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Abstract. Abstract solvers are a graph-based representation employed
in many research areas, such as SAT, SMT and ASP, to model, analyze
and compare search algorithms in place of pseudo-code-based representa-
tions. Such an uniform, formal way of presenting the solving algorithms
proved effective for their understanding, for formalizing related formal
properties and also for combining algorithms in order to design new solv-
ing procedures.

In this paper we present abstract solvers for Quantified Boolean Formulas
(QBFs). They include a direct extension of the abstract solver describing
the DPLL algorithm for SAT, and an alternative formulation inspired
by the two-layers architecture employed for the analysis of disjunctive
ASP solvers. We finally show how these abstract solvers can be directly
employed for designing solving procedures for reasoning tasks which can
be solved by means of reduction to a QBF.

1 Introduction

Abstract solvers are a relatively new methodology that have been employed in
many research areas, such as Propositional Satisfiability (SAT) [1], Satisfiabil-
ity Modulo Theories (SMT) [1, 2], Answer Set Programming (ASP) [3–5], and
Constraint ASP [6], to model, analyze and compare solving algorithms in place
of pseudo-code-based representations. Abstract solvers are a graph-based repre-
sentation, where the states of computation are represented as nodes of a graph,
the solving techniques as arcs between such nodes, the solving process as a path
in the graph and the formal properties of the algorithms are reduced to related
graph’s properties. Such a uniform, mathematically simple yet formal way of
presenting the solving algorithms proved effective for their understanding, for
formalizing properties in a clear way and also for combining algorithms for de-
signing new solutions. However, with the notable exception of the recent work on
disjunctive ASP [5], up to now this methodology has been employed to solving
procedures for reasoning tasks whose complexity is within the first level of the
polynomial hierarchy.

In this paper we present, for the first time, abstract solvers for deciding
the satisfiability of Quantified Boolean Formulas (QBFs) [7], the prototypi-
cal PSPACE-complete problem, thus showing their potential also to analyze



“hard” reasoning tasks. The first abstract solution is an extension of the ab-
stract solver [1] for describing the DPLL algorithm for SAT [8], enhanced with
theory-specific techniques, modeled as additional arcs in the respective graph.
The second abstract solver is, instead, based on the two-layers architecture em-
ployed for the analysis of disjunctive ASP solvers, which are characterized by
a generating layer for finding candidate solutions, and a test layer for checking
candidates’s minimality: this second solution employs a “multi-layer” architec-
ture whose number of layers depend on the quantifiers alternation in the QBF
formula. We also comment on a third viable approach based on compilation into
a SAT formula, on which is applied an abstract solver for SAT. For all abstract
solutions, correctness results are formalized by means of related graph’s prop-
erties. We finally show how abstract solvers for QBFs can be directly employed
for solving certain reasoning tasks in other areas such as Answer Set Program-
ming [9] and Abstract Argumentation and Dialectical frameworks (see, e.g. [10,
11]), whose solutions are obtained by means of reduction to a QBF, thus where
an abstract solver for QBF becomes an abstract solver for the (compiled) re-
spective reasoning task.

To sum up, the main contributions of this paper are:

• We present a first abstract solver for QBFs that extends the abstract solver
describing the DPLL algorithm for SAT.

• We present a second abstract solver that employs a multi-layer architecture
whose idea comes from the two-layers architecture of disjunctive ASP solvers.

• We show a third solution, based on compilation to SAT and an abstract
solver for SAT, and correctness results for all mentioned solutions by means
of properties of related graphs.

• We show how the afore-presented abstract solvers can be directly employed
for solving certain reasoning tasks in other fields.

The paper is structured as follows. Section 2 introduces needed preliminaries.
Section 3 then presents the abstract solvers for backtracking-based procedures.
Section 4 shows some applications of the introduced abstract solvers. The paper
then ends with a discussion of related work and some conclusions in Section 5.

