-

cludes (i) all the 193 instances from the latest ASP Competitions (Calimeri et al. 2014;

2016; Gebser et al. 2017) involving non-ground queries; (ii) 115 instances of ASP Com-

petitions classified as easy, that is, those for which a stable model is found within 20

seconds of computation by mainstream ASP systems; and (iii) instances from abstract

argumentation frameworks submitted to the 2nd International Competition on Compu-

tational Models of Argumentation. In this paper, instances from (iv) are not included

since they are trivial for all tested solvers (Alviano et al. 2018).

Compared approaches. As a reference to the state of the art, we used clasp v.

3.3.3 (Gebser et al. 2012), which implements algorithm or (i.e., over-approximation),

and the best performing algorithms implemented by wasp (Alviano et al. 2014;

Alviano et al. 2018), namely or (i.e., over-approximation), ict (i.e., under-

approximation), opt, and cm.

Algorithm opt was presented in (Alviano et al. 2018). The idea is as follows. Given

a set of objective atoms A, the branching heuristic of the solver is forced to select ¬p
for p ∈ A, before any other unassigned literal. In this way, the search is driven to falsify

as many atoms in A as possible. When all atoms in A are assigned, standard answer

set search procedure is applied without further modifications to the branching heuristic.

Therefore, whenever an answer set is found, it is guaranteed to be minimal with respect

to the set of objective atoms (Di Rosa et al. 2010). When the current assignment to

atoms in A cannot be extended to an answer set, then the assignment of some atom in

A is flipped, and hence the procedure is repeated with a different assignment for the

objective atoms. For cautious reasoning, A is initialized to the set of all candidates and

updated whenever an answer set is found.

Algorithm cm was also presented in (Alviano et al. 2018) and is based on the property

that an atom is a cautious consequence of a given program if and only if the negation

of the atom is an unsatisfiable core. Hence, the algorithm searches for an answer set

falsifying all candidates, with the aim of eliminating all remaining candidates at once. As

soon as no such an answer set exists, the returned unsatisfiable core is either minimized

to a singleton or used to discard candidates.

Note that all tested algorithms take advantage of the incremental interface of clasp

and wasp, which is based on the concept of assumptions literals. The incremental inter-

face allows the solver to reuse part of the computation among different calls, e.g., learned

constraints and heuristic parameters.

The dlv solver is not considered here as its performance on cautious reasoning has

been shown in earlier work to be dominated by the other approaches considered in

(Alviano et al. 2014).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

Abstract Solvers for Computing Cautious Consequences of ASP programs 751

20 40 60 80 100 120 140 160 180 200
0

150

300

450

600

Number of solved instances

P
er
-i
n
st
a
n
ce

ti
m
e
li
m
it

(s
)

clasp

wasp-or

wasp-ict

wasp-cm

wasp-opt

wasp-chunk-20%

wasp-chunk-2

wasp-cb

wasp-cb-20%

wasp-cb-2

Fig. 8. Benchmark (i): Performance comparison on non-ground queries in ASP Competitions.

Hardware configurations and limits. The experiments were run on computing nodes with

Intel Xeon 2.4-GHz processors and 16 GB of memory. Time and memory limits were set

to 600 seconds and 15 GB, respectively.

4.1 Results

Concerning benchmark (i), results are shown in the cactus plot of Figure 8, where for

each algorithm the number of solved instances in a given time is reported, producing an

aggregated view of its overall performance. As a first observation, wasp cannot reach

the performance of clasp on the execution of algorithm or, and indeed clasp solved 41

instances more than wasp-or. However, such a huge gap is completely filled by wasp-

cb-20%, which actually solves 13 instances more than clasp. Indeed, wasp-cb-20% is

able to solve all instances with an average running time of 56 seconds, and is comparable

to the best performing algorithm, namely wasp-opt, which solves all instances with

an average running time of 36 seconds. Notably, even a small size of the chunk may

have a huge impact on the performance of the algorithms. Indeed, wasp-cb outperforms

wasp-cb-2, solving 13 instances more. Finally, we observe that wasp-chunk-20% and

wasp-chunk-2 are not competitive with algorithms based on cores.

