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Introduction: Evaluation of ASP Programs

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications
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Evaluation of ASP Programs (1)

Computationally expensive
Traditionally a two-step process:

1 Instantiation (or grounding)
→ Variable elimination

2 Propositional search (depends on complexity, details
later)

→ Model Generation: “generate models”

→ (Stable) Model Checking: “verify that models are answer sets”
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About the Instantiation

Some facts:
Exponential in the worst case
Input of a subsequent exponential procedure
Significantly affects the performance of the overall process

Full instantiation: i.e., apply every possible substitution

→ Not viable in practice

Intelligent instantiation
→ Keep the size of the instantiation as small as possible

→ Equivalent to the full one

→ Intelligent Instantiators can solve problems in P
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Instantiation Example: 3-Colorability

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y ), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Intelligent Instantiation: → equivalent but much smaller (9 rules)!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).
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% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y ), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Full Theoretical Instantiation:

→ is huge (2916 rules) and redundant!

col(red , red) | col(red , yellow) | col(red , green) :- node(red).
col(yellow , red) | col(yellow , yellow) | col(yellow , green) :- node(yellow).
col(green, red) | col(green, yellow) | col(green, green) :- node(green).
. . .
col(1, red) | col(1, yellow) | col(1, green) :- node(1).

← OK!

. . .
:- edge(1, 2), col(1, 1), col(2, 1).
. . .
:- edge(1, 2), col(1, red), col(2, red).

← OK!

. . .

Intelligent Instantiation: → equivalent but much smaller (9 rules)!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).
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col(red , red) | col(red , yellow) | col(red , green) :- node(red).
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. . .
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. . .
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. . .
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. . .
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Instantiation of a Rule: like a join in a DB
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Instantiation of a Program

Substitutions:
generate rules
derive knowledge

Advanced Techniques:
Join ordering
Backjumping

Instantiating a Program
Handle recursion
Handle negation
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Dependency & Component Graphs

a(1). t(X ,Y ) :- p(X ,Y ),a(Y ).

p(X ,Y )|s(Y ) :- r(X ), r(Y ).

p(X ,Y ) :- r(X ), t(X ,Y ).

r(X ) :- a(X ), not t(X ,X ).
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Subprograms

P{p,t} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).

p(X ,Y ) :- r(X ), t(X ,Y ).}
t(X ,Y ) :- p(X ,Y ),a(Y ).}

P{s} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).}
P{r} = {r(X ) :- a(X ), not t(X ,X ).}
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Component Ordering

Exit and Recursive Rules
Given a component C ,a rule r in PC

is recursive if there is a predicate p ∈ C s.t. p occurs in the
positive body of r
otherwise, r is said to be an exit rule.

P{p,t} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).⇐ exit
p(X ,Y ) :- r(X ), t(X ,Y ).} ⇐ recursive
t(X ,Y ) :- p(X ,Y ),a(Y ).} ⇐ recursive

P{s} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).} ⇐ exit
P{r} = {r(X ) :- a(X ), not t(X ,X ).} ⇐ exit
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Component Ordering

Component Ordering:
A ≺+ B If there is a path in Gc

P from A to B in which all arcs
are labeled with "+"

Admissible Component Sequence
Sequence C1, . . . ,Cn is admissible if i < j whenever

Ci ≺+ Cj .
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Admissible Sequence: Example

Admissible Component Sequence: {r}, {p, t}, {s}
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Instantiation of a Program: follow dependencies
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Instantiation of a Program: semi-naïve
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Program Simplification (intuition)

Remove redundant literals/rules
If a positive body literal Q is in B(r) and Q ∈ S, then
delete Q from B(r).
If a negative body literal not Q is in B(r) and Q 6∈ S,
then delete not Q from B(r).
If a negative body literal not Q is in B(r) and Q ∈ S,
then remove the ground instance of r .
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Intelligent Instantiator

The instantiation process
outputs a ground program equivalent to the input
...often much smaller than ground instantiation
Performs “deterministic” inferences
Computes the unique answer set if the input is
stratified and non disjunctive
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Thanks to Francesco Ricca for a preliminary
version of these slides
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EXERCISES
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Exercise (VII) and (VIII)

Consider the solution(s) you have devised for exercise (V)
and/or (VI), try to figure out what specific simplifications
are made during grounding, by also checking what is the
output of doing grounding with gringo.
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What you are requested to do

What you are requested to do is:

1 sending by email at mmaratea@dbai.tuwien.ac.at before
24:00 (resp. 12:00) of the day before (resp. same day) if
lecture is done in the morning (resp. in the afternoon),
solutions related to exercise (V) and/or (VI),

2 “check” your solution using a grounder,
3 coming to the black-board! (if time/space allow :)
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This lecture is dedicated to . . .
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