Systems and Solving Techniques for Knowledge Representation

Normal Logic Programs –

Marco Maratea
University of Genoa, Italy

066 011 Double degree programme Computational Logic
(Erasmus-Mundus)
066 931 Computational Intelligence
066 937 Software Engineering & Internet Computing
Institute of Information Systems

ASP Road map

ASP:

Datalog ← done!

- + Default negation
- + Disjunction
- + Integrity Constraints
- Weak Constraints
- + Aggregate atoms
- + ... and more

Datalog (followup)

Datalog: A logic language for querying databases

- overcomes some limits of Relational Algebra and SQL
 - → Recursive definitions
- can be used for
 - → Deductive database applications, query answering
- we have seen some limitations
 - \rightarrow e.g., limited usage of negation, no aggregation as in SQL, ...

Default Negation

Often, it is desirable to express negation in the following sense:

"If we do not have evidence that X holds, conclude Y."

This is expressed by default negation: the operator **not**.

Example (Cross railroad)

An agent could act according to the following rule:

- % If the grass is not wet in the early morning,
- % then conclude it did not rain in the night.

did_not_rain := not wet_grass.

Semantics:

- ullet no negation o natural candidate: the minimal model
- with negation "unexpected" things may happen

About Models:

```
consider
```

```
a :- not b.
```

- \rightarrow several minimal models $\{a\}$ and $\{b\}$
- also no minimal models

```
a :- not a
```

Semantics:

- no negation → natural candidate: the minimal model
- with negation "unexpected" things may happen

About Models:

consider

```
a := not b.
```

- \rightarrow several minimal models $\{a\}$ and $\{b\}$
- also no minimal models

```
a :- not a
```

Semantics:

- no negation → natural candidate: the minimal model
- with negation "unexpected" things may happen

About Models:

consider

```
a:- not b.
```

$$b := not a$$
.

- \rightarrow several minimal models $\{a\}$ and $\{b\}$
- also no minimal models

```
a:- not a
```

Semantics:

- no negation → natural candidate: the minimal model
- with negation "unexpected" things may happen

About Models:

consider

```
a := not b.
```

$$b := not a$$
.

- \rightarrow several minimal models $\{a\}$ and $\{b\}$
- also no minimal models

```
a :- not a.
```

More than one model...

Observation:

- Several models represent several possible scenarios
- Several models are sets... several answer sets

Idea:

- Represent a computational problem by a logic program
- Answer sets correspond to problem solutions
- Use an ASP solver to find these solutions

More than one model...

Observation:

- Several models represent several possible scenarios
- Several models are sets... several answer sets.

Idea:

- Represent a computational problem by a logic program
- Answer sets correspond to problem solutions
- Use an ASP solver to find these solutions

More than one model...

Observation:

- Several models represent several possible scenarios
- Several models are sets... several answer sets.

Idea:

- Represent a computational problem by a logic program
- Answer sets correspond to problem solutions
- Use an ASP solver to find these solutions

Normal Logic Programs (propositional case)

Rule: (r)
$$\underbrace{a}_{head} := \underbrace{b_1, \dots, b_k, \text{ not } b_{k+1}, \dots, \text{ not } b_m}_{body}.$$

Intuitively:

```
"a is true if b_1, \ldots, b_n are true and b_{k+1}, \ldots, b_m are false"
```

Atoms and Literals: a_i , b_i , not b_i

Head of r: H(r) = a

Body of r: $B(r) = B^{+}(r) \cup B^{-}(r)$ **Positive Body:** $B^{+}(r) = \{b_{1}, \dots, b_{r}\}$

Negative Body: $B^-(r) = \{ \text{not } b_{k+1}, \dots, \text{not } b_m. \}$

Fact: A rule with empty body

Variables: no variables, consider ground programs for now...

Safety: variables must occur in the positive body

Negation: unrestricted

Normal Logic Programs (propositional case)

Rule: (r)
$$\underbrace{a}_{head} := \underbrace{b_1, \dots, b_k, \text{ not } b_{k+1}, \dots, \text{ not } b_m}_{body}.$$

Intuitively:

```
"a is true if b_1, \ldots, b_n are true and b_{k+1}, \ldots, b_m are false"
```

Atoms and Literals: a_i , b_i , not b_i

Head of r: H(r) = a

Body of r: $B(r) = B^{+}(r) \cup B^{-}(r)$ Positive Body: $B^{+}(r) = \{b_1, ..., b_k\}$

Negative Body: $B^-(r) = \{ \text{not } b_{k+1}, \dots, \text{not } b_m. \}$

Fact: A rule with empty body

Variables: no variables, consider ground programs for now...

Safety: variables must occur in the positive body

Negation: unrestricted

Normal Logic Programs (propositional case)

Rule: (r)
$$\underbrace{a}_{head} := \underbrace{b_1, \dots, b_k, \text{ not } b_{k+1}, \dots, \text{ not } b_m}_{body}.$$

Intuitively:

```
"a is true if b_1, \ldots, b_n are true and b_{k+1}, \ldots, b_m. are false"
```

Atoms and Literals: a_i , b_i , not b_i

Head of r: H(r) = a

Body of r: $B(r) = B^{+}(r) \cup B^{-}(r)$ **Positive Body:** $B^{+}(r) = \{b_{1}, \dots, b_{k}\}$

Negative Body: $B^-(r) = \{ \text{not } b_{k+1}, \dots, \text{not } b_m. \}$

Fact: A rule with empty body

Variables: no variables, consider ground programs for now...