2 Formal Background

Syntax and semantics. Consider a set P of variables (also called atoms). The
symbols ⊥ and > denote false and true, respectively. A literal is a variable a0 or
its negation a0. a0 is the same of a0. A clause is a finite set of literals. A SAT
formula F ′ in Conjunctive Normal Form (CNF) is a finite set of clauses.

A QBF formula is an expression F of the form:

Q0X0Q1X1 . . . QnXnF
′ (1)

where:
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• every Qi (0 ≤ i ≤ n) is a quantifier, either existential ∃ or universal ∀, and
such that for each 0 ≤ j ≤ n− 1, Qj 6= Qj+1, i.e. we assume an alternation
of quantifiers, and assume that the innermost quantifier is ∃;

• X0, . . . , Xn are variable groups (equivalently seen as sets) which define a
partition of P (i.e. the formula is closed) such that (i) each 0 ≤ i ≤ n
Xi 6= ∅, (ii)

⋃
i,0≤i≤n Xi = P , and (iii) for each 0 ≤ i, j ≤ n, i 6= j,

Xi ∩Xj = ∅.
• F ′ is a SAT formula over P .

In (1), Q0X0Q1X1 . . . QnXn is the prefix and F ′ is the matrix. A level of a literal
l built on a variable bi ∈ Xi, denoted level(l), is i with 0 ≤ i ≤ n. We assume
the formula has max alternations of quantifiers, so max is n. If F is (1) and l is
a literal l = bi or l = ¬bi for bi ∈ Xi, then Fl is the QBF:

• whose matrix is obtained from F by substituting (i) bi with > and ¬bi with
⊥ if l = bi, and (ii) bi with ⊥ and ¬bi with >, otherwise;

• whose prefix is Q0X0Q1X1 . . . Qi(Xi \ bi) . . . QnXn.

The semantics of a QBF F can be defined recursively as follows:

1. If the prefix is empty, according to the semantics of propositional logic.
2. If F is ∃bF ′, b ∈ P , F is satisfiable iff Fb is satisfiable or F¬b is satisfiable.
3. If F is ∀bF ′, b ∈ P , F is satisfiable iff both Fb and F¬b are satisfiable.

Example 1. In the QBF (2) below (from [7]), X0 is {a}, X1 is {d}, X2 is {b, c},
∃a∀d∃bc is the prefix and {{a, d, b}, {d, b}, {b, c}, {a, d, c}, {d, b, c}} is the matrix.
Note that (2) is unsatisfiable.

∃a∀d∃bc{{a, d, b}, {d, b}, {b, c}, {a, d, c}, {d, b, c}} (2)

Q-DPLL algorithm. An assignment to a set X of atoms is a function from X to
{⊥,>}. A set of literals is called consistent if for any literal l it contains it does
not contain l. We identify a consistent set of literals M with an assignment to
At(M): a ∈M iff a maps to >, and ¬a ∈M iff a maps to ⊥.

Q-DPLL is an extension of DPLL algorithm for SAT for determining the sat-
isfiability of a QBF. As DPLL exhaustively explores the space of assignments,
by assigning literals either deterministically or heuristically, to generate classical
models of a propositional formula, also Q-DPLL is a classical backtrack-search
algorithm that exhaustively explores the space of assignments to test the sat-
isfiability of a QBF. The main difference is that, when a literal whose atom is
universally quantified is heuristically chosen, both branches must be explored.

A pseudo-code description of the Q-DPLL algorithm can be found in [12, 7].
Solvers implementing this approach are, e.g. Evaluate [12] and QuBE [13].

Abstract Q-DPLL for SAT. As said before, a QBF without prefix corresponds to
a SAT formula, where all atoms are existentially quantified. Some more prelim-
inaries about abstract solvers and related graphs are needed. A universal literal
is a literal annotated as l∀. An existential literal is a literal annotated as l∃. A
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decision literal is a universal literal or an existential literal. A record is a string
of literals and decision literals. The terminal states are V alid and Unsat. A state
is a record or a terminal state. The initial state is ∅.

