Systems and Solving Techniques for Knowledge Representation and Reasoning:

Datalog (part I)

Marco Maratea University of Genoa, Italy

Institute of Logic and Computation

Datalog:

- A logic language for querying databases
- Overcomes some limits of Relational Algebra and SQL

→Recursive definitions

Why Datalog?

• The basic fragment of ASP

Datalog:

• A logic language for querying databases

Overcomes some limits of Relational Algebra and SQL

→Recursive definitions

Why Datalog?

• The basic fragment of ASP

Datalog:

A logic language for querying databases

Overcomes some limits of Relational Algebra and SQL

→Recursive definitions

Why Datalog?The basic fragment of ASP

Datalog:

A logic language for querying databases

Overcomes some limits of Relational Algebra and SQL

 \rightarrow Recursive definitions

Why Datalog?The basic fragment of ASP

Datalog:

A logic language for querying databases

Overcomes some limits of Relational Algebra and SQL

 \rightarrow Recursive definitions

Why Datalog?

• The basic fragment of ASP

Datalog:

A logic language for querying databases

Overcomes some limits of Relational Algebra and SQL

 \rightarrow Recursive definitions

Why Datalog?

The basic fragment of ASP

Datalog Syntax

Rule:

 $head(\overline{H}) := body_1(\overline{X_1}), \dots, body_n(\overline{X_n}).$

Intuitively:

infer $head(\overline{h})$ if $body_1(\overline{x_1}), \ldots, body_n(\overline{x_n})$ is true.

Fact:

A rule with empty body (:- symbol is omitted)

ightarrow Facts are true and model the input database \leftarrow

Variables:

are allowed in atom's arguments, Prolog-like syntax **Safety:**

all variables must occur in the body

Datalog Syntax

Example

Program and query:

father(X) := parent(X, Y), male(X).

Database:

```
male(rob).
parent(rob, ann).
parent(mary, ann).
```

Query Result:

father(rob).

Practice

Download a (Datalog) implementation (clasp)

http://potassco.sourceforge.net/

We need also a grounder (gringo) http://potassco.sourceforge.net/

Practice

Download a (Datalog) implementation (clasp) http://potassco.sourceforge.net/

We need also a grounder (gringo) http://potassco.sourceforge.net/

Recursive Example Datalog

Example (Reachable airports)

Input: A set of direct connections between some cities represented by *connected*(_,_). [or,*connected*/2.]

Query: Retrieve all the cities reachable by flight from Vienna airport, through a direct or undirect connection.

...can you write an SQL query?

Recursive Example Datalog

Example (Reachable airports)

Input: A set of direct connections between some cities represented by *connected*(_,_). [or,*connected*/2.]

Query: Retrieve all the cities reachable by flight from Vienna airport, through a direct or undirect connection.

Datalog:

reaches(vienna, B) :- connected(vienna, B).

reaches(vienna, C) :- reaches(vienna, B), connected(B, C)

Datalog Programs (1)

Datalog Program:

- A set of rules
- EDB: predicates appearing only in bodies or in facts
- IDB : predicates defined (also) by rules

Datalog Programs (1)

Datalog Program:

- A set of rules
- EDB: predicates appearing only in bodies or in facts
- IDB : predicates defined (also) by rules

Example (Reachability)

Input: a graph encoded by relation *edge*(_,_). **Problem:** Find all pairs of reachable nodes.

% if there is an edge from X to Y % then X is reachable from Y reachable(X, Y) :- edge(X, Y).

% Reachability is transitive reachable(X, Y) := reachable(X, Z), edge(Z, Y).

Datalog Programs (1)

Datalog Program:

- A set of rules
- EDB: predicates appearing only in bodies or in facts
- IDB : predicates defined (also) by rules

Example (Reachability)

Input: a graph encoded by relation *edge*(_,_). **Problem:** Find all pairs of reachable nodes.

% if there is an edge from X to Y % then X is reachable from Y reachable(X, Y) :- edge(X, Y). \leftarrow EDB

% Reachability is transitive reachable(X, Y) := reachable(X, Z), edge(Z, Y).

Datalog Programs (1)

Datalog Program:

- A set of rules
- EDB: predicates appearing only in bodies or in facts
- IDB : predicates defined (also) by rules

Example (Reachability)

Input: a graph encoded by relation *edge*(_,_). **Problem:** Find all pairs of reachable nodes.

```
% if there is an edge from X to Y
% then X is reachable from Y
reachable(X, Y) := edge(X, Y). \leftarrow IDB
```

% Reachability is transitive reachable(X, Y) := reachable(X, Z), edge(Z, Y).

