
Introduction

Systems and Solving Techniques for Knowledge
Representation and Reasoning:

Datalog (part II)

Marco Maratea
University of Genoa, Italy

Institute of Logic and Computation

Marco Maratea SSTKR



Introduction

Syntax & Notation

Terms: Constants and Variables
Atoms: of the form predicate(t1, . . . , tn)
Literals: atoms a (pos.) and negated atoms not a (neg.)
Rules: h :- p1, . . . ,pn, not n1, . . . not nn.

Head: H(r) = h
Body: B(r) = {p1, . . . ,pn, not n1, . . . not nn.}
Positive Body: B+(r) = {p1, . . . ,pn}
Negative Body: B−(r) = {not n1, . . . not nn}
Program: A set of rules
Safety: All variables occur in some positive body atom
Ground: no variable occurs in it
Positive Program: all rules are such that B−(r) = ∅

Marco Maratea SSTKR



Introduction

Semantics Positive Programs

Interpretation: a set I of ground atoms
atom a is true w.r.t. I if a ∈ I, it is false otherwise, and
negative literal not a is true w.r.t. I if a 6∈ I, it is false
otherwise.

Satisfaction: a rule r is satisfied w.r.t. I if H(r) ∈ I
whenever all literals ` ∈ B(r) are true w.r.t. I

Model: an interpretation I is a model for program P if all
rules in P are satisfied by I

Least Model: an interpretation I is the least or minimal
model for program P if every I ′ ⊂ I is not a model for P

Marco Maratea SSTKR



Introduction

Example Models

Given:

a : −b, c.

c : −d .

d .

Interpretations and Models:

I1 = {b, c,d}, I2 = {a,b, c,d} I3 = {c,d}
→ only I2 and I3 are models!

→ I3 is minimal!

Marco Maratea SSTKR



Introduction

Example Models

Given:

a : −b, c.

c : −d .

d .

Interpretations and Models:

I1 = {b, c,d}, I2 = {a,b, c,d} I3 = {c,d}
→ only I2 and I3 are models!

→ I3 is minimal!

Marco Maratea SSTKR



Introduction

Semantics Positive Programs

Rule Instantiation: given a rule r , Inst(r) is the set of
ground rules that can be obtained by replacing every
variable in r by a constant occurring in a program P

Instantiation: given a program P, G(P) = ∪r∈P Inst(r)

Model: an interpretation M is a model for program P if M
is a model of G(P)

Least Model: an interpretation M is the least model of
program P if M is the least model of G(P)

Marco Maratea SSTKR



Introduction

Operational Semantics for Positive Programs (Ground
case)

Immediate Consequence Operator: Given a ground
program P, and an interpretation I

Tp(I) = {a|∃r ∈ P s.t. H(r) = a ∧ ∀l ∈ B(r) are true in I}

Example: a :-b. c :-d . e :-a. I = {b}, Tp(I) = {a}.

Fixpoint procedure:
Start with I = ∅.
Repeatedly apply Tp until a fixpoint Tp(I) = I is
reached.

Least Model: The least fixpoint Tp.
Theorem: A positive Datalog program P has a unique
least model, which is the minimal model corresponding to
the intersection of all models of P.

Marco Maratea SSTKR



Introduction

Operational Semantics for Positive Programs (Ground
case)

Immediate Consequence Operator: Given a ground
program P, and an interpretation I

Tp(I) = {a|∃r ∈ P s.t. H(r) = a ∧ ∀l ∈ B(r) are true in I}

Example: a :-b. c :-d . e :-a. I = {b}, Tp(I) = {a}.

Fixpoint procedure:
Start with I = ∅.
Repeatedly apply Tp until a fixpoint Tp(I) = I is
reached.

Least Model: The least fixpoint Tp.
Theorem: A positive Datalog program P has a unique
least model, which is the minimal model corresponding to
the intersection of all models of P.

Marco Maratea SSTKR



Introduction

Operational Semantics for Positive Programs (Ground
case)

Immediate Consequence Operator: Given a ground
program P, and an interpretation I

Tp(I) = {a|∃r ∈ P s.t. H(r) = a ∧ ∀l ∈ B(r) are true in I}

Example: a :-b. c :-d . e :-a. I = {b}, Tp(I) = {a}.