Safety: variables must occur in the positive body

Negation: unrestricted

Formal Semantics: Roadmap

- 1) Positive Programs
- 2) Programs with negation
 - → via Gelfond & Lifschitz Reduct

Semantics for (Ground) Positive Programs

Interpretation:

A set I of ground atoms, and atom a is true w.r.t. I if $a \in I$, it is false otherwise.

A negative literal not a is true w.r.t. I if $a \notin I$, false otherwise.

Satisfaction:

Rule r is satisfied w.r.t. I if $H(r) \in I$ whenever all literals $\ell \in B(r)$ are true w.r.t. I

Model:

Interpretation I is a model for program P if all rules in P are satisfied by I

Semantics for (Ground) Positive Programs

Immediate consequence operator:

$$T_P(I) = \{a \in H(r) : \forall b \in B(r), b \in I\}$$

Least Model (or Answer Set):

Least fixpoint LM(P) of
$$T_P$$
 operator $(T_P(\emptyset) \subseteq T_P(T_P(\emptyset)) \subseteq \cdots \subseteq LM(P) = T_P(LM(P)))$

Theorem:

A positive program P has a unique least model M = LM(P) which is minimal under subset inclusion, actually $M = \bigcap_{l \in ModelsOf(P)} I$

Semantics for Programs with Negation

Consider general programs with negation.

Reduct: The *Gelfond-Lifschitz reduct* of a program P w.r.t. an interpretation I is the positive program P^I obtained from P by:

- deleting all rules with a negative literal false w.r.t. I;
- deleting the negative literals from the bodies of the remaining rules.

Answer Set: An answer set or stable model of a general program P is an interpretation I such that I is an answer set of P^I , i.e., $I = LM(P^I)$.

Example (Reduct)

```
Program P:
 a := d, not b.
 b := not d.
 d.
Consider: I = \{a, d\}
Reduct P1:
 a := d.
 d.
```

 \rightarrow I is an answer set of P^I and therefore it is an answer set of P.

Example

Program:

a:- not b.

Answer Set: {a}

Example

(Non-stratified) Program:

a :– not *b*.

 $b := not \ a$.

Answer Sets: $\{a\}, \{b\}$

Example

Program:

```
a:- not b.
```

b:- not a.

c := b.

c:- a.

Answer Sets: $\{a, c\}, \{b, c\}$

Example

Program:

a :- not *a*.

Answer Set: no answer set!

Example

Program:

```
a:- not b.
```

b:- not a.

f := b, not f

Answer Set: {a

Supported Models and Answer Sets (1)

Supported Model:

A model M is supported if for each $a \in M$ there exist rule $r \in P$ such that H(r) = a and $\forall b \in B(r)$, b is true w.r.t. M

Intuition: Something is true if there is a rule "supporting" its truth.

Theorem:

Answer sets are supported models

Supported Models and Answer Sets (1)

Supported Model:

A model M is supported if for each $a \in M$ there exist rule $r \in P$ such that H(r) = a and $\forall b \in B(r)$, b is true w.r.t. M

Intuition: Something is true if there is a rule "supporting" its truth

Theorem:

Answer sets are supported models.

Supported Models and Answer Sets (2)

```
Example (Converse does not hold.)

Program:
    a :- a.

Models: {}, {a} ← both are supported

Answer Set: {}
```

Supported Models and Answer Sets (2)

```
Example (Converse does not hold.)

Program:
    a :- a.

Models: {}, {a} ← both are supported

Answer Set: {}

    → Circular support is not allowed!
```

Supported Models and Answer Sets (2)

Example (Converse does not hold.)

```
Program:
```

```
a:- a.
```

Models: $\{\}, \{a\} \leftarrow \text{both are supported}$

Answer Set: {}

- → Circular support is not allowed!
- → Empty answer set is fine!

Unfounded Sets and Answer Sets (intuition)

Unfounded Set:

A set of ground atoms X is an unfounded set if, for each rule r s.t. $H(r) \in X$, one of the following conditions hold

- the body of r is false w.r.t. X, or

Example: In program a := a., $X = \{a\}$ is unfounded!

Theorem

Answer sets are unfounded-free interpretations, i.e., no subset is unfounded.

Unfounded Sets and Answer Sets (intuition)

Unfounded Set:

A set of ground atoms X is an unfounded set if, for each rule r s.t. $H(r) \in X$, one of the following conditions hold

- 1 the body of r is false w.r.t. X, or
- some literal in the positive body belongs to X.

Example: In program a := a., $X = \{a\}$ is unfounded!

Theorem:

Answer sets are unfounded-free interpretations, i.e., no subset is unfounded.

Introduction
Normal Logic Programs

Thanks to Francesco Ricca for a preliminary version of these slides