Concerning benchmark (ii), results are shown in the cactus plot of Figure 9. It is

possible to observe that clasp is the best performing solver on this benchmark, solving

53 instances overall. If we focus on wasp, the best performance is obtained by wasp-

chunk-2, wasp-or, wasp-cm, and wasp-chunk-20% which are able to solve 41, 41, 41,

and 40 instances, respectively. Moreover, wasp-cb cannot reach the same performance

on this benchmark, solving only 25 instances. We observe that the poor performance

depends on the first calls to the oracle, since they are expensive in terms of solving time.

This negative effect is mitigated by chunking since wasp-cb-20% and wasp-cb-2 solve

37 and 39 instances, respectively.

Finally, detailed results of benchmarks (i) and (ii) are shown in Table 1, where we

report the 5 algorithms solving the largest number of instances. In particular, for each

algorithm we report the number of solved instances and the cumulative solving time (for

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

752 G. Amendola et al.

Table 1. Numbers of solved instances and cumulative running time (in seconds; each

timeout adds 600 seconds) on instances from benchmarks (i) and (ii).

clasp wasp-cm wasp-opt wasp-cb wasp-cb-20%

Benchmark # sol. sum t sol. sum t sol. sum t sol. sum t sol. sum t

CQA-Q3 40 40 4354 40 1313 40 1276 40 1291 40 1303
CQA-Q6 40 40 8505 40 2149 40 1956 40 3544 40 1849
CQA-Q7 40 40 8929 40 1741 40 1681 40 1735 40 1724
MCSQ 73 60 12701 65 11007 73 1995 60 15757 73 5924

GracefulGraphs 1 1 51 1 45 1 32 1 44 1 57
GraphCol 1 0 600 0 600 0 600 0 600 0 600
IncrSched 6 5 857 2 2692 1 3016 1 3006 1 3004
KnightTour 2 2 62 0 1200 0 1200 0 1200 0 1200
Labyrinth 32 6 18377 0 19200 0 19200 0 19200 1 18912
NoMystery 2 1 1091 1 694 0 1200 1 706 1 721
PPM 15 15 264 15 81 15 76 15 113 15 76
QualSpatReas 18 18 1019 17 4537 7 7406 7 7083 14 5707
Sokoban 36 3 20529 3 20665 1 21102 1 21023 2 20918
VisitAll 2 2 80 2 408 1 757 2 348 2 396

Total 308 233 78584 226 66931 219 62097 208 76252 230 62993

15 20 25 30 35 40 45 50 55
0

150

300

450

600

Number of solved instances

P
er
-i
n
st
a
n
ce

ti
m
e
li
m
it

(s
)

clasp

wasp-or

wasp-ict

wasp-cm

wasp-opt

wasp-chunk-20%

wasp-chunk-2

wasp-cb

wasp-cb-20%

wasp-cb-2

Fig. 9. Benchmark (ii): Performance comparison on computation of cautious consequences for
easy instances of ASP Competitions.

each timeout we added 600 seconds). We also observe that wasp-cb-20% is comparable

with clasp solving only 3 instances less.

5 Related Work

Abstract solvers methodology for describing solving procedures have been introduced for

the dpll procedure with learning of SAT solving and for certain extensions implemented

in SMT solvers (Nieuwenhuis et al. 2006). In ASP, Lierler (2008) introduced and com-

pared the abstract solvers for smodels and cmodels on non-disjunctive programs, then

in (Lierler 2011) the framework has been extended by introducing transition rules that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

Abstract Solvers for Computing Cautious Consequences of ASP programs 753

capture backjumping and learning techniques. Lierler and Truszczynski (2011) presented

a unifying perspective based on completion of solvers for non-disjunctive answer set solv-

ing. Brochenin et al. (2014) presented abstract solvers for disjunctive answer set solvers

cmodels, gnt and dlv implementing plain backtracking, and Lierler (2014) defined

abstract frameworks for Constraint ASP solvers.

