
Introduction
Instantiation

Systems and Solving Techniques for
Knowledge Representation

– Grounding –

Marco Maratea
University of Genoa, Italy

066 011 Double degree programme Computational Logic
(Erasmus-Mundus)

066 931 Computational Intelligence
066 937 Software Engineering & Internet Computing

Institute of Information Systems

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Introduction: Evaluation of ASP Programs

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Introduction: Evaluation of ASP Programs

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Introduction: Evaluation of ASP Programs

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Introduction: Evaluation of ASP Programs

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Introduction: Evaluation of ASP Programs

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Evaluation of ASP Programs (1)

Computationally expensive
Traditionally a two-step process:

1 Instantiation (or grounding)
→ Variable elimination

2 Propositional search (depends on complexity, details
later)

→ Model Generation: “generate models”

→ (Stable) Model Checking: “verify that models are answer sets”

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

About the Instantiation

Some facts:
Exponential in the worst case
Input of a subsequent exponential procedure
Significantly affects the performance of the overall process

Full instantiation: i.e., apply every possible substitution

→ Not viable in practice

Intelligent instantiation
→ Keep the size of the instantiation as small as possible

→ Equivalent to the full one

→ Intelligent Instantiators can solve problems in P

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

About the Instantiation

Some facts:
Exponential in the worst case
Input of a subsequent exponential procedure
Significantly affects the performance of the overall process

Full instantiation: i.e., apply every possible substitution

→ Not viable in practice

Intelligent instantiation
→ Keep the size of the instantiation as small as possible

→ Equivalent to the full one

→ Intelligent Instantiators can solve problems in P

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

About the Instantiation

Some facts:
Exponential in the worst case
Input of a subsequent exponential procedure
Significantly affects the performance of the overall process

Full instantiation: i.e., apply every possible substitution

→ Not viable in practice

Intelligent instantiation
→ Keep the size of the instantiation as small as possible

→ Equivalent to the full one

→ Intelligent Instantiators can solve problems in P

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Instantiation Example: 3-Colorability

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y ), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Intelligent Instantiation: → equivalent but much smaller (9 rules)!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Instantiation Example: 3-Colorability
% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y ), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Full Theoretical Instantiation:

→ is huge (2916 rules) and redundant!

col(red , red) | col(red , yellow) | col(red , green) :- node(red).
col(yellow , red) | col(yellow , yellow) | col(yellow , green) :- node(yellow).
col(green, red) | col(green, yellow) | col(green, green) :- node(green).
. . .
col(1, red) | col(1, yellow) | col(1, green) :- node(1).

← OK!

. . .
:- edge(1, 2), col(1, 1), col(2, 1).
. . .
:- edge(1, 2), col(1, red), col(2, red).

← OK!

. . .

Intelligent Instantiation: → equivalent but much smaller (9 rules)!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Instantiation Example: 3-Colorability
% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y ), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Full Theoretical Instantiation: → is huge (2916 rules) and redundant!

col(red , red) | col(red , yellow) | col(red , green) :- node(red).
col(yellow , red) | col(yellow , yellow) | col(yellow , green) :- node(yellow).
col(green, red) | col(green, yellow) | col(green, green) :- node(green).
. . .
col(1, red) | col(1, yellow) | col(1, green) :- node(1).← OK!
. . .
:- edge(1, 2), col(1, 1), col(2, 1).
. . .
:- edge(1, 2), col(1, red), col(2, red).← OK!
. . .

Intelligent Instantiation: → equivalent but much smaller (9 rules)!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Instantiation Example: 3-Colorability

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y ), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Intelligent Instantiation: → equivalent but much smaller (9 rules)!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Instantiation of a Rule: like a join in a DB

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Instantiation of a Program

Substitutions:
generate rules
derive knowledge

Advanced Techniques:
Join ordering
Backjumping

Instantiating a Program
Handle recursion
Handle negation

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Instantiation of a Program

Substitutions:
generate rules
derive knowledge

Advanced Techniques:
Join ordering
Backjumping

Instantiating a Program
Handle recursion
Handle negation

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Instantiation of a Program

Substitutions:
generate rules
derive knowledge

Advanced Techniques:
Join ordering
Backjumping

Instantiating a Program
Handle recursion
Handle negation

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Dependency & Component Graphs

a(1). t(X ,Y ) :- p(X ,Y ),a(Y ).

p(X ,Y )|s(Y ) :- r(X ), r(Y ).

p(X ,Y ) :- r(X ), t(X ,Y ).

r(X ) :- a(X ), not t(X ,X ).