Figure 1 will present the transition rules for the graph describing the Q-
DPLL algorithm, but if we restrict to the rules Unit, Decide, Backtrack∃, Fail
and Succeed, and considering that all atoms are on the same level, we obtain a
description of the DPLL algorithm for SAT as presented in, e.g. [5]. Given a SAT
formula, Unit adds to the current assignment an unassigned literal in a clause
where all other literals are contradicted. Decide adds to the current assignment
an unassigned literal. Backtrack∃ restores an inconsistent assignment by going
back in the current assignment and flipping the last decision literal. Fail deter-
mines the formula to be unsatisfiable, i.e. the current assignment is inconsistent
but can not be fixed given that it does not contain any decision literal. Finally
Succeed determines the formula to be satisfiable.

Example 2. Below are two possible paths in the graph QBF∃a,b,c{{a,b},{a,c}}:

Initial state : ∅
Decide =⇒ a∃

Unit =⇒ a∃ c

Decide =⇒ a∃ c b∃

Succeed =⇒ V alid

Initial state : ∅
Decide =⇒ a∃

Decide =⇒ a∃ c∃

Unit =⇒ a∃ c∃ c

Backtrack∃ =⇒ a∃ c

Decide =⇒ a∃ c b∃

Succeed =⇒ V alid

In order to realistically describe the DPLL algorithm, an ordering must be
given on the application of the rules, such that a transition rule can not be
applied if a rule with higher priority is applicable. In DPLL, the ordering fol-
lows how the rules Unit,Decide,Backtrack∃, Fail, and Succeed are listed in
Figure 1. Thus, the path in Example 2 at the left corresponds to a possible path
of the DPLL algorithm, while the path at the right does not, given that Decide
is applied when Unit is applicable.

Finally, we say that a graph G verifies a statement S (e.g. G verifies that F
is satisfiable) when all the following conditions hold:

1. G is finite and acyclic;
2. Any terminal state in G is either Failstate or V alid;
3. If a state V alid is reachable from the initial state in G then S holds (e.g. F

is satisfiable);
4. Failstate is reachable from the initial state in G if and only if S does not

hold (e.g. F is not satisfiable).

3 Abstract Solvers for QBFs

In this section we introduce the three abstract solvers for deciding the satisfia-
bility of a QBF mentioned in the introduction.
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Q-DPLL on a single layer. We show here a description of the Q-DPLL algorithm,
within a single layer of computation. As we already wrote, the Q-DPLL algorithm
is an extension of the DPLL algorithm for SAT. As a consequence, its transition
system updates some of the transition rules for SAT, and introduces further
transition rules to take into account the specific problem. First, unit propagate
can now be applied subject to further specific conditions. Second, the decision
literal must be chosen such that there is no an unassigned literal at a higher level.
Third, there are now two types of backtracking, i.e. through an existentially-
quantified literal, whose value is switched after a contradiction, or through an
universally-quantified literal, whose value is switched after a successful branch.
Finally, monotone rules that take into account situations where only a literal, or
its negation, is in the formula, are also added. In the following, we will formalize
these updates and modular additions.

The graph QBFF has the states as nodes, as defined in the previous section,
and the transitions of Figure 1 as edges.

The rules Unit, Decide and Backtrack∃ extend the ones for SAT in Section 2.
Unit adds to the current assignment an unassigned literal in a clause if all other
assigned literals are contradicted, and all other unassigned literals are universally
quantified. Decide adds to the current assignment an unassigned literal, either
existentially or universally quantified, such that all atoms at lower levels are
assigned. Backtrack∃ restores an inconsistent assignment by going back in the
assignment and flipping the last existentially-quantified decision variable.

