
Systems and Solving Techniques for
Knowledge Representation

– Datalog –

Marco Maratea
University of Genoa, Italy

066 011 Double degree programme Computational Logic
(Erasmus-Mundus)

066 931 Computational Intelligence
066 937 Software Engineering & Internet Computing

Institute of Information Systems

Marco Maratea Systems and Solving Techniques for KR

What is Datalog?

Datalog:
A logic language for querying databases
Overcomes some limits of Relational Algebra and
SQL
→Recursive definitions

Why Datalog?
The basic fragment of ASP

Marco Maratea Systems and Solving Techniques for KR

What is Datalog?

Datalog:
A logic language for querying databases
Overcomes some limits of Relational Algebra and
SQL
→Recursive definitions

Why Datalog?
The basic fragment of ASP

Marco Maratea Systems and Solving Techniques for KR

What is Datalog?

Datalog:
A logic language for querying databases
Overcomes some limits of Relational Algebra and
SQL
→Recursive definitions

Why Datalog?
The basic fragment of ASP

Marco Maratea Systems and Solving Techniques for KR

What is Datalog?

Datalog:
A logic language for querying databases
Overcomes some limits of Relational Algebra and
SQL
→Recursive definitions

Why Datalog?
The basic fragment of ASP

Marco Maratea Systems and Solving Techniques for KR

What is Datalog?

Datalog:
A logic language for querying databases
Overcomes some limits of Relational Algebra and
SQL
→Recursive definitions

Why Datalog?
The basic fragment of ASP

Marco Maratea Systems and Solving Techniques for KR

What is Datalog?

Datalog:
A logic language for querying databases
Overcomes some limits of Relational Algebra and
SQL
→Recursive definitions

Why Datalog?
The basic fragment of ASP

Marco Maratea Systems and Solving Techniques for KR

Datalog Syntax

Rule:

head(H) :- body1(X1), . . . ,bodyn(Xn).

Intuitively:

infer head(h) if body1(x1), . . . ,bodyn(xn) is true.

Fact:

A rule with empty body (:- symbol is omitted)
→ Facts are true and model the input database←

Variables:

are allowed in atom’s arguments, Prolog-like syntax

Safety:

all variables must occur in the body

Marco Maratea Systems and Solving Techniques for KR

Datalog Syntax

Example
Program and query:

father(X) :-parent(X ,Y),male(X).

Database:

male(rob).
parent(rob,ann).
parent(mary ,ann).

Query Result:

father(rob).

Marco Maratea Systems and Solving Techniques for KR

Practice

Practice

Download a (Datalog) implementation (clasp)
http://potassco.sourceforge.net/

We need also a grounder (gringo)
http://potassco.sourceforge.net/

Marco Maratea Systems and Solving Techniques for KR

http://potassco.sourceforge.net/
http://potassco.sourceforge.net/

Practice

Practice

Download a (Datalog) implementation (clasp)
http://potassco.sourceforge.net/

We need also a grounder (gringo)
http://potassco.sourceforge.net/

Marco Maratea Systems and Solving Techniques for KR

http://potassco.sourceforge.net/
http://potassco.sourceforge.net/

Recursive Example Datalog

Example (Reachable airports)
Input: A set of direct connections between some cities
represented by connected(_,_). [or,connected/2.]

Query: Retrieve all the cities reachable by flight from
Vienna airport, through a direct or undirect connection.

...can you write an SQL query?

Datalog:

reaches(vienna,B) :- connected(vienna,B).

reaches(vienna,C) :- reaches(vienna,B), connected(B,C).

Marco Maratea Systems and Solving Techniques for KR

Recursive Example Datalog

Example (Reachable airports)
Input: A set of direct connections between some cities
represented by connected(_,_). [or,connected/2.]

Query: Retrieve all the cities reachable by flight from
Vienna airport, through a direct or undirect connection.

Datalog:

reaches(vienna,B) :- connected(vienna,B).

reaches(vienna,C) :- reaches(vienna,B), connected(B,C).

Marco Maratea Systems and Solving Techniques for KR

Datalog Programs (1)

Datalog Program:
A set of rules
EDB: predicates appearing only in bodies or in facts
IDB : predicates defined (also) by rules

Example (Reachability)
Input: a graph encoded by relation edge(_,_).
Problem: Find all pairs of reachable nodes.

% if there is an edge from X to Y
% then X is reachable from Y
reachable(X ,Y) :-edge(X ,Y).

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z),edge(Z ,Y).

Marco Maratea Systems and Solving Techniques for KR

Datalog Programs (1)

Datalog Program:
A set of rules
EDB: predicates appearing only in bodies or in facts
IDB : predicates defined (also) by rules

Example (Reachability)
Input: a graph encoded by relation edge(_,_).
Problem: Find all pairs of reachable nodes.

% if there is an edge from X to Y
% then X is reachable from Y
reachable(X ,Y) :-edge(X ,Y).

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z),edge(Z ,Y).

Marco Maratea Systems and Solving Techniques for KR

Datalog Programs (1)

Datalog Program:
A set of rules
EDB: predicates appearing only in bodies or in facts
IDB : predicates defined (also) by rules

Example (Reachability)
Input: a graph encoded by relation edge(_,_).
Problem: Find all pairs of reachable nodes.

% if there is an edge from X to Y
% then X is reachable from Y
reachable(X ,Y) :-edge(X ,Y).← EDB

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z),edge(Z ,Y).