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Dependency & Component Graphs

a(1). t(X ,Y ) :- p(X ,Y ),a(Y ).

p(X ,Y )|s(Y ) :- r(X ), r(Y ).

p(X ,Y ) :- r(X ), t(X ,Y ).

r(X ) :- a(X ), not t(X ,X ).

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Subprograms

P{p,t} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).

p(X ,Y ) :- r(X ), t(X ,Y ).}
t(X ,Y ) :- p(X ,Y ),a(Y ).}

P{s} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).}
P{r} = {r(X ) :- a(X ), not t(X ,X ).}

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Component Ordering

Exit and Recursive Rules
Given a component C ,a rule r in PC

is recursive if there is a predicate p ∈ C s.t. p occurs in the
positive body of r
otherwise, r is said to be an exit rule.

P{p,t} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).⇐ exit
p(X ,Y ) :- r(X ), t(X ,Y ).} ⇐ recursive
t(X ,Y ) :- p(X ,Y ),a(Y ).} ⇐ recursive

P{s} = {p(X ,Y )|s(Y ) :- r(X ), r(Y ).} ⇐ exit
P{r} = {r(X ) :- a(X ), not t(X ,X ).} ⇐ exit

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Component Ordering

Component Ordering:
A ≺+ B If there is a path in Gc

P from A to B in which all arcs
are labeled with "+"

Admissible Component Sequence
Sequence C1, . . . ,Cn is admissible if i < j whenever

Ci ≺+ Cj .

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Admissible Sequence: Example

Admissible Component Sequence: {r}, {p, t}, {s}

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Instantiation of a Program: follow dependencies

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Instantiation of a Program: semi-naïve

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Program Simplification (intuition)

Remove redundant literals/rules
If a positive body literal Q is in B(r) and Q ∈ S, then
delete Q from B(r).
If a negative body literal not Q is in B(r) and Q 6∈ S,
then delete not Q from B(r).
If a negative body literal not Q is in B(r) and Q ∈ S,
then remove the ground instance of r .

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Intelligent Instantiator

The instantiation process
outputs a ground program equivalent to the input
...often much smaller than ground instantiation
Performs “deterministic” inferences
Computes the unique answer set if the input is
stratified and non disjunctive

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Intelligent Instantiator

The instantiation process
outputs a ground program equivalent to the input
...often much smaller than ground instantiation
Performs “deterministic” inferences
Computes the unique answer set if the input is
stratified and non disjunctive

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Intelligent Instantiator

The instantiation process
outputs a ground program equivalent to the input
...often much smaller than ground instantiation
Performs “deterministic” inferences
Computes the unique answer set if the input is
stratified and non disjunctive

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Thanks to Francesco Ricca for a preliminary
version of these slides

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

EXERCISES

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

Exercise (VII) and (VIII)

Consider the solution(s) you have devised for exercise (V)
and/or (VI), try to figure out what specific simplifications
are made during grounding, by also checking what is the
output of doing grounding with gringo.

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

What you are requested to do

What you are requested to do is:

1 sending by email at mmaratea@dbai.tuwien.ac.at before
24:00 (resp. 12:00) of the day before (resp. same day) if
lecture is done in the morning (resp. in the afternoon),
solutions related to exercise (V) and/or (VI),

2 “check” your solution using a grounder,
3 coming to the black-board! (if time/space allow :)

Marco Maratea Systems and Solving Techniques for KR



Introduction
Instantiation

This lecture is dedicated to . . .

Marco Maratea Systems and Solving Techniques for KR


	Introduction
	Instantiation

