Systems and Solving Techniques for Knowledge Representation

- Datalog Part II -

Marco Maratea
University of Genoa, Italy

066 011 Double degree programme Computational Logic
(Erasmus-Mundus)
066 931 Computational Intelligence
066 937 Software Engineering & Internet Computing
Institute of Information Systems

Syntax & Notation

Terms: Constants and Variables

Atoms: of the form $predicate(t_1, ..., t_n)$

Literals: atoms *a* (pos.) and negated atoms not *a* (neg.)

Rules: $h := p_1, \ldots, p_n, \text{ not } n_1, \ldots \text{ not } n_n.$

Head: H(r) = h

Body: $B(r) = \{p_1, ..., p_n, \text{ not } n_1, ... \text{ not } n_n.\}$

Positive Body: $B^{+}(r) = \{p_1, ..., p_n\}$

Negative Body: $B^-(r) = \{ \text{not } n_1, \dots \text{not } n_n \}$

Program: A set of rules

Safety: All variables occur in some positive body atom

Ground: no variable occurs in it

Positive Program: all rules are such that $B^-(r) = \emptyset$

Semantics Positive Programs

Interpretation: a set *I* of ground atoms

- atom a is true w.r.t. I if $a \in I$, it is false otherwise, and
- negative literal not a is true w.r.t. I if $a \notin I$, it is false otherwise.

Satisfaction: a rule r is satisfied w.r.t. I if $H(r) \in I$ whenever all literals $\ell \in B(r)$ are true w.r.t. I

Model: an interpretation *I* is a model for program *P* if all rules in *P* are satisfied by *I*

Least Model: an interpretation I is the least or minimal model for program P if every $I' \subset I$ is not a model for P

Example Models

Given:

- a:-b,c.
- c:-d.
- d.

Interpretations and Models:

$$I_1 = \{b, c, d\}, I_2 = \{a, b, c, d\} I_3 = \{c, d\}$$

 \rightarrow only I_2 and I_3 are models!

Example Models

Given:

```
a:-b, c.
```

$$c:-d.$$

d.

Interpretations and Models:

$$I_1 = \{b, c, d\}, I_2 = \{a, b, c, d\} I_3 = \{c, d\}$$

- \rightarrow only I_2 and I_3 are models!
- \rightarrow I_3 is minimal!

Semantics Positive Programs

Rule Instantiation: given a rule r, Inst(r) is the set of ground rules that can be obtained by replacing every variable in r by a constant occurring in a program P

Instantiation: given a program P, $G(P) = \bigcup_{r \in P} Inst(r)$

Model: an interpretation M is a model for program P if M is a model of G(P)

Least Model: an interpretation M is the least model of program P if M is the least model of G(P)

Operational Semantics for Positive Programs (Ground case)

Immediate Consequence Operator: Given a ground program *P*, and an interpretation *I*

$$T_p(I) = \{a | \exists r \in P \text{ s.t. } H(r) = a \land \forall I \in B(r) \text{ are true in } I\}$$

Example:
$$a := b$$
. $c := d$. $e := a$. $I = \{b\}$, $T_p(I) = \{a\}$.

Fixpoint procedure:

- Start with $I = \emptyset$.
- Repeatedly apply T_p until a fixpoint $T_p(I) = I$ is reached.

Least Model: The least fixpoint T_p .

Theorem: A positive Datalog program *P* has a unique least model, which is the minimal model corresponding to the intersection of all models of *P*.

Operational Semantics for Positive Programs (Ground case)

Immediate Consequence Operator: Given a ground program *P*, and an interpretation *I*

$$T_p(I) = \{a | \exists r \in P \text{ s.t. } H(r) = a \land \forall I \in B(r) \text{ are true in } I\}$$

Example:
$$a := b$$
. $c := d$. $e := a$. $I = \{b\}$, $T_p(I) = \{a\}$.

Fixpoint procedure:

- Start with $I = \emptyset$.
- Repeatedly apply T_p until a fixpoint $T_p(I) = I$ is reached.

Least Model: The least fixpoint T_p .

Theorem: A positive Datalog program *P* has a unique least model, which is the minimal model corresponding to the intersection of all models of *P*.

Operational Semantics for Positive Programs (Ground case)

Immediate Consequence Operator: Given a ground program *P*, and an interpretation *I*

$$T_p(I) = \{a | \exists r \in P \text{ s.t. } H(r) = a \land \forall I \in B(r) \text{ are true in } I\}$$

Example: a := b. c := d. e := a. $I = \{b\}$, $T_p(I) = \{a\}$.