Marco Maratea Systems and Solving Techniques for KR

Datalog Programs (1)

Datalog Program:
A set of rules
EDB: predicates appearing only in bodies or in facts
IDB : predicates defined (also) by rules

Example (Reachability)
Input: a graph encoded by relation edge(_,_).
Problem: Find all pairs of reachable nodes.

% if there is an edge from X to Y
% then X is reachable from Y
reachable(X ,Y) :-edge(X ,Y).← IDB

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z),edge(Z ,Y).

Marco Maratea Systems and Solving Techniques for KR

Datalog Programs

Example (Reachability)
Input: a graph encoded by relation edge(_,_).
Problem: Find all pairs of reachable nodes.

% if there is an edge from X to Y
% then X is reachable from Y
reachable(X ,Y) :-edge(X ,Y).

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z),edge(Z ,Y).

Intuitive reasoning: (bottom-up evaluation)
“Start with the facts in the EDB and iteratively derive facts

for IDBs until no new fact is derived.”

Marco Maratea Systems and Solving Techniques for KR

Fully Declarative Language

Example (Ancestor)

Input: parent relation modeled by parent(_,_).
Problem: Define the relation of arbitrary ancestors.

Solution 1:

ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),ancestor(B,C).

Solution 2:

ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),parent(B,C).

Marco Maratea Systems and Solving Techniques for KR

Fully Declarative Language

Example (Ancestor)

Input: parent relation modeled by parent(_,_).
Problem: Define the relation of arbitrary ancestors.

Solution 1:

ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),ancestor(B,C).

Solution 2:

ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),parent(B,C).

Marco Maratea Systems and Solving Techniques for KR

Fully Declarative Language

Example (Ancestor)

Input: parent relation modeled by parent(_,_).
Problem: Define the relation of arbitrary ancestors.

Solution 1:

ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),ancestor(B,C).

Solution 3: Declarative: Atoms’ and Rules’ order is immaterial!

ancestor(A,C) :-ancestor(A,B),parent(B,C).
ancestor(A,B) :-parent(A,B).

Solution 2:
ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),parent(B,C).

Marco Maratea Systems and Solving Techniques for KR

Arithmetic Expressions and Builtins

Arithmetic and comparison operators
+,−, ∗, /
<,>,<=, >=,=

Example (Fibonacci numbers)

fib(1,0).
fib(2,1).

fib(N + 2,Y1 + Y2) :- fib(N,Y1), fib(N + 1,Y 2).

For recursive definitions an upper bound for integers has to be
specified, either as a system setting, or as a domain definition.

Marco Maratea Systems and Solving Techniques for KR

Arithmetic Expressions and Builtins

Arithmetic and comparison operators
+,−, ∗, /
<,>,<=, >=,=

Example (Fibonacci numbers)

fib(1,0).
fib(2,1).

fib(N + 2,Y1 + Y2) :- fib(N,Y1), fib(N + 1,Y 2).

For recursive definitions an upper bound for integers has to be
specified, either as a system setting, or as a domain definition.

Marco Maratea Systems and Solving Techniques for KR

Example pure Datalog limits

Example (No Peroni here!)
Input: Information about bars and drinks represented by
facts of the form
type(drink ,name). sells(bar ,drink)

Query: Retrieve all bars that do not sell Peroni

...can you write an Datalog query?

Datalog:

noPeroni(Bar) :- sells(Bar ,Drink),

not sellsPeroni(Bar).

sellsPeroni(Bar) :- sells(Bar ,Drink), type(Drink ,peroni).

Marco Maratea Systems and Solving Techniques for KR

Example pure Datalog limits

Example (No Peroni here!)
Input: Information about bars and drinks represented by
facts of the form
type(drink ,name). sells(bar ,drink)

Query: Retrieve all bars that do not sell Peroni

Datalog:

noPeroni(Bar) :- sells(Bar ,Drink),

not sellsPeroni(Bar).

sellsPeroni(Bar) :- sells(Bar ,Drink), type(Drink ,peroni).

Marco Maratea Systems and Solving Techniques for KR

Datalog with Negation

Rule:

head(H) :- body1(X1), . . . ,bodyn(Xn),
not bodyn+1(Xn+1), . . . , not bodym(Xm).

Positive and Negative Body:

body1(x1), . . . ,bodyn(xn)← positive body
bodyn+1(xn+1), . . . ,bodym(xm). ← negative body

Intuitively:

infer head(h) if all atoms in the positive body are true
and all atoms in the negative body are false

Safety:
all variables must occur in a positive body literal

Stratification (intuitive):
negation must not be involved in recursive definitions!

Marco Maratea Systems and Solving Techniques for KR

Stratification (i.e., no recursion trough negation)

Example (Stratified Program)

p(X) :-p(X), not q(X).
q(X) :- l(X), not m(b).

Example (Unstratified Program)

p(X) :- l(X), not q(X).
q(X) :- l(X), not p(X)

Marco Maratea Systems and Solving Techniques for KR

Needed Restrictions for Safety ...

Safety:

s(X) :-not r(X).

s(X ,Y) :- r(Y).

s(X ,Y) :- r(X),Y = Y .

Intuitively:

In each of these cases the result is infinite!?!

More on this later...

Marco Maratea Systems and Solving Techniques for KR

Needed Restrictions for Safety ...

Safety:

s(X) :-not r(X).

s(X ,Y) :- r(Y).

s(X ,Y) :- r(X),Y = Y .

Intuitively:

In each of these cases the result is infinite!?!

More on this later...

Marco Maratea Systems and Solving Techniques for KR

