Introduction

Systems and Solving Techniques for
Knowledge Representation

— Datalog Part Il -

Marco Maratea
University of Genoa, ltaly

066 011 Double degree programme Computational Logic
(Erasmus-Mundus)
066 931 Computational Intelligence
066 937 Software Engineering & Internet Computing
Institute of Information Systems

Marco Maratea Systems and Solving Techniques for KR

Introduction

Syntax & Notation

Terms: Constants and Variables

Atoms: of the form predicate(t;, ..., t,)

Literals: atoms a (pos.) and negated atoms not a (neg.)
Rules: h - py,...,pn,n0t Ny, ...00t Ny

Head: H(r)=h

Body: B(r) = {p1,...,pn,n0t Ny,...n0t Ny.}

Positive Body: B*(r) = {p1,...,pn}

Negative Body: B (r) = {not ny,...not n,}

Program: A set of rules

Safety: All variables occur in some positive body atom
Ground: no variable occurs in it

Positive Program: all rules are such that B=(r) = ()

Marco Maratea Systems and Solving Techniques for KR

Introduction

Semantics Positive Programs

Interpretation: a set / of ground atoms
e atom ais true w.r.t. /if a € /, it is false otherwise, and
@ negative literal not ais true w.r.t. lif a ¢ I, it is false
otherwise.

Satisfaction: a rule r is satisfied w.r.t. /if H(r) € |
whenever all literals ¢ € B(r) are true w.r.t. /

Model: an interpretation / is a model for program P if all
rules in P are satisfied by /

Least Model: an interpretation / is the least or minimal
model for program P if every I' C | is not a model for P

Marco Maratea Systems and Solving Techniques for KR

Introduction

Example Models

Given:
a:—b,c.
c:—d.
d.

Interpretations and Models:
L ={b,c,d}, Lh={ab,c,d} k= {c,d}
— only kL and /5 are models!

Marco Maratea Systems and Solving Techniques for KR

Introduction

Example Models

Given:
a:—b,c.
c:—d.
d.

Interpretations and Models:
L ={b,c,d}, Lh={ab,c,d} 5 ={c, d}
— only kL and /5 are models!

— |3 is minimal!

Marco Maratea Systems and Solving Techniques for KR

Introduction

Semantics Positive Programs

Rule Instantiation: given a rule r, Inst(r) is the set of
ground rules that can be obtained by replacing every
variable in r by a constant occurring in a program P

Instantiation: given a program P, G(P) = U,cplnst(r)

Model: an interpretation M is a model for program P if M
is a model of G(P)

Least Model: an interpretation M is the least model of
program P if M is the least model of G(P)

Marco Maratea Systems and Solving Techniques for KR

Introduction
Operational Semantics for Positive Programs (Ground
case)

Immediate Consequence Operator: Given a ground
program P, and an interpretation /

To(l) ={al3re Pst. H(r)=a AVl e B(r) are truein [}
Example: a:-b. c:-d. e:-a. I = {b}, To(/) = {a}.

Marco Maratea Systems and Solving Techniques for KR

Introduction
Operational Semantics for Positive Programs (Ground
case)

Immediate Consequence Operator: Given a ground
program P, and an interpretation /

To(l) ={al3re Pst. H(r)=a AVl e B(r) are truein [}
Example: a:-b. c:-d. e:-a. I = {b}, To(/) = {a}.

Fixpoint procedure:
e Start with / = (.
e Repeatedly apply T, until a fixpoint T,(/) = Iis
reached.

Marco Maratea Systems and Solving Techniques for KR

Introduction

Operational Semantics for Positive Programs (Ground
case)

Immediate Consequence Operator: Given a ground
program P, and an interpretation /

To(l) ={al3re Pst. H(r)=a AVl e B(r) are truein [}
Example: a:-b. c:-d. e:-a. I = {b}, To(/) = {a}.

Fixpoint procedure:
e Start with / = (.
e Repeatedly apply T, until a fixpoint T,(/) = Iis
reached.

Least Model: The least fixpoint 7.

Theorem: A positive Datalog program P has a unique
least model, which is the minimal model corresponding to
the intersection of all models of P.

Marco Maratea Systems and Solving Techniques for KR

Introduction

Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
until TG(P)(M) =M.