Fixpoint procedure:
Start with I = ∅.
Repeatedly apply Tp until a fixpoint Tp(I) = I is
reached.

Least Model: The least fixpoint Tp.
Theorem: A positive Datalog program P has a unique
least model, which is the minimal model corresponding to
the intersection of all models of P.

Marco Maratea SSTKR



Introduction

Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
until TG(P)(M) = M.

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . .

Marco Maratea SSTKR



Introduction

Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
until TG(P)(M) = M.

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . .

Marco Maratea SSTKR



Introduction

Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
until TG(P)(M) = M.

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . . Do we need all these ground rules?

Marco Maratea SSTKR



Introduction

Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
until TG(P)(M) = M.

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . . Do they have any chance to be satisfied?

Marco Maratea SSTKR



Introduction

Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
until TG(P)(M) = M.

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . . Start from facts, match bodies, apply ... fixpoint!

Marco Maratea SSTKR



Introduction

Example Semantics

Consider:
grandParent(X ,Y ) :-parent(X ,Z ),parent(Z ,Y ).

parent(a,b). parent(b, c).

Evaluation:
1 I = ∅
2 I = {parent(a,b),parent(b, c)}
3 body can be instantiated (parent(a,b),parent(b, c))

Apply TP : I := I ∪ {grandParent(a, c)}
4 no body can be matched with atoms in I ... STOP!

Results: {parent(a,b),parent(b, c),grandParent(a, c)} is
the least model

Marco Maratea SSTKR



Introduction

Example Semantics

Consider:
grandParent(X ,Y ) :-parent(X ,Z ),parent(Z ,Y ).

parent(a,b). parent(b, c).

Evaluation:
1 I = ∅
2 I = {parent(a,b),parent(b, c)}
3 body can be instantiated (parent(a,b),parent(b, c))

Apply TP : I := I ∪ {grandParent(a, c)}
4 no body can be matched with atoms in I ... STOP!

Results: {parent(a,b),parent(b, c),grandParent(a, c)} is
the least model

Marco Maratea SSTKR



Introduction

Example Semantics

Consider:
grandParent(X ,Y ) :-parent(X ,Z ),parent(Z ,Y ).

parent(a,b). parent(b, c).

Evaluation:
1 I = ∅
2 I = {parent(a,b),parent(b, c)}
3 body can be instantiated (parent(a,b),parent(b, c))

Apply TP : I := I ∪ {grandParent(a, c)}
4 no body can be matched with atoms in I ... STOP!

Results: {parent(a,b),parent(b, c),grandParent(a, c)} is
the least model

Marco Maratea SSTKR



Introduction

Example Semantics

Consider:
grandParent(X ,Y ) :-parent(X ,Z ),parent(Z ,Y ).

parent(a,b). parent(b, c).

Evaluation:
1 I = ∅
2 I = {parent(a,b),parent(b, c)}
3 body can be instantiated (parent(a,b),parent(b, c))

Apply TP : I := I ∪ {grandParent(a, c)}
4 no body can be matched with atoms in I ... STOP!

Results: {parent(a,b),parent(b, c),grandParent(a, c)} is
the least model

Marco Maratea SSTKR



Introduction

Semantics c.t.d.

Immediate Consequence Operator:
Given a non-ground program P, and an interpretation I

Tp(I) = {H(rg)|∃rg instantiating r ∈ P s.t.
the body of rg is true w.r.t. I}

Operational Semantics:

Compute M = Tp(M) by repeatedly applying Tp starting
from EDB.

Marco Maratea SSTKR



Introduction

Stratified Programs

Dependency Graph: Given a program P, the graph
DG(P) := (V ,E) is defined as follows:

a node p in V for each predicate p occurring in P
positive edge p ← q in E if there is rule r s.t. p occurs
in H(r) and q occurs in B+(r)
negative edge p ←n q in E if there is rule r s.t. p
occurs in H(r) and q occurs in B−(r).

Recursive Program: P is recursive if DG(P) is cyclic.

Stratified Program: P is stratified if no cycle in DG(P)
contains a negative edge.

Marco Maratea SSTKR



Introduction

Negation and Recursion

Consider:
p(X ) :-q(X ), not p(X ).

q(1). q(2).

Evaluation:
1 q(1). q(2).
2 q(1). q(2). p(1). p(2).
3 ...

