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Abstract CMODELS with backtracking
Given a logic program Π, consider

the (plain) CNF conversion of the completion Comp(Π) which consists,
for every a ∈ atoms(Π), of clauses:

1 the rules a← B of Π written as clauses

a ∨ B
2 formulas

a ∨
∨

B∈Bodies(Π,a)

B

converted to CNF using the distributivity of disjunction over
conjunction (repetitions not removed)

the conjunction of all loop formulas of Π, LF (Π), where given a loop L,
we define R(L, a) to be the set of formulas

b1 ∧ · · · ∧ bl ∧ bl+1 ∧ · · · ∧ bm

for all rules in Π, with a ∈ L and {b1, . . . bk} ∩ L = ∅. The loop formula
associated with L is

∨p∈Ll → ∨a∈LR(L, a)

Abstract CMODELS with backtracking

GTComp(Π),LF (Π) abstracts CMODELS with backtracking implementing
ASP-SAT procedure [Giunchiglia et al., 2006], by applying Test only on
models of F .

If the state Ok(L) is reached, then the set of atoms in L, L+, is an
answer set of Π.
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Abstract CMODELS with backtracking: Example

Given the following program Π,

a← a.

Initial state : ∅
Decide =⇒ a∆

Test =⇒ a∆a
Backtrack =⇒ a
Success =⇒ Ok(a)

Figure : Example of path in GT{a∨a,a}.

{a}+ = ∅ is an (the only) answer set of Π.
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G&T with learning: Extended GT state and graph

For a CNF formula F , and a formula G formed from atoms
atoms(F ), an extended (GT) state relative to F and G is either

1 a pair (L, Γ), written L‖Γ, where
L is a record relative to atoms(F ), and
Γ is a set of clauses over atoms(F ) that are entailed by
F ∧G; or

2 the distinguished state Ok(L) or UNSAT .

GTLF ,G graph

1 Its nodes are extended GT states relative to F and G, and
2 its transition rules are UnitLearn, Decide, Conclude,

Success of DPLLearnF , plus the three following rules.
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G&T with learning: Extended and Updated rules

BackjumpGT : Ll∆L′‖Γ =⇒ Ll ′‖Γ if
{

Ll∆L′ is inconsistent and
F ∧G |= l ′ ∨ L

LearnGT : L‖Γ =⇒ L‖C ∪ Γ if
{

every atom in C occurs in F and
F ∧G |= C

Test : L‖Γ =⇒ Ll‖Γ if


L is consistent and
G |= L and
l ∈ L
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G&T with learning: Formal result

Theorem
For any CNF formula F and a formula G formed from atoms(F )

1 every path in GTLF ,G uses only finitely many times edges
justified by transition rules other than Learn,

2 any terminal state reachable from ∅ in GTLF ,G other than
UNSAT is Ok(L), with L being a model of F ∧G, and

3 UNSAT is reachable from ∅ in GTF ,G if and only if F ∧G is
unsatisfiable.
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Abstract CMODELS

Given a logic program Π, if

F is the CNF conversion of the completion Comp(Π), and

G is LF (Π),

Abstract CMODELS with learning

GTLComp(Π),LF (Π) abstracts CMODELS with learning [Lierler, 2005]
implementing ASP-SAT procedure+learning [Giunchiglia et al., 2006], by

1 applying LearnGT in a state reached by the application of
BackjumpGT , and

2 assigning priorities to the application of the transition rules
as follows: BackjumpGT ,Conclude >> UnitLearn >>
Decide >> Test . Such ordering guarantees that

Test is applied only on models of F ∪ Γ, and
BackjumpGT is first applied on a state reached by the
application of Test .

If the state Ok(L) is reached, then L+ is an answer set of Π.
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Abstract CLASP

CLASP [Gebser et al., 2007]
Employs an additional rule wrt GTLF ,G:

Unfounded : L =⇒ La if
{

L is consistent and
a ∈ U for a set U unfounded on L w.r.t. Π

A set of ground atoms U is an unfounded set if, for each
rule r s.t. H(r) ∈ U, one of the following conditions hold

1 the body of r is false w.r.t. U, or
2 some literal in the positive body belongs to U.

Follows the ordering on rules application: BackjumpGT ,
Conclude>> UnitLearn, Unfounded >> Decide.

Applies LearnGT in a state reached by the application of
BackjumpGT .
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Abstract ATLEASTΠ

We now define a graph whose terminal nodes correspond to
supported models of a program Π.