All these papers describe ASP procedures for computing (one) stable models in ab-

stract solvers methodology. In our paper we have, instead, focused on the description

of ASP procedures for cautious reasoning tasks, possibly employing some of the solu-

tions presented in related papers as ASP oracle calls. Our paper significantly extends the

short technical communication (Brochenin and Maratea 2015a) by (i) designing more

advanced solving techniques, like chunking and core-based algorithms, that lead to new

solving solutions, (ii) implementing and testing such new solutions, (iii) adding further

examples and a detailed related work, and (iv) formally stating a strong analogy between

backbones computation in SAT and cautious reasoning in ASP.

As far as the application of abstract solvers methodology outside ASP is concerned,

the first application has been already mentioned and is related to the seminal paper

(Nieuwenhuis et al. 2006), where SMT problems with certain logics via a lazy approach

(Sebastiani 2007) are considered. Then, abstract solvers have been presented for the

satisfiability of Quantified Boolean Formulas by Brochenin and Maratea (2015b), and

for solving certain reasoning taks in Abstract Argumentation under preferred seman-

tics (Brochenin et al. 2018). Finally, in another number of papers, starting from a devel-

oped concept of modularity in answer set solving (Lierler and Truszczynski 2013), ab-

stract modeling of solvers for multi-logic systems are presented (Lierler and Truszczynski

2014; Lierler and Truszczynski 2015; Lierler and Truszczynski 2016).

Another added, general, value of our paper is in its practical part, i.e., an implementa-

tion of new solutions designed through abstract solvers. In fact, while nowadays abstract

solvers methodology has been widely used, often in the mentioned papers the presented

results have rarely led to implementations, with the exception of (Nieuwenhuis et al.

2006), where the related Barcelogic implementation won the SMT Competition 2005

on same logics, and (Lierler 2011), where a proposed combination of smodels and cmod-

els techniques has been implemented in the solver sup, that reached positive results at

the ASP Competition 2011 and, more recently, (Brochenin et al. 2018), where the new

designed solution, obtained as a modification of the cegartix solver, performed often

better than the basic cergatix solver on preferred semantics, that was among the best

solvers in the first ICCMA competition.

Finally, very recently improved algorithms for computing cautious consequences of

ASP programs have been presented in (Alviano et al. 2018): such algorithms could be

also modeled through abstract solvers and combined with the ones presented in this

paper.

6 Conclusion

In this paper we modeled through abstract solvers advanced techniques for solving cau-

tious reasoning tasks in ASP. Such advanced techniques have been borrowed from the

computation of backbones of propositional formulas. We have then designed new solv-

ing procedures, and implemented them in wasp, that already included algorithms of

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

754 G. Amendola et al.

(Alviano et al. 2014; Alviano et al. 2018). Experiments on devoted benchmarks have

shown positive results for the new proposed solutions. At the same time, our work has

formally stated, through an uniform treatment, a strong analogy among the algorithms

for computing backbones of propositional formulas and those for computing cautious

consequences of ASP programs. Finally, we remark that algorithms presented in this

paper are independent with respect to the underlying solving strategies, and can be com-

plemented with existing heuristics and optimization techniques (Giunchiglia et al. 2002;

Giunchiglia et al. 2003; Giunchiglia et al. 2008).

References

Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., and Ricca, F. 2019.
Evaluation of disjunctive programs in WASP. In Proc. of the 15th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR 2019), M. Balduccini, Y. Lierler,
and S.Woltran, Eds. Lecture Notes in Computer Science, vol. 11481. Springer, 241–255.

Alviano, M. and Dodaro, C. 2016. Anytime answer set optimization via unsatisfiable core
shrinking. Theory and Practice of Logic Programming 16, 5-6, 533–551.

Alviano, M., Dodaro, C., Järvisalo, M., Maratea, M., and Previti, A. 2018. Cautious
reasoning in ASP via minimal models and unsatisfiable cores. Theory and Practice of Logic
Programming 18, 3-4, 319–336.