Specific rules for QBF are Monotone1, Monotone2 and Backtrack∀. The rule
Monotone1 (resp. Monotone2) assigns an existential (resp. universal) literal l,
and l (resp. l) appears in some clause while the opposite does not appear in any
clause. Backtrack∀ is a counterpart of Backtrack∃: it flips the value of the last
universal literal after finding a complete and consistent assignment. For that, it
goes back in the current assignment and flips the last decision variable that is
universally quantified. Note that this rule is applicable only when all other rules
but Succeed can not be applied, so that it is triggered only when the current
assignment both assigns all the atoms in F since Decide does not apply and is
consistent since Fail does not apply. Fail and Succeed are the same as for SAT,
except that Succeed can be triggered only when there is no decision variable
that is universally quantified so that Backtrack∀ is not applicable.

Proposition 1. Given a QBF formula F , the graph QBFF verifies that F is
satisfiable.

Example 3. Consider the QBF (2) in Example 1, that we call F . A possible path
in QBFF is:

Initial state : ∅
Decide =⇒ a∃

Decide =⇒ a∃d
∀

Monotone1 =⇒ a∃d
∀
b

Backtrack∀ =⇒ a∃d

Unit =⇒ a∃d c

Unit =⇒ a∃d cb

Backtrack∃ =⇒ a

Decide =⇒ ad
∀

Monotone1 =⇒ ad
∀
b

Backtrack∀ =⇒ a d
Unit =⇒ a d b
Fail =⇒ Unsat
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Rules

Unit L =⇒ Ll if


l does not occur in L and
for some clause C in the matrix,
l occurs in C and
each other unassigned literal of C is universal and
each assigned literal of C is contradicted

Monotone1 L =⇒ Ll if

 the variable of l is existential and
l occurs in some clause C and

l does not occur in any clause C

Monotone2 L =⇒ Ll if

 the variable of l is universal and

l occurs in some clause C and
l does not occur in any clause C

Decide L =⇒ LlQ if


L is consistent and
the variable of l is unassigned and
the quantifier of the variable of l is Q and
for all l′ such that level(l′) < level(l)
the variable of l′ is assigned.

Backtrack∃ Ll∃L′ =⇒ Ll if

{
Ll∃L′ is inconsistent and

l∃ is the rightmost existential literal

Fail L =⇒ Unsat if
{
L is inconsistent and existential free

Backtrack∀ Ll∀L′ =⇒ Ll if

{
no other rule applies except Succeed and

l∀ is the rightmost universal literal

Succeed L =⇒ V alid if
{

no other rule applies

Fig. 1. The transition rules of the QBFF graph.

Q-DPLL with multiple layers. In the previous sub-section we presented the ab-
stract solver that describes the Q-DPLL algorithm. Here we present an alter-
native solution that uses and extends the two-layers architecture employed in
abstract solvers for disjunctive ASP [5]. In disjunctive ASP, solvers are mainly
organized in the following way:1 there is a “generate” layer that computes can-
didate solutions, and a “test” layer that checks whether it is indeed a solution,
by checking minimality. In QBF, we extend this architecture by considering that
a layer is the solving process “within” the same quantifier level. Within a layer,
a SAT problem is solved, and depending from the past search, the current level,
and the related quantifier type, the search is directed through levels with some
newly added control states. In sum, there is a basic set of transition rules that
corresponds to the rules for SAT (plus monotone rules, that can be used also in
SAT), which are called Core rules, and another set of rules to direct the search.
In the following, we will formalize these concepts.

1 A notable exception is the family of ASP solvers based on translation.
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Before introducing the related graph, we need some additional definitions. A
stack of records S is a (possibly empty) list of records S = L1 :: L2 :: . . . :: Lk

which we can also write as S = S′ :: Lk, where S′ is a stack of records.
An oracle state LS,k,Q is made of:

– a record L, which accounts for the current assignment computed;
– a stack of records S, an integer k and a quantifier type Q.

A control state Instr(LS,k,Q) is made of:

– the action Instr that led to this state, Instr ∈ {Failure, Success, Cont};
– a record L, result of the last computation;
– a stack of records S, results of previous computations;
– an integer k equal to the amount of quantifier alternations that precede the

quantifiers currently treated in the last computation;
– a type of quantifier Q in {∃,∀}, corresponding to the type of the quantifiers

of the last computation.

