
Introduction

Systems and Solving Techniques for
Knowledge Representation

– Guess & Check –

Marco Maratea
University of Genoa, Italy

066 011 Double degree programme Computational Logic
066 931 Computational Intelligence

066 937 Software Engineering & Internet Computing
Institute of Information Systems

Marco Maratea Systems and Solving Techniques for KR

Introduction

ASP Basics

ASP:
Datalog← done!
+ Default negation← done!
+ Disjunction← done!
+ Integrity Constraints← done!
+ Weak Constraints← done!
+ Aggregate atoms← done!

How to program in ASP?
Programming methodology

Marco Maratea Systems and Solving Techniques for KR

Introduction

ASP Basics

ASP:
Datalog← done!
+ Default negation← done!
+ Disjunction← done!
+ Integrity Constraints← done!
+ Weak Constraints← done!
+ Aggregate atoms← done!

How to program in ASP?
Programming methodology

Marco Maratea Systems and Solving Techniques for KR

Introduction

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:
1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Marco Maratea Systems and Solving Techniques for KR

Introduction

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:
1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Marco Maratea Systems and Solving Techniques for KR

Introduction

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:
1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Marco Maratea Systems and Solving Techniques for KR

Introduction

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:
1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Marco Maratea Systems and Solving Techniques for KR

Introduction

Direct Encodings when...

Use a “Direct” Encoding with Datalog rules for
Polynomial Problems, etc.

Example (Reachability)
Problem: Find all nodes reachable from the others.
Input: edge(_, _).

% X is reachable from Y if an edge (X,Y) exists
reachable(X ,Y) :- edge(X ,Y).

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z), edge(Z ,Y).

The method in often unfeasible for search problems from NP
and beyond: need for a programming methodology

Marco Maratea Systems and Solving Techniques for KR

Introduction

Direct Encodings when...

Use a “Direct” Encoding with Datalog rules for
Polynomial Problems, etc.

Example (Reachability)
Problem: Find all nodes reachable from the others.
Input: edge(_, _).

% X is reachable from Y if an edge (X,Y) exists
reachable(X ,Y) :- edge(X ,Y).

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z), edge(Z ,Y).

The method in often unfeasible for search problems from NP
and beyond: need for a programming methodology

Marco Maratea Systems and Solving Techniques for KR

Introduction

Programming Methodology

Guess & Check & Optimize (GCO)
1 Guess solutions→ using disjunctive rules
2 Check admissible ones→ using strong constraints
Optimization problem?
3 Specify Preference criteria→ using weak constraints

In other words...
1 disjunctive rules→ generate candidate solutions
2 constraints→ test solutions discarding unwanted

ones
3 weak constraints→ single out optimal solutions

Marco Maratea Systems and Solving Techniques for KR

Introduction

Programming Methodology

Guess & Check & Optimize (GCO)
1 Guess solutions→ using disjunctive rules
2 Check admissible ones→ using strong constraints
Optimization problem?
3 Specify Preference criteria→ using weak constraints

In other words...
1 disjunctive rules→ generate candidate solutions
2 constraints→ test solutions discarding unwanted

ones
3 weak constraints→ single out optimal solutions

Marco Maratea Systems and Solving Techniques for KR

Introduction

Programming Methodology

Guess & Check & Optimize (GCO)
1 Guess solutions→ using disjunctive rules
2 Check admissible ones→ using strong constraints
Optimization problem?
3 Specify Preference criteria→ using weak constraints

In other words...
1 disjunctive rules→ generate candidate solutions
2 constraints→ test solutions discarding unwanted

ones
3 weak constraints→ single out optimal solutions

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 1)

Example (Group Assignments)
Problem: We want to partition a set of persons in two groups,

while avoiding that father and children belong to the same group.
Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments

group(P,1) |group(P,2) :-person(P).

% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group

:-group(P1,G),group(P2,G), father(P1,P2).

...so how does it work really?

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 1)

Example (Group Assignments)
Problem: We want to partition a set of persons in two groups,

while avoiding that father and children belong to the same group.
Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments

group(P,1) |group(P,2) :-person(P).

% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group

:-group(P1,G),group(P2,G), father(P1,P2).

