Systems and Solving Techniques for Knowledge Representation and Reasoning:

Datalog (part II)

Marco Maratea University of Genoa, Italy

Institute of Logic and Computation

Syntax & Notation

Terms: Constants and Variables **Atoms:** of the form *predicate*(t_1, \ldots, t_n) **Literals:** atoms *a* (pos.) and negated atoms not *a* (neg.) **Rules:** $h := p_1, \ldots, p_n$, not n_1, \ldots not n_n . **Head:** H(r) = h**Body:** $B(r) = \{p_1, ..., p_n, \text{ not } n_1, ..., \text{ not } n_n\}$ **Positive Body:** $B^+(r) = \{p_1, ..., p_n\}$ **Negative Body:** $B^{-}(r) = \{ \text{not } n_1, \dots \text{ not } n_n \}$ **Program:** A set of rules **Safety:** All variables occur in some positive body atom Ground: no variable occurs in it **Positive Program:** all rules are such that $B^{-}(r) = \emptyset$

Interpretation: a set / of ground atoms

- atom *a* is true w.r.t. *I* if $a \in I$, it is false otherwise, and
- negative literal not a is true w.r.t. I if a ∉ I, it is false otherwise.

Satisfaction: a rule *r* is satisfied w.r.t. *I* if $H(r) \in I$ whenever all literals $\ell \in B(r)$ are true w.r.t. *I*

Model: an interpretation *I* is a model for program *P* if all rules in *P* are satisfied by *I*

Least Model: an interpretation *I* is the least or minimal model for program *P* if every $I' \subset I$ is not a model for *P*

Example Models

Given:

a : −b, c. c : −d. d.

Interpretations and Models:

$$I_1 = \{b, c, d\}, I_2 = \{a, b, c, d\} I_3 = \{c, d\}$$

 \rightarrow only I_2 and I_3 are models!

Example Models

Given:

a:-b,c. c:-d. d.

Interpretations and Models:

$$I_1 = \{b, c, d\}, I_2 = \{a, b, c, d\} I_3 = \{c, d\}$$

- \rightarrow only \textit{I}_2 and \textit{I}_3 are models!
- \rightarrow *I*₃ is minimal!

Semantics Positive Programs

Rule Instantiation: given a rule r, Inst(r) is the set of ground rules that can be obtained by replacing every variable in r by a constant occurring in a program P

Instantiation: given a program *P*, $G(P) = \bigcup_{r \in P} Inst(r)$

Model: an interpretation M is a model for program P if M is a model of G(P)

Least Model: an interpretation M is the least model of program P if M is the least model of G(P)

Operational Semantics for Positive Programs (Ground case)

Immediate Consequence Operator: Given a ground program *P*, and an interpretation *I*

 $T_{\rho}(I) = \{a | \exists r \in P \text{ s.t. } H(r) = a \land \forall I \in B(r) \text{ are true in } I\}$

Example: a := b. c := d. e := a. $I = \{b\}$, $T_p(I) = \{a\}$.

Fixpoint procedure:

- Start with $I = \emptyset$.
- Repeatedly apply T_p until a fixpoint $T_p(I) = I$ is reached.

Least Model: The least fixpoint T_p . **Theorem:** A positive Datalog program *P* has a unique least model, which is the minimal model corresponding to the intersection of all models of *P*.

Operational Semantics for Positive Programs (Ground case)

Immediate Consequence Operator: Given a ground program *P*, and an interpretation *I*

 $T_{\rho}(I) = \{a | \exists r \in P \text{ s.t. } H(r) = a \land \forall I \in B(r) \text{ are true in } I\}$

Example: a := b. c := d. e := a. $I = \{b\}$, $T_p(I) = \{a\}$.

Fixpoint procedure:

- Start with $I = \emptyset$.
- Repeatedly apply T_p until a fixpoint $T_p(I) = I$ is reached.

Least Model: The least fixpoint T_p . **Theorem:** A positive Datalog program *P* has a unique least model, which is the minimal model corresponding to the intersection of all models of *P*.

Operational Semantics for Positive Programs (Ground case)

Immediate Consequence Operator: Given a ground program *P*, and an interpretation *I*

 $T_{\rho}(I) = \{a | \exists r \in P \text{ s.t. } H(r) = a \land \forall I \in B(r) \text{ are true in } I\}$

Example: a := b. c := d. e := a. $I = \{b\}$, $T_p(I) = \{a\}$.