ATLEASTΠ graph
1 Its nodes are the states relative to the set of atoms

atoms(Π), and
2 its edges are justified by the transition rules Decide,

Conclude, Backtrack , Success of the DPLL graph, and
some additional rules that describe deterministic
consequences.
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Abstract ATLEASTΠ: Additional rules

UnitPropagateLP : L =⇒ La if
{

there is a rule a← B of Π such that
B ⊆ L

AllRulesCancelled : L =⇒ La if
{

for each rule a← B of Π
B is contradicted by L

BackchainTrue : L =⇒ Ll if


there is a rule a← l,B of Π such that

a is in L and
for each other rule a← B′ of Π

B′ is contradicted by L

BackchainFalse : L =⇒ Ll if


there is a rule a← l,B of Π such that

a is in L or a = ⊥ and
B ⊆ L
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Abstract ATLEASTΠ: Formal result

Theorem
For any program Π,

1 graph ATLEASTΠ is finite and acyclic,

2 any terminal state reachable from ∅ in ATLEASTΠ other
than UNSAT is Ok(L), with L being a supported model of
Π, and

3 UNSAT is reachable from ∅ in ATLEASTΠ if and only if Π
has no supported models.
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Abstract ATLEASTΠ: Formal result (II)

Theorem [Lierler, 2011]
For any program Π, the graphs ATLEASTΠ and DPLLComp(Π)

are equal.
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Abstract ATLEASTΠ: Example

Let Π be the following program:

a← not b.
b ← not a.

c ← a.
d ← d .

Initial state : ∅
Decide =⇒ a∆

UnitPropagateLP =⇒ a∆c
AllRulesCancelled =⇒ a∆cb
Decide =⇒ a∆cbd∆

Success =⇒ Ok(a∆cbd∆)

{a, c, b, d} is a supported model

Figure : Example of path in ATLEASTΠ.
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Abstract SMODELS: SMΠ Graph

SMΠ graph

Its nodes are the same as of the graph ATLEASTΠ, and

its edges are justified by the transition rules of ATLEASTΠ
and Unfounded

Unfounded : L =⇒ La if
{

L is consistent and
a ∈ U for a set U unfounded on L w.r.t. Π
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SMΠ: Formal result

Theorem
For any program Π,

1 graph SMΠ is finite and acyclic,

2 any terminal state reachable from ∅ in SMΠ other than
UNSAT is Ok(L), with L+ being an answer set of Π, and

3 UNSAT is reachable from ∅ in SMΠ if and only if Π has no
answer sets.
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SMΠ: Example

Let Π be the following program:

a← not b.
b ← not a.

c ← a.
d ← d .

Initial state : ∅
Decide =⇒ a∆

UnitPropagateLP =⇒ a∆c
AllRulesCancelled =⇒ a∆cb
Decide =⇒ a∆cbd∆

. . . . . . . . .

{a, c,b,d} is a supported model of Π, but not an answer set.
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SMΠ: Example (II)
Let Π be the following program:

a← not b.
b ← not a.

c ← a.
d ← d .

Initial state : ∅
Decide =⇒ a∆

UnitPropagateLP =⇒ a∆c
AllRulesCancelled =⇒ a∆cb
Decide =⇒ a∆cbd∆

Unfounded =⇒ a∆cbd∆d
Backtrack =⇒ a∆cb d
Success =⇒ Ok(a∆cb d)

Figure : Example of path in SMΠ.
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Abstract SMODELS via SMΠ

SMODELS [Simons et al., 2002] priorities

Backtrack ,Conclude >>
UnitPropagateLP,AllRulesCancelled ,BackchainTrue,BackchainFalse >>
Unfounded >> Decide.

Initial state : ∅
Decide =⇒ a∆

UnitPropagateLP =⇒ a∆c
AllRulesCancelled =⇒ a∆cb
Unfounded =⇒ a∆cb d
Success =⇒ Ok(a∆cb d)

Figure : Example of path followed by SMODELS on Π.
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Abstract SMODELScc: Graph SMLΠ (Idea)

[Ward and Schlipf, 2004]

For a program Π, an extended state relative to Π is either
1 a pair (L, Γ), written L‖Γ, where

L is a record relative to atoms(Π), and
Γ is a set of constraints over atoms(Π) that are entailed by
Π; or

2 the distinguished state Ok(L) or UNSAT .

SMLΠ graph
Its nodes are the extended states relative to Π, and
its edges are justified by extended, updated and additional
transition rules wrt SMΠ.
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SUP: A new solver with few changes [Lierler, 2008]

The graph of SUPΠ is a subgraph of SMΠ with

the same nodes, and

the same transition rules but Unfounded , which is now

UnfoundedSUP : L‖Γ =⇒ La‖Γ if


no atom is unassigned by L
L is consistent and
a ∈ U for a set U unfounded on L w.r.t. Π

In [Lierler, 2011] SUPΠ has been extended with backjumping and learning
rules of SMLΠ, with the following priorities:
BackjumpLP,Conclude >>
UnitPropagateLP,AllRulesCancelled ,BackchainTrue,BackchainFalse >>
Decide >> Unfounded .

The implementation of SUP led to positive results. SUP participated to the 3rd
ASP Competition.
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