Marco Maratea SSTKR



Introduction

Stratified Program

Consider:
r1 : reach(X ) : −source(X ).

r2 : reach(X ) : −reach(Y ),arc(Y ,X ).

r3 : noReach(X ) : −target(X ),not reach(X ).

Dependency Graph:
V = {reach,source,target,noReach,arc}
E = {(reach,source), (reach,reach), (reach,arc),
(noReach,target), (noReach,reach)n}
cyclic, but stratified!

Marco Maratea SSTKR



Introduction

Stratified Program

Consider:
r1 : reach(X ) : −source(X ).

r2 : reach(X ) : −reach(Y ),arc(Y ,X ).

r3 : noReach(X ) : −target(X ),not reach(X ).

Dependency Graph:
V = {reach,source,target,noReach,arc}
E = {(reach,source), (reach,reach), (reach,arc),
(noReach,target), (noReach,reach)n}
cyclic, but stratified!

Marco Maratea SSTKR



Introduction

Stratified Program - components and modules

Components and Subprograms:
Let Comp(DG) be the set of the strongly connected
components of DG
Given C ∈ Comp(DG) the subprogram associated to
C is Sub(P,C) = {r ∈ P s.t. H(r) ∈ C}
Given C ′ depends on C ′′ if there is some (negative)
arc in DG from a node in C ′′ to a node in C ′

Example ctd:
Comp(DG) = {{reach}, {noReach}}
Sub(P, {reach}) = {r1, r2}
Sub(P, {noReach}) = {r3}

Marco Maratea SSTKR



Introduction

Stratified Program - Evaluation

Evaluation:
1 Start from the components that do not depend on

other components
2 Evaluate subprograms associated to components as

for positive programs
3 Remove evaluated components
4 Go to step 2. if still components are to be evaluated

Example ctd:
1 Evaluate {{reach}}
2 Evaluate {{noReach}}

Marco Maratea SSTKR



Introduction

Example Stratified Program

Consider:
r1 : reach(X ) : −source(X ).

r2 : reach(X ) : −reach(Y ),arc(Y ,X ).

r3 : noReach(X ) : −target(X ),not reach(X ).

EDB: node(1).node(2).node(3).node(4).arc(1,2).
arc(3,4).arc(4,3).source(1), target(2).target(3).

Evaluate Sub(P, {reach}) = {r1, r2}:
1 I = {source(1), target(2), target(3), ...}
2 I := I ∪ {reach(1)}
3 I := I ∪ {reach(2)}...STOP!

Evaluate Sub(P, {noReach}) = {r3}:
1 I := I ∪ {noReach(3)}...STOP!

Marco Maratea SSTKR



Introduction

Example Stratified Program

Consider:
r1 : reach(X ) : −source(X ).

r2 : reach(X ) : −reach(Y ),arc(Y ,X ).

r3 : noReach(X ) : −target(X ),not reach(X ).

EDB: node(1).node(2).node(3).node(4).arc(1,2).
arc(3,4).arc(4,3).source(1), target(2).target(3).

Evaluate Sub(P, {reach}) = {r1, r2}:
1 I = {source(1), target(2), target(3), ...}
2 I := I ∪ {reach(1)}
3 I := I ∪ {reach(2)}...STOP!

Evaluate Sub(P, {noReach}) = {r3}:
1 I := I ∪ {noReach(3)}...STOP!

Marco Maratea SSTKR



Introduction

Example Stratified Program

Consider:
r1 : reach(X ) : −source(X ).

r2 : reach(X ) : −reach(Y ),arc(Y ,X ).

r3 : noReach(X ) : −target(X ),not reach(X ).

EDB: node(1).node(2).node(3).node(4).arc(1,2).
arc(3,4).arc(4,3).source(1), target(2).target(3).

Evaluate Sub(P, {reach}) = {r1, r2}:
1 I = {source(1), target(2), target(3), ...}
2 I := I ∪ {reach(1)}
3 I := I ∪ {reach(2)}...STOP!

Evaluate Sub(P, {noReach}) = {r3}:
1 I := I ∪ {noReach(3)}...STOP!

Marco Maratea SSTKR



Introduction

Marco Maratea SSTKR



Introduction

Thanks to Francesco Ricca for a preliminary
version of these slides

Marco Maratea SSTKR


	Introduction