Marco Maratea Systems and Solving Techniques for KR

Introduction

Operational Semantics (Non-ground case)

Ground + Fixpoint:
Given P, build G(P), apply operator to compute fixpoint
until TG(P)(M) =M.
Consider:
a(X) : —b(X), c(X).
b(a). b(b). c(a). c(c).

Instantiation:
a(a) : —b(a), c(a).

a(b) : —b(b), c(b).
a(e) : —b(c), c(c).

Marco Maratea Systems and Solving Techniques for KR

Introduction

Operational Semantics (Non-ground case)

Ground + Fixpoint:
Given P, build G(P), apply operator to compute fixpoint
until TG(p)(M) =M.
Consider:
a(X) : —b(X), c(X).
b(a). b(b). c(a). c(c).
Instantiation:
a(a) : —b(
a(b) : —b(
a(c) : —b(

)
... Do we need all these ground rules?

—b(a), c(a).
—b(b), c(b).
c).c(c)

Marco Maratea Systems and Solving Techniques for KR

Introduction

Operational Semantics (Non-ground case)

Ground + Fixpoint:
Given P, build G(P), apply operator to compute fixpoint
until TG(F:)(M) =M.
Consider:
a(X) : —b(X), c(X).
b(a). b(b). c(a). c(c).

Instantiation:
ala) : —b(a), c(a).
a(b) : —b(b), c(b).

a(e) : —b(c), c(c).
... Do they have any chance to be satisfied?

Marco Maratea Systems and Solving Techniques for KR

Introduction

Operational Semantics (Non-ground case)

Ground + Fixpoint:
Given P, build G(P), apply operator to compute fixpoint
until TG(p)(M) =M.
Consider:
a(X) : —b(X), c(X).
b(a). b(b). c(a). c(c).

Instantiation:
ala) : —b(a), c(a).

a(b) : —b(b), c(b).
a(c) : —b(c), c(c).
... Start from facts, match bodies, apply ... fixpoint!

Marco Maratea Systems and Solving Techniques for KR

Introduction

Example Semantics

Consider:
grandParent(X,Y) - parent(X, Z), parent(Z,Y).

parent(a, b). parent(b, c).

Evaluation:
Q@ /=0

Results: {parent(a, b), parent(b, ¢), grandParent(a, c)} is
the least model

Marco Maratea Systems and Solving Techniques for KR

Introduction

Example Semantics

Consider:
grandParent(X,Y) — parent(X, Z), parent(Z,Y).

parent(a, b). parent(b, c).

Evaluation:
Q /=0
@ |/ = {parent(a, b), parent(b, c)}

Results: {parent(a, b), parent(b, ¢), grandParent(a, c)} is
the least model

Marco Maratea Systems and Solving Techniques for KR

Introduction

Example Semantics

Consider:
grandParent(X,Y) — parent(X, Z), parent(Z,Y).

parent(a, b). parent(b, c).
Evaluation:
Q /=0
@ |/ = {parent(a, b), parent(b, c)}

© body can be instantiated (parent(a, b), parent(b, c))
Apply Tp: | := IU{grandParent(a,c)}

Results: {parent(a, b), parent(b, ¢), grandParent(a, c)} is
the least model

Marco Maratea Systems and Solving Techniques for KR

Introduction

Example Semantics

Consider:
grandParent(X,Y) — parent(X, Z), parent(Z,Y).

parent(a, b). parent(b, c).

Evaluation:

Q /=0

@ |/ = {parent(a, b), parent(b, c)}

© body can be instantiated (parent(a, b), parent(b, c))
Apply Tp: | := IU{grandParent(a,c)}

@ no body can be matched with atoms in /... STOP!

Results: {parent(a, b), parent(b, ¢), grandParent(a, c)} is
the least model

Marco Maratea Systems and Solving Techniques for KR

Introduction

Semantics c.t.d.

Immediate Consequence Operator:
Given a non-ground program P, and an interpretation /

To(l) = {H(ry)|3rq instantiating r € P s.t.
the body of ry is true w.r.t. /}

Operational Semantics:

Compute M = T,(M) by repeatedly applying T, starting
from EDB.

Marco Maratea Systems and Solving Techniques for KR

Introduction

Stratified Programs

Dependency Graph: Given a program P, the graph
DG(P) := (V, E) is defined as follows:
@ anode pin V for each predicate p occurring in P
@ positive edge p «+ g in E if there is rule r s.t. p occurs
in H(r) and q occurs in B*(r)
@ negative edge p <, gin E ifthereisrule rs.t. p
occurs in H(r) and q occurs in B~(r).