Fixpoint procedure:

- Start with $I = \emptyset$.
- Repeatedly apply T_p until a fixpoint $T_p(I) = I$ is reached.

Least Model: The least fixpoint T_p .

Theorem: A positive Datalog program *P* has a unique least model, which is the minimal model corresponding to the intersection of all models of *P*.

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint until $T_{G(P)}(M) = M$.

```
Consider: a(X) : -b(X), b(a), b(b), c(a)
```

Instantiation:

```
a(a):-b(a),c(a)
```

$$a(b):-b(b),c(b)$$

$$a(c):-b(c),c(c).$$

. . .

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint until $T_{G(P)}(M) = M$.

Consider:

$$a(X):-b(X),c(X).$$

$$b(a). \ b(b). \ c(a). \ c(c).$$

Instantiation:

$$a(a) : -b(a), c(a).$$

$$a(b) : -b(b), c(b).$$

$$a(c) : -b(c), c(c).$$

. . .

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint until $T_{G(P)}(M) = M$.

Consider:

$$a(X) : -b(X), c(X).$$

 $b(a). b(b). c(a). c(c).$

Instantiation:

$$a(a) : -b(a), c(a).$$

 $a(b) : -b(b), c(b).$
 $a(c) : -b(c), c(c).$

... Do we need all these ground rules?

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint until $T_{G(P)}(M) = M$.

Consider:

$$a(X) : -b(X), c(X).$$

 $b(a). b(b). c(a). c(c).$

Instantiation:

$$a(a) : -b(a), c(a).$$

 $a(b) : -b(b), c(b).$
 $a(c) : -b(c), c(c).$

... Do they have any chance to be satisfied?

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint until $T_{G(P)}(M) = M$.

Consider:

$$a(X) : -b(X), c(X).$$

 $b(a). b(b). c(a). c(c).$

Instantiation:

$$a(a) : -b(a), c(a).$$

 $a(b) : -b(b), c(b).$
 $a(c) : -b(c), c(c).$

... Start from facts, match bodies, apply ... fixpoint!

Consider:

```
grandParent(X, Y) := parent(X, Z), parent(Z, Y).
parent(a, b). parent(b, c).
```

Evaluation:

- $0 I = \emptyset$
- **o** body can be instantiated (parent(a, b), parent(b, c)) Apply T_P : $I := I \cup \{grandParent(a, c)\}$
- o no body can be matched with atoms in / ... STOP!

Results: $\{parent(a, b), parent(b, c), grandParent(a, c)\}\$ is the least model

Consider:

```
grandParent(X, Y) := parent(X, Z), parent(Z, Y).
parent(a, b). parent(b, c).
```

Evaluation:

- $0 I = \emptyset$
- I = {parent(a, b), parent(b, c)}
- **3** body can be instantiated (parent(a, b), parent(b, c)) Apply T_P : $I := I \cup \{grandParent(a, c)\}$
- o no body can be matched with atoms in / ... STOP!

Results: $\{parent(a, b), parent(b, c), grandParent(a, c)\}\$ is the least model

Consider:

```
grandParent(X, Y) := parent(X, Z), parent(Z, Y).
parent(a, b). parent(b, c).
```

Evaluation:

- $0 I = \emptyset$
- I = {parent(a, b), parent(b, c)}
- **⑤** body can be instantiated (parent(a, b), parent(b, c)) Apply T_P : $I := I \cup \{grandParent(a, c)\}$
- o no body can be matched with atoms in I ... STOP!

Results: $\{parent(a, b), parent(b, c), grandParent(a, c)\}\$ is the least model

Consider:

```
grandParent(X, Y) := parent(X, Z), parent(Z, Y).
parent(a, b). parent(b, c).
```

Evaluation:

- $0 I = \emptyset$
- I = {parent(a, b), parent(b, c)}
- obody can be instantiated (parent(a, b), parent(b, c)) Apply T_P : $I := I \cup \{grandParent(a, c)\}$
- no body can be matched with atoms in I ... STOP!

Results: $\{parent(a, b), parent(b, c), grandParent(a, c)\}$ is the least model

Semantics c.t.d.

Immediate Consequence Operator:

Given a non-ground program P, and an interpretation I

$$T_p(I) = \{H(r_g) | \exists r_g \text{ instantiating } r \in P \text{ s.t.}$$

the body of r_g is true w.r.t. $I\}$

Operational Semantics:

Compute $M = T_p(M)$ by repeatedly applying T_p starting from EDB.