Fixpoint procedure:

- Start with $I = \emptyset$.
- Repeatedly apply T_p until a fixpoint $T_p(I) = I$ is reached.

Least Model: The least fixpoint T_p .

Theorem: A positive Datalog program P has a unique least model, which is the minimal model corresponding to the intersection of all models of P.

Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given *P*, build G(P), apply operator to compute fixpoint until $T_{G(P)}(M) = M$.

Consider: a(X) : -b(X), c(X).b(a). b(b). c(a). c(c).

Instantiation:

a(a) : -b(a), c(a).a(b) : -b(b), c(b).a(c) : -b(c), c(c).

. . .

Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given *P*, build G(P), apply operator to compute fixpoint until $T_{G(P)}(M) = M$.

Consider: a(X) : -b(X), c(X).b(a). b(b). c(a). c(c).

Instantiation:

. . .

a(a): -b(a), c(a).a(b): -b(b), c(b).a(c): -b(c), c(c).

Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given *P*, build G(P), apply operator to compute fixpoint until $T_{G(P)}(M) = M$.

Consider: a(X) : -b(X), c(X).b(a). b(b). c(a). c(c).

Instantiation:

a(a) : -b(a), c(a).

a(b): -b(b), c(b).

a(c):-b(c), c(c).

... Do we need all these ground rules?

Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given *P*, build *G*(*P*), apply operator to compute fixpoint until $T_{G(P)}(M) = M$.

Consider:

a(X) : -b(X), c(X).

 $b(a). \ b(b). \ c(a). \ c(c).$

Instantiation:

a(a): -b(a), c(a).

a(b): -b(b), c(b).

a(c):-b(c), c(c).

... Do they have any chance to be satisfied?

Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given *P*, build G(P), apply operator to compute fixpoint until $T_{G(P)}(M) = M$.

Consider: a(X) : -b(X), c(X).b(a). b(b). c(a). c(c).

Instantiation:

a(a) : -b(a), c(a).

a(b): -b(b), c(b).

a(c):-b(c),c(c).

... Start from facts, match bodies, apply ... fixpoint!

Example Semantics

Consider:

grandParent(X, Y) := parent(X, Z), parent(Z, Y).

parent(a, b). parent(b, c).

Evaluation:

- $I = \emptyset$
- I = {parent(a, b), parent(b, c)}
- Ino body can be matched with atoms in I ... STOP!

Consider:

grandParent(X, Y) := parent(X, Z), parent(Z, Y).

parent(a, b). parent(b, c).

Evaluation:

- $\bullet I = \emptyset$
- I = {parent(a, b), parent(b, c)}
- Solution State (b) body can be instantiated (parent(a, b), parent(b, c)) Apply T_P: I := I ∪ {grandParent(a, c)}
- Ino body can be matched with atoms in I ... STOP!

Consider:

grandParent(X, Y) := parent(X, Z), parent(Z, Y).

parent(a, b). parent(b, c).

Evaluation:

- $\bullet I = \emptyset$
- I = {parent(a, b), parent(b, c)}
- body can be instantiated (parent(a, b), parent(b, c))Apply T_P : $I := I \cup \{grandParent(a, c)\}$
- Ino body can be matched with atoms in I ... STOP!

Consider:

grandParent(X, Y) := parent(X, Z), parent(Z, Y).

parent(a, b). parent(b, c).

Evaluation:

$$\bigcirc I = \emptyset$$

- I = {parent(a, b), parent(b, c)}
- body can be instantiated (*parent*(*a*, *b*), *parent*(*b*, *c*))
 Apply *T_P*: *I* := *I* ∪ {*grandParent*(*a*, *c*)}
- In body can be matched with atoms in I ... STOP!

Immediate Consequence Operator:

Given a non-ground program P, and an interpretation I

$T_p(I) = \{H(r_g) | \exists r_g \text{ instantiating } r \in P \text{ s.t.}$ the body of r_g is true w.r.t. $I\}$

Operational Semantics:

Compute $M = T_{\rho}(M)$ by repeatedly applying T_{ρ} starting from EDB.

Dependency Graph: Given a program *P*, the graph DG(P) := (V, E) is defined as follows:

- a node *p* in *V* for each predicate *p* occurring in *P*
- positive edge p ← q in E if there is rule r s.t. p occurs in H(r) and q occurs in B⁺(r)
- negative edge $p \leftarrow_n q$ in *E* if there is rule *r* s.t. *p* occurs in H(r) and *q* occurs in $B^-(r)$.