Control states guide the search through layers. A state is a control state,
an oracle state or a terminal state. Intuitively, the core rules from Unit to
Backtrack, which resemble the ones in the previous sub-section, deal with the
computation within a level. Rules Fail and Succeed, instead, are the rules at
the interface between two layers, going from an oracle to a control state. Re-
sult processing rules, on the other hand, direct the computation according to
the oracle state they are dealing with. In particular, Fail (resp. Succeed) leads
to the actions Failure (resp. Cont) if the assignment can not (resp. can) be
successfully extended at this level, respectively. In consequence of the applica-
tion of one of these rules, Result processing rules can be triggered. A Failure
control state on an existential level triggers Failure∃ and the result is that the
action is unchanged, the level is decremented, the quantifier is changed, and the
current record L′ becomes the last in the stack. Then, Failure∀ is immediately
triggered doing similar processing, but leading to an oracle state whose record
is inconsistent (and backtrack will be forced). The rational about this behavior
is that if we had a failure on an existential level, we must also jump over the
previous universal level, because in this branch a solution can not be found. If k
becomes 0 and the stack is empty, we can return Unsat through FailureF inal,
meaning the F is unsatisfiable. Instead, a Cont control state on an existential
level triggers the rule Continue that brings (i) to an oracle state at the next
level whose assignment is added to the queue, the level is incremented, the quan-
tifier is switched and the current assignment is restarted, or (ii) to a Success
state if the maximum level is reached through FullAssign. Now, Success∃ is
triggered and leads to failing level at the upper quantified level, in order to force
a backtrack, or Success∃′ is triggered if the record L at the upper level does
contain decision literals: if this happens, the Success state is maintained at the
upper level, that immediately triggers Success∀ that goes one further level up,
and the search can proceed as before. If a Success is reached at level 0, V alid
can be returned, meaning that F is satisfiable. The graph QBF2F has the states
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as nodes, the transitions of Figure 2 as edges, and ∅∅,0,Q as initial state, where
Q is the type of the outermost quantifier.

Proposition 2. Given a QBF formula F , the graph QBF2F verifies that F is
satisfiable.

Note that this graph seems to be more amenable for being the basis for
building new abstract procedures for QBFs, which is one of the main advantage
of this methodology. In fact, we can replace the Core rules with any other set of
rules that solve the same problem (in this case a SAT problem), and add similar
rules as Fail and Succeed that lead to Result processing rules.

Example 4. Consider the QBF (2) in Example 1, that we call F . A possible path
in QBF2F is:

Initial state : ∅∅,0,Q
Decide =⇒ a∃

∅,0,∃
Succeed =⇒ Cont(a∃

∅,0,∃)
Continue =⇒ ∅a∃,1,∀
Decide =⇒ d

∃
a∃,1,∀

Succeed =⇒ Cont(d
∃
a∃,1,∀)

Continue =⇒ ∅
a∃::d

∃
,2,∃

Monotone1 =⇒ b
a∃::d

∃
,2,∃

Succeed =⇒ Cont(b
a∃::d

∃
,2,∃)

FullAssign =⇒ Success(b
a∃::d

∃
,2,∃)

Success∃ =⇒ d
∃⊥a∃,1,∀

Backtrack =⇒ da∃,1,∀
Unit =⇒ d ca∃,1,∀
Unit =⇒ d c ba∃,1,∀
Unit =⇒ d c b ba∃,1,∀
Fail =⇒ Failure(d c b ba∃,1,∀)

Failure∀ =⇒ a∃⊥∅,0,∃

Backtrack =⇒ a∅,0,∃
Succeed =⇒ Cont(a∅,0,∃)
Continue =⇒ ∅a,1,∀
Decide =⇒ d

∃
a,1,∀

Succeed =⇒ Cont(d
∃
a,1,∀)

Continue =⇒ ∅
a::d
∃
,2,∃

Monotone1 =⇒ b
a::d
∃
,2,∃

Succeed =⇒ Cont(b
a::d
∃
,2,∃)