Stratified Programs

Dependency Graph: Given a program P, the graph DG(P) := (V, E) is defined as follows:

- a node p in V for each predicate p occurring in P
- positive edge p ← q in E if there is rule r s.t. p occurs in H(r) and q occurs in B⁺(r)
- negative edge p ←_n q in E if there is rule r s.t. p occurs in H(r) and q occurs in B⁻(r).

Recursive Program: P is recursive if DG(P) is cyclic.

Stratified Program: P is stratified if no cycle in DG(P) contains a negative edge.

Negation and Recursion

Consider:

$$p(X) := q(X)$$
, not $p(X)$.
 $q(1)$. $q(2)$.

Evaluation:

- **1** q(1). q(2).
- 2 q(1). q(2). p(1). p(2).
- 3

Stratified Program

Consider:

```
r_1 : reach(X) : -source(X).

r_2 : reach(X) : -reach(Y), arc(Y, X).

r_3 : noReach(X) : -target(X), not reach(X).
```

Dependency Graph:

- V = {reach,source,target,noReach,arc}
- E = {(reach,source), (reach,reach), (reach,arc), (noReach,target), (noReach,reach)_n}
- cyclic, but stratified!

Stratified Program

Consider:

```
r_1: reach(X): -source(X).

r_2: reach(X): -reach(Y), arc(Y, X).

r_3: noReach(X): -target(X), not\ reach(X).
```

Dependency Graph:

- V = {reach,source,target,noReach,arc}
- E = {(reach,source), (reach,reach), (reach,arc), (noReach,target), (noReach,reach)_n}
- cyclic, but stratified!

Stratified Program - components and modules

Components and Subprograms:

- Let Comp(DG) be the set of the strongly connected components of DG
- Given $C \in Comp(DG)$ the subprogram associated to C is $Sub(P, C) = \{r \in P \text{ s.t. } H(r) \in C\}$
- Given C' depends on C" if there is some (negative) arc in DG from a node in C" to a node in C'

Example ctd:

- Comp(DG) = {{reach}, {noReach}}
- $Sub(P, \{reach\}) = \{r_1, r_2\}$
- $Sub(P, \{noReach\}) = \{r_3\}$

Stratified Program - Evaluation

Evaluation:

- Start from the components that do not depend on other components
- Evaluate subprograms associated to components as for positive programs
- Remove evaluated components
- Go to step 2. if still components are to be evaluated

Example ctd:

- Evaluate {{reach}}
- Evaluate {{noReach}}

Example Stratified Program

Consider:

```
r_1: reach(X): -source(X).
  r_2: reach(X): -reach(Y), arc(Y, X).
   r_3: noReach(X): -target(X), not reach(X).
   EDB: node(1).node(2).node(3).node(4).arc(1,2).
    arc(3,4).arc(4,3).source(1), target(2).target(3).
I = \{source(1), target(2), target(3), ...\}
I := I \cup \{ reach(1) \}
3 I := I \cup \{reach(2)\}...STOP!
1 I := I \cup \{noReach(3)\}...STOP!
```

Example Stratified Program

Consider:

```
r_1: reach(X): -source(X).
   r_2: reach(X): -reach(Y), arc(Y, X).
    r_3: noReach(X): -target(X), not reach(X).
    EDB: node(1).node(2).node(3).node(4).arc(1,2).
     arc(3,4).arc(4,3).source(1), target(2).target(3).
Evaluate Sub(P, \{reach\}) = \{r_1, r_2\}:
I = \{source(1), target(2), target(3), ...\}
2 I := I \cup \{ reach(1) \}
3 I := I \cup \{ reach(2) \} ... STOP!
Evaluate Sub(P, \{noReach\}) = \{r_3\}:
```

1 $I := I \cup \{noReach(3)\}...STOP!$

Example Stratified Program

Consider:

```
r_1: reach(X): -source(X).
r_2: reach(X): -reach(Y), arc(Y, X).
r_3: noReach(X): -target(X), not reach(X).
EDB: node(1).node(2).node(3).node(4).arc(1,2).
 arc(3,4).arc(4,3).source(1), target(2).target(3).
```

Evaluate $Sub(P, \{reach\}) = \{r_1, r_2\}$:

- $I = \{source(1), target(2), target(3), ...\}$
- ② I := I ∪ {reach(1)}
- **1**:= $I \cup \{reach(2)\}...STOP!$

Evaluate $Sub(P, \{noReach\}) = \{r_3\}$:

 $I := I \cup \{noReach(3)\}...STOP!$

Introduction

Thanks to Francesco Ricca for a preliminary version of these slides