Alviano, M.,Dodaro, C., Leone, N., and Ricca, F. 2015. Advances in WASP. In Proceedings
of the 13th International Conference of Logic Programming and Nonmonotonic Reasoning
(LPNMR 2015), F. Calimeri, G. Ianni, and M. Truszczynski, Eds. Lecture Notes in Computer
Science, vol. 9345. Springer, 40–54.

Alviano, M., Dodaro, C., and Ricca, F. 2014. Anytime computation of cautious conse-
quences in answer set programming. Theory and Practice of Logic Programming 14, 4-5,
755–770.

Arenas, M., Bertossi, L. E., and Chomicki, J. 2003. Answer sets for consistent query an-
swering in inconsistent databases. Theory and Practice of Logic Programming 3, 4-5, 393–424.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press.

Brewka, G. and Eiter, T. 2007. Equilibria in heterogeneous nonmonotonic multi-context
systems. In Proceedings of National conference on Artificial Intelligence (AAAI 2007), AAAI
Press, 385–390.

Brochenin, R., Lierler, Y., and Maratea, M. 2014. Abstract disjunctive answer set solvers.
In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014), Fron-
tiers in Artificial Intelligence and Applications, vol. 263. IOS Press, 165–170.

Brochenin, R., Linsbichler, T., Maratea, M., Wallner, J. P., and Woltran, S. 2018.
Abstract solvers for Dung’s argumentation frameworks. Argument & Computation 9, 1, 41–72.

Brochenin, R. and Maratea, M. 2015a. Abstract answer set solvers for cautious reasoning.
In Proceedings of the Technical Communications of the 31st International Conference on Logic
Programming (ICLP 2015), M. D. Vos, T. Eiter, Y. Lierler, and F. Toni, Eds. CEURWorkshop
Proceedings. vol. 1433. CEUR-WS.org.

Brochenin, R. and Maratea, M. 2015b. Abstract solvers for quantified boolean formulas
and their applications. In Proc. of AI*IA 2015: Advances in Artificial Intelligence - XIVth
International Conference of the Italian Association for Artificial Intelligence, M. Gavanelli,
E. Lamma, and F. Riguzzi, Eds. Lecture Notes in Computer Science, vol. 9336. Springer,
205–217.

Calimeri, F., Gebser, M., Maratea, M., and Ricca, F. 2016. Design and results of the
Fifth Answer Set Programming Competition. Artificial Intelligence 231, 151–181.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

Abstract Solvers for Computing Cautious Consequences of ASP programs 755

Calimeri, F., Ianni, G., and Ricca, F. 2014. The third open answer set programming com-
petition. Theory and Practice of Logic Programming 14, 1, 117–135.

Di Rosa, E., Giunchiglia, E., and Maratea, M. 2010. Solving satisfiability problems with
preferences. Constraints 15, 4, 485–515.

Eiter, T. 2005. Data integration and answer set programming. In Proceedings of the 8th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2005),
C. Baral, G. Greco, N. Leone, and G. Terracina, Eds. Lecture Notes in Computer Science,
vol. 3662. Springer, 13–25.

Eiter, T., Gottlob, G., and Mannila, H. 1997. Disjunctive Datalog. ACM Transactions on
Database Systems 22, 3 (Sept.), 364–418.

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., and Tompits, H. 2008. Combin-
ing answer set programming with description logics for the semantic web. Artificial Intelli-
gence 172, 12-13, 1495–1539.

Gebser, M., Kaufmann, B., and Schaub, T. 2012. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187, 52–89.

Gebser, M., Maratea, M., and Ricca, F. 2017. The sixth answer set programming compe-
tition. Journal of Artificial Intelligence Research 60, 41–95.

Gelfond, M. and Lifschitz, V. 1988. The Stable Model Semantics for Logic Programming.
In Proceedings of the 5th International Conference and Symposium on Logic Programming
(ICLP/SLP 1988). MIT Press, Cambridge, Mass., pp. 1070–1080. .

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385.

Giunchiglia, E., Leone, N., and Maratea, M. 2008. On the relation among answer set
solvers. Annals of Mathematics and Artificial Intelligence 53, 1-4, 169–204.