FullAssign =⇒ Success(b
a::d
∃
,2,∃)

Success∃ =⇒ d
∃⊥a,1,∀

Backtrack =⇒ da,1,∀
Unit =⇒ d ba,1,∀
Unit =⇒ d b ba,1,∀
Fail =⇒ Failure(d b ba,1,∀)
Failure∀ =⇒ a⊥∅,0,∃
Fail =⇒ Failure(a⊥∅,0,∃)
FailureF inal =⇒ Unsat

Solution based on variable elimination. A third solution for solving a QBF is to
rely on an approach which directly follows the semantic of a QBF as presented
in the previous section, thus considering that, given a QBF F , ∃aF is logically
equivalent to Fa∨Fa, while ∀aF is logically equivalent to Fa∧Fa. The expansion
of a variable a is obtained by2:

1. adding a variable b′ for each variable b having level(b) < level(a);
2. quantifying each variable b′ in the same way as b and s.t. level(b′) = level(b);
3. for each clause C in the scope of a, adding a new clause C ′ obtained from C

by substituting b′ to b; and
4. considering the mentioned clause C (resp. C ′) , those containing a (resp. a)

are eliminated, while a (resp. a) is eliminated from the other clauses.

2 Optimizations are possible, e.g. Unit, Monotone1 and Monotone2 are applicable,
and a concept of “minimal scope” for a variable can be defined (see, e.g. [7]).
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Core rules

UnitLS,k,Q =⇒ LlS,k,Q if


l does not occur in L and
for some clause C in the matrix,
l occurs in C and
each other unassigned literal of C is universal and
each assigned literal of C is contradicted

Monotone1 LS,k,Q =⇒ LlS,k,Q if

 the variable of l is existential and
l occurs in the matrix and

l does not occur in the matrix

Monotone2 LS,k,Q =⇒ LlS,k,Q if

 the variable of l is universal and

l occurs in the matrix and
l does not occur in the matrix

Decide LS,k,Q =⇒ Ll∃S,k,Q if

L is consistent and

neither l nor l occur in L and
level(l) = k

Backtrack Ll∃L′
S,k,Q =⇒ LlS,k,Q if

{
Ll∃L′ is inconsistent and

l∃ is the rightmost decision literal

Fail LS,k,Q =⇒ Failure(LS,k,Q) if
{
L is inconsistent and decision free

Succeed LS,k,Q =⇒ Cont(LS,k,Q) if
{

no other rule applies

Result processing rules for k ∈ {0..max− 1}
Continue Cont(LS,k,Q) =⇒ ∅

S::L,k+1,Q

FullAssign Cont(LS,max,∃) =⇒ Success(LS,max,∃)

Failure∀ Failure(LS::L′,k+1,∀) =⇒ L′⊥S,k,∃
Failure∃ Failure(LS::L′,k+1,∃) =⇒ Failure(L′

S,k,∀)
FailureF inal Failure(L∅,0,Q) =⇒ Unsat

Success∀ Success(LS::L′,k+1,∀) =⇒ Success(L′
S,k,∃)

Success∃ Success(LS::L′,k+1,∃) =⇒ L′⊥S,k,∀
if L′ contains at least a decision literal

Success∃′ Success(LS::L′,k+1,∃) =⇒ Success(L′
S,k,∀)

if L′ is decision-free
SuccessF inal Success(L∅,0,Q) =⇒ V alid

Fig. 2. The transition rules of the QBF2F graph.
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In particular, the process of expanding all universally-quantified variables
yields a SAT formula that can be solved with the abstract solver we have seen
in Section 2, e.g. by expanding d in (2) we obtain the following SAT formula:

∃abcb′c′{{b, c}, {b, c}, {a, b′}, {b′}, {b′, c′}, {a, c′}}

where, e.g. variables b′ and c′ are added to the prefix (step 1. above) as
existentially quantified (step 2.), {b′, c′} is obtained from {b, c} (step 3.) and
{b, c} is {d, b, c} deprived of d (step 4.). Formal properties for this approach
can be stated by relying on the correctness of variable elimination, and formal
properties on the abstract graph for SAT.

