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Introduction

Syntax & Notation

Terms: Constants and Variables
Atoms: of the form predicate(t1, . . . , tn)
Literals: atoms a (pos.) and negated atoms not a (neg.)
Rules: h :- p1, . . . ,pn, not n1, . . . not nn.

Head: H(r) = h
Body: B(r) = {p1, . . . ,pn, not n1, . . . not nn.}
Positive Body: B+(r) = {p1, . . . ,pn}
Negative Body: B−(r) = {not n1, . . . not nn}
Program: A set of rules
Safety: All variables occur in some positive body atom
Ground: no variable occurs in it
Positive Program: all rules are such that B−(r) = ∅
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Semantics Positive Programs

Interpretation: a set I of ground atoms
atom a is true w.r.t. I if a ∈ I, it is false otherwise, and
negative literal not a is true w.r.t. I if a 6∈ I, it is false
otherwise.

Satisfaction: a rule r is satisfied w.r.t. I if H(r) ∈ I
whenever all literals ` ∈ B(r) are true w.r.t. I

Model: an interpretation I is a model for program P if all
rules in P are satisfied by I

Least Model: an interpretation I is the least or minimal
model for program P if every I ′ ⊂ I is not a model for P
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Example Models

Given:

a : −b, c.

c : −d .

d .

Interpretations and Models:

I1 = {b, c,d}, I2 = {a,b, c,d} I3 = {c,d}
→ only I2 and I3 are models!

→ I3 is minimal!
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Semantics Positive Programs

Rule Instantiation: given a rule r , Inst(r) is the set of
ground rules that can be obtained by replacing every
variable in r by a constant occurring in a program P

Instantiation: given a program P, G(P) = ∪r∈P Inst(r)

Model: an interpretation M is a model for program P if M
is a model of G(P)

Least Model: an interpretation M is the least model of
program P if M is the least model of G(P)
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Operational Semantics for Positive Programs (Ground
case)

Immediate Consequence Operator: Given a ground
program P, and an interpretation I

Tp(I) = {a|∃r ∈ P s.t. H(r) = a ∧ ∀l ∈ B(r) are true in I}

Example: a :-b. c :-d . e :-a. I = {b}, Tp(I) = {a}.

Fixpoint procedure:
Start with I = ∅.
Repeatedly apply Tp until a fixpoint Tp(I) = I is
reached.

Least Model: The least fixpoint Tp.
Theorem: A positive Datalog program P has a unique
least model, which is the minimal model corresponding to
the intersection of all models of P.
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Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
until TG(P)(M) = M.

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . .
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Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
until TG(P)(M) = M.

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . . Do we need all these ground rules?
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Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
until TG(P)(M) = M.

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . . Do they have any chance to be satisfied?
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Operational Semantics (Non-ground case)

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
until TG(P)(M) = M.

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . . Start from facts, match bodies, apply ... fixpoint!
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Example Semantics

Consider:
grandParent(X ,Y ) :-parent(X ,Z ),parent(Z ,Y ).

parent(a,b). parent(b, c).

Evaluation:
1 I = ∅
2 I = {parent(a,b),parent(b, c)}
3 body can be instantiated (parent(a,b),parent(b, c))

Apply TP : I := I ∪ {grandParent(a, c)}
4 no body can be matched with atoms in I ... STOP!

Results: {parent(a,b),parent(b, c),grandParent(a, c)} is
the least model
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Semantics c.t.d.

Immediate Consequence Operator:
Given a non-ground program P, and an interpretation I

Tp(I) = {H(rg)|∃rg instantiating r ∈ P s.t.
the body of rg is true w.r.t. I}

Operational Semantics:

Compute M = Tp(M) by repeatedly applying Tp starting
from EDB.
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Stratified Programs

Dependency Graph: Given a program P, the graph
DG(P) := (V ,E) is defined as follows:

a node p in V for each predicate p occurring in P
positive edge p ← q in E if there is rule r s.t. p occurs
in H(r) and q occurs in B+(r)
negative edge p ←n q in E if there is rule r s.t. p
occurs in H(r) and q occurs in B−(r).

Recursive Program: P is recursive if DG(P) is cyclic.

Stratified Program: P is stratified if no cycle in DG(P)
contains a negative edge.
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Negation and Recursion

Consider:
p(X ) :-q(X ), not p(X ).

q(1). q(2).

Evaluation:
1 q(1). q(2).
2 q(1). q(2). p(1). p(2).
3 ...
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Stratified Program

Consider:
r1 : reach(X ) : −source(X ).

r2 : reach(X ) : −reach(Y ),arc(Y ,X ).

r3 : noReach(X ) : −target(X ),not reach(X ).

Dependency Graph:
V = {reach,source,target,noReach,arc}
E = {(reach,source), (reach,reach), (reach,arc),
(noReach,target), (noReach,reach)n}
cyclic, but stratified!
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Stratified Program - components and modules

Components and Subprograms:
Let Comp(DG) be the set of the strongly connected
components of DG
Given C ∈ Comp(DG) the subprogram associated to
C is Sub(P,C) = {r ∈ P s.t. H(r) ∈ C}
Given C ′ depends on C ′′ if there is some (negative)
arc in DG from a node in C ′′ to a node in C ′

Example ctd:
Comp(DG) = {{reach}, {noReach}}
Sub(P, {reach}) = {r1, r2}
Sub(P, {noReach}) = {r3}
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Stratified Program - Evaluation

Evaluation:
1 Start from the components that do not depend on

other components
2 Evaluate subprograms associated to components as

for positive programs
3 Remove evaluated components
4 Go to step 2. if still components are to be evaluated

Example ctd:
1 Evaluate {{reach}}
2 Evaluate {{noReach}}
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Example Stratified Program

Consider:
r1 : reach(X ) : −source(X ).

r2 : reach(X ) : −reach(Y ),arc(Y ,X ).

r3 : noReach(X ) : −target(X ),not reach(X ).

EDB: node(1).node(2).node(3).node(4).arc(1,2).
arc(3,4).arc(4,3).source(1), target(2).target(3).

Evaluate Sub(P, {reach}) = {r1, r2}:
1 I = {source(1), target(2), target(3), ...}
2 I := I ∪ {reach(1)}
3 I := I ∪ {reach(2)}...STOP!

Evaluate Sub(P, {noReach}) = {r3}:
1 I := I ∪ {noReach(3)}...STOP!
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Thanks to Francesco Ricca for a preliminary
version of these slides
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