Datalog Programs

Example (Reachability)

Input: a graph encoded by relation *edge*(_,_). **Problem:** Find all pairs of reachable nodes.

```
% if there is an edge from X to Y
% then X is reachable from Y
reachable(X, Y) :- edge(X, Y).
```

```
% Reachability is transitive reachable(X, Y) := reachable(X, Z), edge(Z, Y).
```

Intuitive reasoning: (bottom-up evaluation)

"Start with the facts in the EDB and iteratively derive facts for IDBs until no new fact is derived."

Fully Declarative Language

Example (Ancestor)

```
Input: parent relation modeled by parent(_,_). Problem: Define the relation of arbitrary ancestors.
```

Solution 1:

ancestor(A, B) :- parent(A, B). ancestor(A, C) :- ancestor(A, B), ancestor(B, C).

Fully Declarative Language

Example (Ancestor)

```
Input: parent relation modeled by parent(_,_). Problem: Define the relation of arbitrary ancestors.
```

Solution 1:

```
ancestor(A, B) :- parent(A, B).
ancestor(A, C) :- ancestor(A, B), ancestor(B, C).
```

Solution 2:

ancestor(A, B) :- parent(A, B). ancestor(A, C) :- ancestor(A, B), parent(B, C).

Fully Declarative Language

Example (Ancestor)

```
Input: parent relation modeled by parent(_,_). Problem: Define the relation of arbitrary ancestors.
```

Solution 1:

ancestor(A, B) :- parent(A, B). ancestor(A, C) :- ancestor(A, B), ancestor(B, C).

Solution 3: Declarative: Atoms' and Rules' order is immaterial!

ancestor(A, C) :- ancestor(A, B), parent(B, C). ancestor(A, B) :- parent(A, B).

Arithmetic Expressions and Builtins

Arithmetic and comparison operators

Example (Fibonacci numbers)

fib(1,0). fib(2,1). fib(N + 2, Y1 + Y2) :- fib(N, Y1), fib(N + 1, Y2).

For recursive definitions an upper bound for integers has to be specified, either as a system setting, or as a domain definition.

Arithmetic Expressions and Builtins

Arithmetic and comparison operators

Example (Fibonacci numbers) fib(1,0). fib(2,1). fib(N+2, Y1+Y2) := fib(N, Y1), fib(N+1, Y2).

For recursive definitions an upper bound for integers has to be specified, either as a system setting, or as a domain definition.

Example pure Datalog limits

Example (No Peroni here!)

Input: Information about bars and drinks represented by facts of the form *type(drink, name). sells(bar, drink)*

Query: Retrieve all bars that do not sell Peroni

...can you write an Datalog query?

Example pure Datalog limits

Example (No Peroni here!)

Input: Information about bars and drinks represented by facts of the form *type(drink, name). sells(bar, drink)*

Query: Retrieve all bars that do not sell Peroni Datalog:

noPeroni(Bar) :- sells(Bar, Drink),

not sellsPeroni(Bar).

sellsPeroni(Bar) := sells(Bar, Drink), type(Drink, peroni).

Datalog with Negation

Rule:

 $head(\overline{H}) := body_1(\overline{X_1}), \dots, body_n(\overline{X_n}),$ not $body_{n+1}(\overline{X_{n+1}}), \dots, not \ body_m(\overline{X_m}).$

Positive and Negative Body:

 $body_1(\overline{x_1}), \dots, body_n(\overline{x_n}) \leftarrow \text{positive body}$ $body_{n+1}(\overline{x_{n+1}}), \dots, body_m(\overline{x_m}). \leftarrow \text{negative body}$

Intuitively:

infer $head(\overline{h})$ if all atoms in the positive body are true and all atoms in the negative body are false

Safety:

all variables must occur in a positive body literal

Stratification (intuitive):

negation must not be involved in recursive definitions!

Stratification (i.e., no recursion trough negation)

Example (Stratified Program)

 $p(X) \coloneqq p(X)$, not q(X). $q(X) \coloneqq l(X)$, not m(b).

Example (Unstratified Program)

 $p(X) \coloneqq l(X), \text{ not } q(X).$ $q(X) \coloneqq l(X), \text{ not } p(X)$

Needed Restrictions for Safety ...

Safety:

$$\begin{split} s(X) &\coloneqq \textit{not } r(X).\\ s(X, Y) &\coloneqq r(Y).\\ s(X, Y) &\coloneqq r(X), Y = Y. \end{split}$$

Intuitively:

In each of these cases the result is infinite !?!

More on this later...

Needed Restrictions for Safety ...

Safety:

$$\begin{split} s(X) &\coloneqq \textit{not } r(X).\\ s(X, Y) &\coloneqq r(Y).\\ s(X, Y) &\coloneqq r(X), Y = Y. \end{split}$$

Intuitively:

In each of these cases the result is infinite !?!

More on this later...