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What is Datalog?

Datalog:
A logic language for querying databases
Overcomes some limits of Relational Algebra and
SQL
→Recursive definitions

Why Datalog?
The basic fragment of ASP
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Datalog Syntax

Rule:

head(H) :- body1(X1), . . . ,bodyn(Xn).

Intuitively:

infer head(h) if body1(x1), . . . ,bodyn(xn) is true.

Fact:

A rule with empty body ( :- symbol is omitted)
→ Facts are true and model the input database←

Variables:

are allowed in atom’s arguments, Prolog-like syntax

Safety:

all variables must occur in the body

Marco Maratea Systems and Solving Techniques for KR



Datalog Syntax

Example
Program and query:

father(X ) :-parent(X ,Y ),male(X ).

Database:

male(rob).
parent(rob,ann).
parent(mary ,ann).

Query Result:

father(rob).
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Practice

Practice

Download a (Datalog) implementation (clasp)
http://potassco.sourceforge.net/

We need also a grounder (gringo)
http://potassco.sourceforge.net/
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Recursive Example Datalog

Example (Reachable airports)
Input: A set of direct connections between some cities
represented by connected(_,_). [or,connected/2.]

Query: Retrieve all the cities reachable by flight from
Vienna airport, through a direct or undirect connection.

...can you write an SQL query?

Datalog:

reaches(vienna,B) :- connected(vienna,B).

reaches(vienna,C) :- reaches(vienna,B), connected(B,C).
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Example (Reachable airports)
Input: A set of direct connections between some cities
represented by connected(_,_). [or,connected/2.]

Query: Retrieve all the cities reachable by flight from
Vienna airport, through a direct or undirect connection.

Datalog:

reaches(vienna,B) :- connected(vienna,B).

reaches(vienna,C) :- reaches(vienna,B), connected(B,C).
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Datalog Programs (1)

Datalog Program:
A set of rules
EDB: predicates appearing only in bodies or in facts
IDB : predicates defined (also) by rules

Example (Reachability)
Input: a graph encoded by relation edge(_,_).
Problem: Find all pairs of reachable nodes.

% if there is an edge from X to Y
% then X is reachable from Y
reachable(X ,Y ) :-edge(X ,Y ).

% Reachability is transitive
reachable(X ,Y ) :- reachable(X ,Z ),edge(Z ,Y ).
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Datalog Programs

Example (Reachability)
Input: a graph encoded by relation edge(_,_).
Problem: Find all pairs of reachable nodes.

% if there is an edge from X to Y
% then X is reachable from Y
reachable(X ,Y ) :-edge(X ,Y ).

% Reachability is transitive
reachable(X ,Y ) :- reachable(X ,Z ),edge(Z ,Y ).

Intuitive reasoning: (bottom-up evaluation)
“Start with the facts in the EDB and iteratively derive facts

for IDBs until no new fact is derived.”
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Fully Declarative Language

Example (Ancestor)

Input: parent relation modeled by parent(_,_).
Problem: Define the relation of arbitrary ancestors.

Solution 1:

ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),ancestor(B,C).

Solution 2:

ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),parent(B,C).
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Fully Declarative Language

Example (Ancestor)

Input: parent relation modeled by parent(_,_).
Problem: Define the relation of arbitrary ancestors.

Solution 1:

ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),ancestor(B,C).

Solution 3: Declarative: Atoms’ and Rules’ order is immaterial!

ancestor(A,C) :-ancestor(A,B),parent(B,C).
ancestor(A,B) :-parent(A,B).

Solution 2:
ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),parent(B,C).
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Arithmetic Expressions and Builtins

Arithmetic and comparison operators
+,−, ∗, /
<,>,<=, >=,=

Example (Fibonacci numbers)

fib(1,0).
fib(2,1).

fib(N + 2,Y1 + Y2) :- fib(N,Y1), fib(N + 1,Y 2).

For recursive definitions an upper bound for integers has to be
specified, either as a system setting, or as a domain definition.
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Example pure Datalog limits

Example (No Peroni here!)
Input: Information about bars and drinks represented by
facts of the form
type(drink ,name). sells(bar ,drink)

Query: Retrieve all bars that do not sell Peroni

...can you write an Datalog query?

Datalog:

noPeroni(Bar) :- sells(Bar ,Drink),

not sellsPeroni(Bar).

sellsPeroni(Bar) :- sells(Bar ,Drink), type(Drink ,peroni).
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Datalog with Negation

Rule:

head(H) :- body1(X1), . . . ,bodyn(Xn),
not bodyn+1(Xn+1), . . . , not bodym(Xm).

Positive and Negative Body:

body1(x1), . . . ,bodyn(xn)← positive body
bodyn+1(xn+1), . . . ,bodym(xm). ← negative body

Intuitively:

infer head(h) if all atoms in the positive body are true
and all atoms in the negative body are false

Safety:
all variables must occur in a positive body literal

Stratification (intuitive):
negation must not be involved in recursive definitions!
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Stratification (i.e., no recursion trough negation)

Example (Stratified Program)

p(X ) :-p(X ), not q(X ).
q(X ) :- l(X ), not m(b).

Example (Unstratified Program)

p(X ) :- l(X ), not q(X ).
q(X ) :- l(X ), not p(X )

Marco Maratea Systems and Solving Techniques for KR



Needed Restrictions for Safety ...

Safety:

s(X ) :-not r(X ).

s(X ,Y ) :- r(Y ).

s(X ,Y ) :- r(X ),Y = Y .

Intuitively:

In each of these cases the result is infinite!?!

More on this later...
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