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ASP: Cautious Reasoning

A program Π consists of finitely many rules of the form

a← b1, . . . ,bl ,not bl+1, . . .not bm

where
the head a is an atom or ⊥, and
in the body each bi(1 ≤ i ≤ m) is an atom.

Answer sets defined in terms of reduct and minimality
[Gelfond and Lifschitz, 1988].

Cautious reasoning: solutions must be witnessed by all answer
sets.
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ASP solvers for cautious reasoning

ASP solvers DLV and CLASP have been extended with devoted
techniques to deal with cautious reasoning tasks on top of their
procedures for computing answer sets.

Main Idea: Starting from an over- and an under-approximation
of the solution, solutions are searched via calls to ASP oracles
to improve over-approximation.

[Alviano et al., 2014] presented a unified view of such solving
procedures, and designed several algorithms for cautious
reasoning in ASP.

[Alviano et al., 2014] also included other techniques borrowed
from backbone computation of CNF formulas, and implemented
all these techniques in WASP [Alviano et al., 2013].
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Abstract solvers for computing answer sets

We assume that the graph (VX ,oracle), where:
VX is the set of states related to a set X of atoms, and
oracle is a set of transition rules,

describes the behavior of a general backtracking-based ASP
solvers.

To find an answer set of a program Π it is enough to find a path
in (Vatoms(Π),oracle) leading from a proper initial node (∅) to a
terminal node (Ok(L), atoms(L) ⊆ X ), employing the oracle set
of transition rules.
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Intuition about the states
Intermediate states

The core states LO,U,A and the control states Cont(O,U) represent all the
intermediate steps of the computation; they are such that:

L is the current state of the computation of a model;

O is the current over-approximation of the solution stored as a set;

U is the current under-approximation of the solution stored as a set;

A is the action currently carried out: init if we search for a first model,
over (resp. under{l}) action if over-approximation (resp.
under-approximation on a literal l) is being applied.

Intuition

A core state LO,U,A represents the computation within a call to an ASP
oracle, while

a control state Cont(O,U) controls the computation among different
calls to ASP oracles.

Initial state

The initial state is ∅atoms(Π),∅,init .
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States

Actions
For a set of atoms X , an action relative to X is an element of
the set {init ,over} ∪ {under{l}|l ∈ lit(X )}.

States
The set of states relative to X , written VX , is the union of:

The set of core states relative to X , that are all LO,U,A, s.t.
L is a record relative to X , O and U are sets of literals
relative to X , and A is an action relative to X .
The set of control states relative to X , that are all the
Cont(O,U) where O and U are sets of literals relative to X .
The fail state UNSAT ;
The set of final states relative to X , that are all the Ok(W )
where W is a set of literals relative to X .
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Modeling over-approximation

Return rules
Failover LO,U,over =⇒ Ok(O) if

{
L is inconsistent and decision-free

Find LO,U,A =⇒ Cont(O ∩ L,U) if
{

no other return/oracle rule applies

Control rules
Success Cont(O,O) =⇒ Ok(O)
OverApprox Cont(O,U) =⇒ ∅O,U,over if

{
O 6= U

Figure : The transition rules of ov .
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Modeling over-approximation (II)

We define ΠO,U,over as Π ∪ {← O}.

For any Π, the graph OSΠ is (Vatoms(Π),oracle ∪ ov) abstracts
Algorithm A2 of [Alviano et al., 2014].

Formal result
For any program Π, if a terminal state Ok(W ) is reached in
OSΠ from the initial state, then W is the intersection of all
answer sets of Π. Otherwise, UNSAT is reached and Π does
not have answer sets.
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Modeling under-approximation

Return rule

Failunder LO,U,under{l} =⇒ Cont(O \ {l},U ∪ {l}) if
{

L is inconsistent and
decision-free

Find LO,U,A =⇒ Cont(O ∩ L,U) if
{

no other return/oracle
rule applies

Control rule
Success Cont(O,O) =⇒ Ok(O)
UnderApprox Cont(O,U) =⇒ ∅O,U,under{l} if

{
l ∈ O \ U

Figure : The transition rules of un.
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Modeling under-approximation (II)

We define ΠO,U,under l as Π ∪ {← l}.

For any Π, the graph USΠ is (Vatoms(Π),oracle ∪ un). abstracts
Algorithm A3 of [Alviano et al., 2014].

Formal result
For any program Π, if a terminal state Ok(W ) is reached in
USΠ from the initial state, then W is the intersection of all
answer sets of Π. Otherwise, UNSAT is reached and Π does
not have answer sets.
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Mixing over-and under-approximation

For any Π, the graph MixSΠ is (Vatoms(Π),oracle ∪ un ∪ ov).
abstracts Algorithm A1 of [Alviano et al., 2014].

Formal result
For any program Π, if a terminal state Ok(W ) is reached in
MixSΠ from the initial state, then W is the intersection of all
answer sets of of Π. Otherwise, UNSAT is reached and Π does
not have answer sets.
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Full example

Π = Π{a,b,c},∅,init = {
← a, b

a ← ¬a,¬b
a ← b
b ← ¬a,¬b
b ← b
c ← }

Π{a,c},∅,over = Π ∪ {
← a, c }

Π{c},∅,under{c} = Π ∪ {
← c
← ¬c }

∅{a,b,c},∅,init

UnitPropagate : c{a,b,c},∅,init

Decide : ca∆
{a,b,c},∅,init

UnitPropagate : ca∆¬b{a,b,c},∅,init

Find : Cont({a, c}, ∅)

OverApprox : ∅{a,c},∅,over

UnitPropagate : c{a,c},∅,over

UnitPropagate : c¬a{a,c},∅,over

UnitPropagate : c¬ab{a,c},∅,over

Find : Cont({c}, ∅)

UnderApprox : ∅{c},∅,under{c}

UnitPropagate : c{c},∅,under{c}

UnitPropagate : c¬c{c},∅,under{c}

Failunder : Cont({c}, {c})

Success : Ok({c})

Figure : A path in MixSΠ.
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