
Handbook of Satisfiability

Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsch

IOS Press, 2008

c© 2008 Enrico Giunchiglia, Paolo Marin and Massimo Narizzano. All rights

reserved.

677

Chapter 10

Reasoning with Quantified Boolean

Formulas
Enrico Giunchiglia, Paolo Marin and Massimo Narizzano

10.1. Introduction

The implementation of effective reasoning tools for deciding the satisfiability of
Quantified Boolean Formulas (QBFs) is an important research issue in Artifi-
cial Intelligence and Computer Science. Indeed, QBF solvers have already been
proposed for many reasoning tasks in knowledge representation and reasoning,
in automated planning and in formal methods for computer aided design. Even
more, since QBF reasoning is the prototypical PSPACE problem, the reduction of
many other decision problems in PSPACE are readily available (see, e.g., [Pap94]).
For these reasons, in the last few years several decision procedures for QBFs have
been proposed and implemented, mostly based either on search or on variable
elimination, or on a combination of the two.

In this chapter, after a brief recap of the basic terminology and notation about
QBFs (Sec. 10.2, but see Part 2, Chapter 9 for a more extensive presentation),
we briefly review various applications of QBF reasoning that have been recently
proposed (Section 10.3), and then we focus on the description of the main ap-
proaches which are at the basis of currently available solvers for prenex QBFs in
conjunctive normal form (CNF) (Section 10.4). Other approaches and extensions
to non prenex, non CNF QBFs are briefly reviewed at the end of the chapter.

10.2. Quantified Boolean Logic

Consider a set P of symbols. A variable is an element of P. The set of Quantified
Boolean Formulas (QBFs) is defined to be the smallest set such that

1. if z is a variable, then z is a QBF;
2. if ϕ1, . . . , ϕn are QBFs then also (ϕ1 ∧ . . . ∧ ϕn) and (ϕ1 ∨ . . . ∨ ϕn) are

QBFs (n ≥ 0);
3. if ϕ is a QBF then also ¬ϕ is a QBF;
4. if ϕ is a QBF and z is a variable, then also ∀zϕ and ∃zϕ are QBFs.

678 Chapter 10. QBFs reasoning

Other popular propositional connectives, like implication and equivalence, can be
defined on the basis of the given ones. In the following, we use True and False as
abbreviations for the empty conjunction and the empty disjunction respectively.

In a QBF Qzϕ with Q ∈ {∀,∃}, ϕ is called the scope of Qz and Q is a
quantifier binding z. An occurrence of a variable z is free in a QBF ϕ if it is not
in the scope of a quantifier Q binding z. A variable z is free in a QBF ϕ if it has
free occurrences. A QBF is closed if it has no free occurrences. For example, the
QBF

∀y∃x2((¬x1 ∨ ¬y ∨ x2) ∧ (¬y ∨ ¬x2) ∧ (x2 ∨ ((x1 ∨ ¬y) ∧ (y ∨ x2)))) (10.1)

is not closed, since x1 is free in it. From the above definitions, it is also clear that
a QBF without quantifiers is a propositional formula.

A valuation is a mapping I from the set P of variables to {True,False}. I
can be extended to an arbitrary QBF ϕ as follows:

1. If ϕ is a variable z, I(ϕ) = I(z);
2. If ϕ is ¬ψ, I(ϕ) = True iff I(ψ) = False;
3. If ϕ is (ϕ1 ∧ . . . ∧ ϕn), I(ϕ) = True iff ∀i : 1 ≤ i ≤ n, I(ϕi) = True;
4. If ϕ is (ϕ1 ∨ . . . ∨ ϕn), I(ϕ) = True iff ∃i : 1 ≤ i ≤ n, I(ϕi) = True;
5. If ϕ is ∃xψ, I(ϕ) = True iff I(ϕx) = True or I(ϕ¬x) = True;
6. If ϕ is ∀yψ, I(ϕ) = True iff I(ψy) = True and I(ψ¬y) = True.

If ϕ is a QBF and z is a variable, ϕz (resp. ϕ¬z) is the QBF obtained by
substituting all the free occurrences of z in ϕ with True (resp. False).