Recursive Program: P is recursive if DG(P) is cyclic.

Stratified Program: P is stratified if no cycle in DG(P)
contains a negative edge.

Marco Maratea Systems and Solving Techniques for KR

Introduction

Negation and Recursion

Consider:
p(X) =q(X), not p(X).
q(1). 9(2).
Evaluation:
@ q(1). 9(2).

@ q(1). a(2). p(1). p(2).
Q ..

Marco Maratea

Systems and Solving Techniques for KR

Introduction

Stratified Program

Consider:
ry : reach(X) : —source(X).

r> : reach(X) : —reach(Y),arc(Y, X).
r3 : noReach(X) : —target(X), not reach(X).

Marco Maratea Systems and Solving Techniques for KR

Introduction

Stratified Program

Consider:
ry : reach(X) : —source(X).
ry : reach(X) : —reach(Y),arc(Y, X).
r3 : noReach(X) : —target(X), not reach(X).

Dependency Graph:
e V = {reach,source,target,noReach,arc}

e E = {(reach,source), (reach,reach), (reach,arc),
(noReach,target), (noReach,reach),}

@ cyclic, but stratified!

Marco Maratea Systems and Solving Techniques for KR

Introduction

Stratified Program - components and modules

Components and Subprograms:
o Let Comp(DG) be the set of the strongly connected
components of DG
e Given C € Comp(DG) the subprogram associated to
Cis Sub(P,C) = {re Ps.t. H(r) € C}
e Given C’ depends on C” if there is some (negative)
arc in DG from a node in C” to a node in C’

| reach l

N

| NmnoReach |

Example ctd:
e Comp(DG) = {{reach},{noReach}}
@ Sub(P,{reach}) ={n,r:}
@ Sub(P,{noReach}) = {rs3}

Marco Maratea Systems and Solving Techniques for KR

Introduction

Stratified Program - Evaluation

Evaluation:

@ Start from the components that do not depend on
other components

@ Evaluate subprograms associated to components as
for positive programs

© Remove evaluated components
Q Go to step 2. if still components are to be evaluated

Example ctd:
@ Evaluate {{reach}}
@ Evaluate {{noReach}}

Marco Maratea Systems and Solving Techniques for KR

Introduction

Example Stratified Program

Consider:
ry - reach(X) : —source(X).

r» : reach(X) : —reach(Y), arc(Y, X).
r3 : noReach(X) : —target(X), not reach(X).

EDB: node(1).node(2).node(3).node(4).arc(1, 2).
arc(3,4).arc(4,3).source(1), target(2).target(3).

Marco Maratea Systems and Solving Techniques for KR

Introduction

Example Stratified Program

Consider:
ry - reach(X) : —source(X).
r» : reach(X) : —reach(Y), arc(Y, X).
r3 : noReach(X) : —target(X), not reach(X).
EDB: node(1).node(2).node(3).node(4).arc(1, 2).
arc(3,4).arc(4,3).source(1), target(2).target(3).
Evaluate Sub(P, {reach}) = {r, . }:
@ /= {source(1), target(2), target(3), ...}
@ /:=IuU{reach(1)}
@ /:=1/uU{reach(2)}...STOP!

Marco Maratea Systems and Solving Techniques for KR

Introduction

Example Stratified Program

Consider:
ry - reach(X) : —source(X).
r» : reach(X) : —reach(Y), arc(Y, X).
r3 : noReach(X) : —target(X), not reach(X).
EDB: node(1).node(2).node(3).node(4).arc(1, 2).
arc(3,4).arc(4,3).source(1), target(2).target(3).
Evaluate Sub(P, {reach}) = {r, . }:
@ /= {source(1), target(2), target(3), ...}
@ /:=IuU{reach(1)}
@ /:=1/uU{reach(2)}...STOP!

Evaluate Sub(P, {noReach}) = {rs}:
@ /:=/uU{noReach(3)}...STOP!

Marco Maratea Systems and Solving Techniques for KR

Introduction

Thanks to Francesco Ricca for a preliminary
version of these slides

Marco Maratea Systems and Solving Techniques for KR

	Introduction