Giunchiglia, E., Maratea, M., and Tacchella, A. 2002. Dependent and independent vari-
ables in propositional satisfiability. In Proc. of the European Conference on Logics in Artificial
Intelligence (JELIA 2002), S. Flesca, S. Greco, N. Leone, and G. Ianni, Eds. Lecture Notes,
vol. 2424. Springer, 296–307.

Giunchiglia, E., Maratea, M., and Tacchella, A. 2003. (in)effectiveness of look-ahead
techniques in a modern SAT solver. In Proc. of the 9th International Conference on Principles
and Practice of Constraint Programming (CP 2003), F. Rossi, Ed. Lecture Notes in Computer
Science, vol. 2833. Springer, 842–846.

Janota, M., Lynce, I., and Marques-Silva, J. 2015. Algorithms for computing backbones of
propositional formulae. AI Communications 28, 2, 161–177.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scarcello,

F. 2006. The DLV system for knowledge representation and reasoning. ACM Transactions on
Computational Logic 7, 3, 499–562.

Lierler, Y. 2008. Abstract answer set solvers. In Proceedings of the 24th International Confer-
ence on Logic Programming (ICLP 2008), M. G. de la Banda and E. Pontelli, Eds. Lecture
Notes in Computer Science, vol. 5366. Springer, 377–391.

Lierler, Y. 2011. Abstract answer set solvers with backjumping and learning. Theory and
Practice of Logic Programming 11, 135–169.

Lierler, Y. 2014. Relating constraint answer set programming languages and algorithms. Ar-
tificial Intelligence 207, 1–22.

Lierler, Y. and Truszczynski, M. 2011. Transition systems for model generators — a unifying
approach. Theory and Practice of Logic Programming 11, 4-5, 629–646.

Lierler, Y. and Truszczynski, M. 2013. Modular answer set solving. In Late-Breaking De-
velopments in the Field of Artificial Intelligence. AAAI Workshops, vol. WS-13-17. AAAI.

Lierler, Y. and Truszczynski, M. 2014. Abstract modular inference systems and solvers.
In Proceedings of the 16th International Symposium on Practical Aspects of Declarative Lan-
guages (PADL 2014), M. Flatt and H. Guo, Eds. Lecture Notes in Computer Science, vol.
8324. Springer, 49–64.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

756 G. Amendola et al.

Lierler, Y. and Truszczynski, M. 2015. An abstract view on modularity in knowledge repre-
sentation. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015),
B. Bonet and S. Koenig, Eds. AAAI Press, 1532–1538.

Lierler, Y. and Truszczynski, M. 2016. On abstract modular inference systems and solvers.
Artificial Intelligence 236, 65–89.

Lynce, I. and Silva, J. P. M. 2004. On computing minimum unsatisfiable cores. In Proc. of
the 7th International Conference on Theory and Applications of Satisfiability Testing (SAT
2004).

Manna, M., Ricca, F., and Terracina, G. 2013. Consistent query answering via ASP from
different perspectives: Theory and practice. Theory and Practica of Logic Programming 13, 2,
227–252.

Marek, V. W. and Truszczyński, M. 1998. Stable models and an alternative logic program-
ming paradigm. CoRR cs.LO/9809032.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273.

Nieuwenhuis, R., Oliveras, A., and Tinelli, C. 2006. Solving SAT and SAT modulo the-
ories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal
of the ACM 53(6), 937–977.

Sebastiani, R. 2007. Lazy satisability modulo theories. Journal fo Satisfiability, Boolean Mod-
eling and Computation 3, 3-4, 141–224.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000164
Downloaded from https://www.cambridge.org/core. IP address: 62.47.170.148, on 20 Oct 2019 at 15:46:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000164
https://www.cambridge.org/core

	Introduction
	Preliminaries
	Boolean Formulas and Answer Set Programs
	Abstract Solvers for Solving CNF Formulas and ASP Programs
	Naive Abstract Solvers for Computing Cautious Consequences

	Advanced Abstract Solvers for Computing Cautious Consequences
	Chunking
	Designing New Abstract Solvers
	Core-based Methods

	Experimental Analysis
	Results

	Related Work
	Conclusion
	References