A valuation I satisfies a QBF ϕ if I(ϕ) = True. A QBF is satisfiable if
there exists a valuation satisfying it. Two QBFs ϕ1, ϕ2 are (logically) equivalent
if every valuation satisfies ((¬ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ¬ϕ2)), and are equisatisfiable if
they are both satisfiable or both unsatisfiable.

From the above definitions, it is clear that if ϕ is closed, any two valuations
give the same value to ϕ. Thus, if ϕ1 and ϕ2 are both closed QBFs

1. ϕ1 and ϕ2 are satisfiable if and only if they are given the value True by
any valuation, and

2. ϕ1 and ϕ2 are equivalent if and only if they are equisatisfiable.

10.3. Applications of QBFs and QBF reasoning

Deciding the value of a QBF is the prototypical PSPACE complete problem. As
such, many decision problems in PSPACE have been shown to be reducible to
the task of deciding the satisfiability of a QBF (see, e.g., [Pap94]). Further, the
availability of progressively more efficient QBF solvers has recently fostered the
definition of effective encodings of various problems as QBFs, and the use of
QBF solvers. In the following, we briefly review some of these recent proposals in
the areas of automated planning, knowledge representation and reasoning, formal
methods.

In the area of automated planning, QBF solvers are used to solve conformant
and conditional planning problems in [Rin99a]. The work of [FG00] defines several
encodings of conformant planning problems and presents a procedure mimicking

Chapter 10. QBFs reasoning 679

the computation of a search based QBF solver (see also [CGT03]). Turner [Tur02]
shows how many other planning reasoning tasks can be encoded as QBFs, but
does not evaluate the effectiveness of the approach. In [GR04, AGS05], various
encodings in QBFs of the famous ”Connect4” and evader-pursuer problems on
a fixed size checkerboard are presented. See also Part 2, Chapter 1 for details
(including the presentation of some encodings) about how conditional planning
problems can be casted in Quantified Boolean Logic.

In the area of knowledge representation and reasoning, [EETW00] defines
the encoding of several reasoning tasks (including autoepistemic, default logic,
disjunctive logic programming, and circumscription problems) in QBFs. [PV03]
defines a translation of the modal logic K to QBF (see Part 2, Chapter 11 for more
on this topic). [EST+03] shows how the problem of the evaluation of nested coun-
terfactuals is reducible to a QBF. [DSTW04] shows that the task of modifying a
knowledge base K in order to make the result satisfying and consistent with a set
of formulas R and C respectively, can be encoded as a QBF ϕ such that the valua-
tions satisfying ϕ correspond to belief change extensions in the original approach.
In [BSTW05], the authors describe polynomial-time constructible encodings in
QBFs of paraconsistent reasoning principles, and advocates the usage of QBF
solvers. [Tom03] gives polynomial reductions mapping a given abduction problem
into a QBF ϕ such that the valuations satisfying ϕ correspond to solutions of
the original problem. [OSTW06] uses QBF solvers to check the equivalence of
answer-set programs.

In the area of formal methods, the use of QBF for checking the equivalence of
partial implementations has been proposed in [SB01, HBS06]. In [AB00] a similar
technique is applied to check whether the structural and behavioral descriptions
of protocols agree with each other. In [MS04, GNT07] QBF solvers are used to
solve vertex eccentricity problems, while [KHD05, DHK05, JB07, MVB07] show
how QBF could improve over SAT in various model checking and formal verifi-
cation tasks. In [BLS03] QBF solvers are applied to verify pipeline processors.
In [CKS05] QBF solvers are proposed for the formal verification of interleaving
nondeterministic Boolean programs (see also Part 2, Chapter 2). In the area of
Field Programmable Gate Array (FPGA) logic synthesis, [LSB05] uses QBFs
for determining if a logic function can be implemented in a given programmable
circuit.

10.4. QBF solvers

The development of solvers dedicated to the satisfiability problem of QBFs started
with the seminal works of [KBKF95, CGS98] and has, since then, attracted more
and more attention. Considering the currently available QBF solvers, the vast
majority of them focuses on closed QBFs in prenex conjunctive normal form.

