Systems and Solving Techniques for Knowledge Representation – Cautious Reasoning –

> Marco Maratea University of Genoa, Italy

066 011 Double degree programme Computational Logic (Erasmus-Mundus) 066 931 Computational Intelligence 066 937 Software Engineering & Internet Computing Institute of Information Systems A program Π consists of finitely many rules of the form

$$a \leftarrow b_1, \ldots, b_l$$
, not b_{l+1}, \ldots not b_m

where

- the *head* a is an atom or \bot , and
- in the *body* each $b_i(1 \le i \le m)$ is an atom.

Answer sets defined in terms of *reduct* and minimality [Gelfond and Lifschitz, 1988].

Cautious reasoning: solutions must be witnessed by all answer sets.

(雪) (ヨ) (ヨ)

Main Idea: Starting from an over- and an under-approximation of the solution, solutions are searched via calls to ASP oracles to improve over-approximation.

[Alviano et al., 2014] presented a unified view of such solving procedures, and designed several algorithms for cautious reasoning in ASP.

[Alviano et al., 2014] also included other techniques borrowed from backbone computation of CNF formulas, and implemented all these techniques in WASP [Alviano et al., 2013].

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Main Idea: Starting from an over- and an under-approximation of the solution, solutions are searched via calls to ASP oracles to improve over-approximation.

[Alviano et al., 2014] presented a unified view of such solving procedures, and designed several algorithms for cautious reasoning in ASP.

[Alviano et al., 2014] also included other techniques borrowed from backbone computation of CNF formulas, and implemented all these techniques in WASP [Alviano et al., 2013].

ヘロア 人間 アメヨア 人口 ア

Main Idea: Starting from an over- and an under-approximation of the solution, solutions are searched via calls to ASP oracles to improve over-approximation.

[Alviano et al., 2014] presented a unified view of such solving procedures, and designed several algorithms for cautious reasoning in ASP.

[Alviano et al., 2014] also included other techniques borrowed from backbone computation of CNF formulas, and implemented all these techniques in WASP [Alviano et al., 2013].

・ 同 ト ・ ヨ ト ・ ヨ ト

Main Idea: Starting from an over- and an under-approximation of the solution, solutions are searched via calls to ASP oracles to improve over-approximation.

[Alviano et al., 2014] presented a unified view of such solving procedures, and designed several algorithms for cautious reasoning in ASP.

[Alviano et al., 2014] also included other techniques borrowed from backbone computation of CNF formulas, and implemented all these techniques in WASP [Alviano et al., 2013].

・ 同 ト ・ ヨ ト ・ ヨ ト

We assume that the graph (V_X , oracle), where:

- V_X is the set of states related to a set X of atoms, and
- oracle is a set of transition rules,

describes the behavior of a general backtracking-based ASP solvers.

To find an answer set of a program Π it is enough to find a path in $(V_{atoms(\Pi)}, oracle)$ leading from a proper initial node (\emptyset) to a terminal node (Ok(L), $atoms(L) \subseteq X$), employing the *oracle* set of transition rules.

・ 同 ト ・ ヨ ト ・ ヨ ト …

We assume that the graph (V_X , oracle), where:

- V_X is the set of states related to a set X of atoms, and
- oracle is a set of transition rules,

describes the behavior of a general backtracking-based ASP solvers.

To find an answer set of a program Π it is enough to find a path in $(V_{atoms(\Pi)}, oracle)$ leading from a proper initial node (\emptyset) to a terminal node $(Ok(L), atoms(L) \subseteq X)$, employing the *oracle* set of transition rules.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Intuition about the states

Intermediate states

The core states $L_{O,U,A}$ and the control states Cont(O, U) represent all the intermediate steps of the computation; they are such that:

- *L* is the current state of the computation of a model;
- O is the current over-approximation of the solution stored as a set;
- U is the current under-approximation of the solution stored as a set;
- A is the action currently carried out: *init* if we search for a first model, over (resp. under_{/}) action if over-approximation (resp. under-approximation on a literal *l*) is being applied.

Intuition

- A core state L_{O,U,A} represents the computation within a call to an ASP oracle, while
- a control state Cont(O, U) controls the computation among different calls to ASP oracles.

Initial state

The initial state is $\emptyset_{atoms(\Pi),\emptyset,init}$.

Actions

For a set of atoms *X*, an *action relative to X* is an element of the set $\{init, over\} \cup \{under_{\{l\}} | l \in lit(X)\}$.

States

The set of states relative to X, written V_X , is the union of:

- The set of *core states relative to X*, that are all *L*_{*O*,*U*,*A*}, s.t. *L* is a record relative to *X*, *O* and *U* are sets of literals relative to *X*, and *A* is an action relative to *X*.
- The set of control states relative to X, that are all the Cont(O, U) where O and U are sets of literals relative to X.
- The fail state UNSAT;
- The set of *final states relative to X*, that are all the *Ok*(*W*) where *W* is a set of literals relative to *X*.