Recursive Program: P is recursive if DG(P) is cyclic.

Stratified Program: P is stratified if no cycle in DG(P) contains a negative edge.

Negation and Recursion

Consider: p(X) := q(X), not p(X).q(1). q(2).

Evaluation:

- q(1). q(2).
- Q q(1). q(2). p(1). p(2).

3 ...

Stratified Program

Consider:

 r_1 : reach(X): -source(X). r_2 : reach(X): -reach(Y), arc(Y, X). r_3 : noReach(X): -target(X), not reach(X).

Dependency Graph:

- V = {reach,source,target,noReach,arc}
- E = {(reach,source), (reach,reach), (reach,arc), (noReach,target), (noReach,reach)_n}
- cyclic, but stratified!

Stratified Program

Consider:

- r_1 : reach(X): -source(X).
- r_2 : reach(X): -reach(Y), arc(Y, X).
- r_3 : noReach(X): -target(X), not reach(X).

Dependency Graph:

- V = {reach,source,target,noReach,arc}
- E = {(reach,source), (reach,reach), (reach,arc), (noReach,target), (noReach,reach)_n}
- o cyclic, but stratified!

Stratified Program - components and modules

Components and Subprograms:

- Let Comp(DG) be the set of the strongly connected components of DG
- Given $C \in Comp(DG)$ the subprogram associated to C is $Sub(P, C) = \{r \in P \text{ s.t. } H(r) \in C\}$
- Given *C'* depends on *C''* if there is some (negative) arc in *DG* from a node in *C''* to a node in *C'*

Example ctd:

- $Comp(DG) = \{ \{reach\}, \{noReach\} \}$
- $Sub(P, \{reach\}) = \{r_1, r_2\}$
- $Sub(P, \{noReach\}) = \{r_3\}$

Stratified Program - Evaluation

Evaluation:

- Start from the components that do not depend on other components
- Evaluate subprograms associated to components as for positive programs
- Remove evaluated components
- Go to step 2. if still components are to be evaluated

Example ctd:

- Evaluate {{reach}}
- 2 Evaluate {{noReach}}

Example Stratified Program

Consider:

- r_1 : reach(X) : source(X).
- r_2 : reach(X): -reach(Y), arc(Y, X).
- r_3 : noReach(X): -target(X), not reach(X).
- EDB: node(1).node(2).node(3).node(4).arc(1,2). arc(3,4).arc(4,3).source(1), target(2).target(3).
- **Evaluate** $Sub(P, \{reach\}) = \{r_1, r_2\}$:
- I = {source(1), target(2), target(3), ...}
- ② $I := I \cup \{ reach(1) \}$
- ③ $I := I \cup {reach(2)}...STOP!$
- **Evaluate** $Sub(P, \{noReach\}) = \{r_3\}$:
 - $I := I \cup \{ noReach(3) \} \dots STOP!$

Example Stratified Program

Consider:

 r_1 : reach(X) : - source(X).

 r_2 : reach(X): -reach(Y), arc(Y, X).

 r_3 : noReach(X): -target(X), not reach(X).

EDB: node(1).node(2).node(3).node(4).arc(1,2). arc(3,4).arc(4,3).source(1), target(2).target(3).

Evaluate $Sub(P, \{reach\}) = \{r_1, r_2\}$:

② *I* := *I* ∪ {*reach*(1)}

Evaluate Sub(P, {noReach}) = { r_3 }: I := $I \cup \{noReach(3)\}...STOP!$

Example Stratified Program

Consider:

- r_1 : reach(X): -source(X).
- r_2 : reach(X): -reach(Y), arc(Y, X).
- r_3 : noReach(X): -target(X), not reach(X).
- EDB: node(1).node(2).node(3).node(4).arc(1,2). arc(3,4).arc(4,3).source(1), target(2).target(3).

Evaluate $Sub(P, \{reach\}) = \{r_1, r_2\}$:

- $I = \{source(1), target(2), target(3), ...\}$
- **2** $I := I \cup \{ reach(1) \}$
- I := I ∪ {reach(2)}...STOP!

Evaluate $Sub(P, \{noReach\}) = \{r_3\}$:

• $I := I \cup \{ noReach(3) \} \dots STOP!$

Thanks to Francesco Ricca for a preliminary version of these slides