Of course, a formal result similar to Proposition 1 and 2 could be added. But
the correctness of this potential proposition stems directly from the correctness
of variable elimination and of abstract solvers for SAT, that are already proved
in other papers. Hence, stating such a proposition is not necessary.

4 Applications

Several reasoning tasks in other fields have been solved by a translation to a QBF
formula followed by the application of a QBF solver to this formula. Hence, the
abstract solvers we have defined can be used to abstract decision procedures
for these problems. Indeed, the states and the transition rules from which the
transitions are inferred will be identical to those of the graph QBFF . But this
process will be applied to a specific formula F that corresponds to the translation
of an instance of the reasoning task to solve. We review here some applications
of the abstract solvers we have defined in previous sections.

We will use the graphs of the type QBFF , but these ideas could equivalently
be stated with QBF2F graphs. Also, in the articles describing each of the con-
sidered solvers, where it is possible to find the resulting formulas, the matrix is
not in CNF, and the formulas are not necessarily in prenex from. Hence, they are
not defined exactly as we defined QBF formulas in this article. As a consequence,
each time we define an abstract solver using a formula F we will use QBFNF (F ).
The function NF converts a non-prenex non-CNF quantified formula F to a
QBF formula matching the definition provided in this article, i.e. with prenex
form, all the free variables quantified existentially, and matrix in CNF.3

Answer Set Programming. Answer set programming is a declarative language
representing problems as logic programs, of which solutions are called answer
sets. Determining whether a program has any solution is ΣP

2 -complete in the
general case of disjunctive answer set programming. In [9] is defined the quan-
tified formula Tlp(P ) for a program P . The formula Tlp(P ) is satisfiable if and
only if P has at least one answer set. Then, for any program P , the graph
QBFNF (Tlp(P )) verifies that P has at least one answer set.

3 Also the solvers that implement approaches based on reduction rely on such conver-
sion, given they employ QBF solvers based on the form used in this article.
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There is not yet practical ASP solvers built my means of reduction to QBF.
The main obstacle is the encoding, and the fact that the defined encoding is
in non-prenex non-CNF form, and an efficient transformation in prenex CNF is
required. On the other hand, we believe that, once this obstacle is mitigated,
our work can help also in the practical interplay between the encoding and the
engine solver.

Abstract Argumentation Frameworks Abstract argumentation frameworks are
directed graphs which are designed to represent conflicting information. Each
vertex of the graph is called an argument. The edges of the graph represent
the way arguments can attack each other. The graphs are studied under varied
semantics for which a set of arguments is a solution; for instance, in general a
set of arguments will have to be conflict-free to be admissible. There are two
main types of decision problems generally studied for each of the semantics:
knowing whether a given argument belongs to at least a solution (i.e. credulous
acceptance), and whether a given argument belongs to all solutions (i.e. skeptical
acceptance). The article [14] defines first order formulas that have free variables,
designed so that the assignments to the free variables that satisfy the formulas
have a strict correspondence to the solutions of an argumentation framework
under a given semantics. For instance, the first order formula PE(A) is defined
in this article and satisfying assignments to its free variables correspond to the
preferred semantics of the argumentation framework A. Obtaining an abstract
procedure from such formulas is possible but would require using the techniques
of [11], as explained below.

Abstract Dialectical Frameworks. Abstract dialectical frameworks are a gen-
eralization of abstract argumentation frameworks which allow to model more
complex interactions between arguments. As a result, decision problems are
generally one level higher in the polynomial hierarchy, up to the third level.
We are here going to rely on the work of Diller et al. [11] which, for an ar-
gument s ∈ S from an abstract dialectical framework (S,C) and a semantics
σ ∈ {adm, com, prf, grd,mod, stb}, defines a QBF formula which is satisfiable
if and only if s is skeptically accepted in (S,C) under σ semantics. A similar
formula is defined in the case of credulous acceptance.