・ 回 ト ・ ヨ ト ・ ヨ ト

э

Success	Cont(O, O)	$\implies OK(O)$	
OverApprox	Cont(O, U)	$\implies \emptyset_{O,U,over}$	if $\{ O \neq U \}$

Figure : The transition rules of ov.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

We define $\Pi_{O,U,over}$ as $\Pi \cup \{\leftarrow O\}$.

For any Π , the graph OS_{Π} is $(V_{atoms(\Pi)}, oracle \cup ov)$ abstracts Algorithm A2 of [Alviano et al., 2014].

Formal result

For any program Π , if a terminal state Ok(W) is reached in OS_{Π} from the initial state, then W is the intersection of all answer sets of Π . Otherwise, *UNSAT* is reached and Π does not have answer sets.

ヘロト 人間 ト ヘヨト ヘヨト

Return ruleFailunder
$$L_{O,U,under_{\{I\}}} \implies Cont(O \setminus \{\overline{l}\}, U \cup \{l\})$$
 if $\begin{cases} L \text{ is inconsistent and decision-free} \\ no other return/oracle \\ rule applies \end{cases}$ Find $L_{O,U,A} \implies Cont(O \cap L, U)$ if $\begin{cases} no other return/oracle \\ rule applies \end{cases}$ Control rule $Success$ Success $Cont(O, O) \implies Ok(O)$ UnderApprox $Cont(O, U) \implies \emptyset_{O,U,under_{\{I\}}}$ if $\{ I \in O \setminus U \}$

Figure : The transition rules of *un*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We define $\Pi_{O,U,under_I}$ as $\Pi \cup \{\leftarrow I\}$.

For any Π , the graph US_{Π} is $(V_{atoms(\Pi)}, oracle \cup un)$. abstracts Algorithm A3 of [Alviano et al., 2014].

Formal result

For any program Π , if a terminal state Ok(W) is reached in US_{Π} from the initial state, then W is the intersection of all answer sets of Π . Otherwise, *UNSAT* is reached and Π does not have answer sets.

ヘロト 人間 ト ヘヨト ヘヨト

For any Π , the graph $MixS_{\Pi}$ is $(V_{atoms(\Pi)}, oracle \cup un \cup ov)$. abstracts Algorithm A1 of [Alviano et al., 2014].

Formal result

For any program Π , if a terminal state Ok(W) is reached in $MixS_{\Pi}$ from the initial state, then W is the intersection of all answer sets of of Π . Otherwise, *UNSAT* is reached and Π does not have answer sets.

Full example

 $\Pi = \Pi_{\{a,b,c\},\emptyset,init} = \{$ $\emptyset_{\{a,b,c\},\emptyset,init}$ $\leftarrow a.b$ UnitPropagate : $C_{a,b,c}, \emptyset, init$ $a \leftarrow \neg a, \neg b$ $ca^{\Delta}_{\{a,b,c\},\emptyset,init}$ Decide : $a \leftarrow b$ $ca^{\Delta} \neg b_{\{a,b,c\},\emptyset,init}$ UnitPropagate : $b \leftarrow \neg a, \neg b$ $Cont(\{a, c\}, \emptyset)$ Find : $b \leftarrow b$ $c \leftarrow \}$ OverApprox : $\emptyset_{\{a,c\},\emptyset,over}$ UnitPropagate : $c_{\{a,c\},\emptyset,over}$ UnitPropagate : $c \neg a_{\{a,c\},\emptyset,over}$ $\Pi_{\{a,c\},\emptyset,over} = \Pi \cup \{$ UnitPropagate : $c \neg ab_{\{a,c\},\emptyset,over}$ $\leftarrow a.c$ Find : $Cont(\{c\}, \emptyset)$ UnderApprox : $\emptyset_{\{c\},\emptyset,under_{\{c\}}}$ $\Pi_{\{c\},\emptyset,\textit{under}_{\{c\}}} = \Pi \cup \{$ UnitPropagate : $c_{\{c\},\emptyset,under_{\{c\}}\}}$ $\leftarrow c$ UnitPropagate : $c \neg c_{\{c\},\emptyset,under_{\{c\}}\}}$ $\leftarrow \neg c$ $Cont(\{c\}, \{c\})$ Failunder : $Ok(\{c\})$ Success :

References I

Alviano, M., Dodaro, C., Faber, W., Leone, N., and Ricca, F. (2013). WASP: A native ASP solver based on constraint learning.

In Cabalar, P. and Son, T. C., editors, *Proceedings of the 12th International Conference of Logic Programming and Nonmonotonic Reasoning (LPNMR 2013)*, volume 8148 of *Lecture Notes in Computer Science*, pages 54–66. Springer.

Alviano, M., Dodaro, C., and Ricca, F. (2014).

Anytime computation of cautious consequences in answer set programming.

Theory and Practive of Logic Programming, 14(4-5):755–770.

Gelfond, M. and Lifschitz, V. (1988).

The stable model semantics for logic programming.

In Kowalski, R. and Bowen, K., editors, *Proceedings of the 5th International Conference and Symposium on Logic Programming (ICLP/SLP 1988)*, pages 1070–1080. MIT Press.

ヘロト 人間 ト ヘヨト ヘヨト

APPENDIX

Marco Maratea Systems and Solving Techniques for KR