...so how does it work really?

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 1)

Example (Group Assignments)
Problem: We want to partition a set of persons in two groups,

while avoiding that father and children belong to the same group.
Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments

group(P,1) |group(P,2) :-person(P).

% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group

:-group(P1,G),group(P2,G), father(P1,P2).

...so how does it work really?

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guessing part explained

Consider: group(P,1) |group(P,2) :-person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guessing part explained

Consider: group(P,1) |group(P,2) :-person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guessing part explained

Consider: group(P,1) |group(P,2) :-person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Marco Maratea Systems and Solving Techniques for KR

Introduction

Checking part explained

Consider: group(P,1) |group(P,2) :-person(P).
Now add: :-group(P1,G),group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The constraint “discards” two non admissible answers:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Marco Maratea Systems and Solving Techniques for KR

Introduction

Checking part explained

Consider: group(P,1) |group(P,2) :-person(P).
Now add: :-group(P1,G),group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The constraint “discards” two non admissible answers:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess & Check explained

Consider: group(P,1) |group(P,2) :-person(P).
:-group(P1,G),group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The answer sets are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}

G&C = Define search space + specify desired solutions

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 2)

Example (3-col)
Problem: Given a graph assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 2)

Example (3-col)
Problem: Given a graph assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 2)

Example (3-col)
Problem: Given a graph assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 2)

Example (3-col)
Problem: Given a graph assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 3)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 3)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 3)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 3)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess and Check (Example 3)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y , _).
% Ensure that it is Hamiltonian (as before)
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
:- node(X), not reached(X). :- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@0,X ,Y ,C]

| Guess

|
| Check
|
|
| Aux. Rules
|

| Optimize

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y , _).
% Ensure that it is Hamiltonian (as before)
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
:- node(X), not reached(X). :- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@0,X ,Y ,C]

| Guess

|
| Check
|
|
| Aux. Rules
|

| Optimize

Marco Maratea Systems and Solving Techniques for KR

Introduction

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y , _).
% Ensure that it is Hamiltonian (as before)
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
:- node(X), not reached(X). :- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@0,X ,Y ,C]

| Guess

|
| Check
|
|
| Aux. Rules
|

| Optimize

Marco Maratea Systems and Solving Techniques for KR

Introduction

And what’s about abstract solvers for this lecture?

∼ Abstract solvers for disjunctive ASP with bj and learning

∼ Abstract solvers for cautious ASP reas. with bj and lear

× Abstract solvers for ASP with aggregates

× Abstract solvers for finding “optimal” ASP solutions

Marco Maratea Systems and Solving Techniques for KR

Introduction

And what’s about abstract solvers for this lecture?

∼ Abstract solvers for disjunctive ASP with bj and learning

∼ Abstract solvers for cautious ASP reas. with bj and lear

× Abstract solvers for ASP with aggregates

× Abstract solvers for finding “optimal” ASP solutions

Marco Maratea Systems and Solving Techniques for KR

Introduction

And what’s about abstract solvers for this lecture?

∼ Abstract solvers for disjunctive ASP with bj and learning

∼ Abstract solvers for cautious ASP reas. with bj and lear

× Abstract solvers for ASP with aggregates

× Abstract solvers for finding “optimal” ASP solutions

Marco Maratea Systems and Solving Techniques for KR

Introduction

And what’s about abstract solvers for this lecture?

∼ Abstract solvers for disjunctive ASP with bj and learning

∼ Abstract solvers for cautious ASP reas. with bj and lear

× Abstract solvers for ASP with aggregates

× Abstract solvers for finding “optimal” ASP solutions

Marco Maratea Systems and Solving Techniques for KR

Introduction

And what’s about abstract solvers for this lecture?

∼ Abstract solvers for disjunctive ASP with bj and learning

∼ Abstract solvers for cautious ASP reas. with bj and lear

× Abstract solvers for ASP with aggregates

× Abstract solvers for finding “optimal” ASP solutions

Marco Maratea Systems and Solving Techniques for KR

Introduction

Thanks to Francesco Ricca for a preliminary
version of these slides

Marco Maratea Systems and Solving Techniques for KR

	Introduction