For instance, we focus on the case of preferred semantics and skeptical accep-
tance. The formula is denoted ∀S3(Eprf (S,C)⇒ s⊕). Note that ∀S3 refers to a
quantification over all the elements from a set of variables built from S and used
in Eprf (S,C), so that the quantification remains in the first order. Hence, for an
abstract dialectical framework (S,C) and s ∈ S, the procedure of [11] for solv-
ing skeptical acceptance of s in (S,C) under preferred semantics is abstracted
by QBFNF (∀S3(Eprf (S,C)⇒s⊕)). Hence QBFNF (∀S3(Eprf (S,C)⇒s⊕)) verifies that s
is skeptically accepted in (S,C) under preferred semantics. Similar graphs can
be defined so as to abstract the procedure for other semantics, and for credulous
acceptance. For instance, credulous acceptance for preferred semantics would be
abstracted by QBFNF (∃S3(Eprf (S,C)∧s⊕)). In ∀S3(Eprf (S,C)⇒ s⊕), the formula
Eprf (S,C) is very similar to PE(A) in its function. Using a formula similar to
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s⊕ which represents the argument s and a set of variables similar to S3, one
could define a formula of the form ∀S3(PE(A) ⇒ s⊕) so as to abstract a de-
cision procedure for abstract argumentation frameworks. Assuming we call the
obtained formula pe(A, s), the graph QBFpe(A,s) would verify that s is skepti-
cally accepted in A under preferred semantics.

Differently from ASP, efficient approaches based on QBF are implemented
for Abstract Dialectical Frameworks [11]. We believe that, in this case, abstract
solvers can help to more deeply understand the effectiveness of this approach.

5 Related Work and Conclusions

Abstract solvers have been originally employed in [1] first to describe the DPLL
algorithm for SAT, and then by extending this graph to deal with certain SMT
logics which can be solved by means of a lazy (i.e. SAT-based) approach to SMT
solving. Then, abstract solvers have been applied to Answer Set Programming
in several papers. Abstract solvers for backtracking-based ASP solvers for non-
disjunctive ASP programs (whose complexity is within the first level of the
polynomial hierarchy) have been presented in [15], then extended in (i) [3] to
include backjumping and learning techniques, and in (ii) [5] for describing solvers
for disjunctive ASP programs (able to express problems up to the second level of
the polynomial hierarchy). Another contribution in ASP is presented in [4], where
an unifying perspective based on completion (i.e. transforming a logic program
into a propositional formula) on some solvers for non-disjunctive ASP programs
is given. Finally, abstract solvers for Constraint ASP solvers are presented in [6].

In this paper we have presented, for the first time, abstract procedures for
solving reasoning tasks whose complexity is beyond the second level of the
polynomial hierarchy, i.e. the satisfiability of QBF, the prototypical PSPACE-
complete problem. We have finally shown how these abstract solvers can be used
to define abstract procedures for certain reasoning tasks in other fields that can
be solved via a translation to a QBF. Other applications are of course possible,
e.g. to solving conformant and conditional automated planning problems. How-
ever, we do not claim about the efficiency of a new tool built on this basis, given
that it usually also requires many iterations of theoretical analysis, practical en-
gineering, and domain-specific optimizations to develop efficient systems. Yet,
positive experiences have been already reported for Abstract Dialectial Frame-
works [11] and classical planning [16].

Future research includes adding optimization techniques, like backjumping
and learning, to our abstract solvers. These are two well-known techniques im-
plemented in several solvers: backjumping is the ability to jump over decision
literals that were not directly responsible to the conflict that caused backtrack-
ing, while learning adds information (in terms of, e.g. clauses) to the initial
formula in order to avoid to follow similar paths in order parts of the search.
The presence of two quantifier types enables two different types of transition
rules for modeling these techniques, that will be anyway added by means of
modular addition of transition rules.
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