A QBF is in prenex form if it has the form

Q1z1Q2z2 . . . QnznΦ (n ≥ 0) (10.2)

where

• every Qi (1 ≤ i ≤ n) is a quantifier,

680 Chapter 10. QBFs reasoning

• z1, . . . , zn are distinct variables, and
• Φ is a propositional formula.

In (10.2), Q1z1 . . . Qnzn is the prefix and Φ is the matrix. (10.2) is in Conjunctive
Normal Form (CNF) if Φ is a conjunction of clauses, where a clause is a disjunction
of literals. A literal is a variable or its negation.

The motivation of this restriction is that any QBF ϕ can be in linear time
transformed into a closed QBF ϕ′ in CNF such that ϕ and ϕ′ are equisatisfiable.
A simple such procedure

1. renames variables in order to make sure that ϕ does not contain variables
bounded by two distinct quantifier occurrences;

2. converts ϕ in prenex form by moving quantifiers in front of the formula: in
the process, care has to be taken in order to ensure that if Qz occurs in the
scope of Q′z′ in ϕ, then Qz occurs in the scope of Q′z′ also in the scope
of the resulting formula (Q and Q′ are quantifiers, z and z′ are variables).
In [EST+03], the authors define several polynomial prenexing strategies
such that the resulting QBF is guaranteed to belong to the lowest possible
complexity class in the polynomial hierarchy;

3. converts the matrix in CNF by using a procedure based on renaming,
such as those described in [Tse70, PG86, JS04]: the additional variables
introduced by the CNF transformation can be existentially quantified in
the scope of all the other quantifiers in the formula;

4. assuming {x1, . . . , xn} (n ≥ 0) are the free variables in the QBF ϕ built
so far, ∃x1 . . . ∃xnϕ is the final closed, prenex, CNF QBF.

Each of the above three steps can be performed in linear time, and an efficient
procedure performs all the above steps with a single traversal of the input QBF.

For example, using the procedure described in [JS04] for converting the matrix
in CNF, it is easy to see that (10.1) is equisatisfiable to the QBF

∃x1∀y∃x2∃x3{{x1, y, x2}, {y, x2}, {x2, x3}, {x1, y, x3}, {y, x2, x3}}, (10.3)

in which

• the matrix is represented as a set of clauses (to be interpreted conjunc-
tively),

• each clause is represented as a set of literals (to be interpreted disjunc-
tively),

• z stands for ¬z.

However, we have to mention that in the process of converting the formula in
prenex and CNF form, some relevant information about the structure of both the
matrix and the prefix of in input QBF is lost. Using such structural information
(of the matrix and of the prefix) can greatly improve performances of the solvers,
as shown in [Bie04, Ben05a, GNT07].

For sake of simplicity, in the following, we will restrict our attention to closed
QBFs in CNF and prenex form, and keep the above conventions for representing
matrices, clauses and literals. We further assume that each clause in the matrix is
non tautological, i.e., that a clause does not contain both a literal l and l: Indeed,

Chapter 10. QBFs reasoning 681

such clauses can be safely removed from the matrix without affecting the value
of the QBF.

For a literal l,

• |l| is the variable occurring in l; and
• l is the negation of l if l is a variable, and it is |l| otherwise.

We also say that a literal l is existential if ∃|l| belongs to the prefix, and it is
universal otherwise. With these assumptions, if ϕ is (10.2) and l is a literal with
|l| = zi, we redefine ϕl to be the QBF

• whose matrix is obtained from Φ by removing the clauses C with l ∈ C,
and by removing l from the other clauses; and

• whose prefix is Q1z1Q2z2 . . . Qi−1zi−1Qi+1zi+1 . . . Qnzn.

Further, we extend the notation to sequences of literals: If µ = l1; l2; . . . ; lm
(m ≥ 0), ϕµ is defined as (. . . ((ϕl1)l2) . . .)lm . For instance, if ϕ is (10.3), ϕx1;x3

is
∀y∃x2{{y, x2}, {y, x2}, {y, x2}}.

10.4.1. Solvers based on search

A simple recursive procedure for determining the satisfiability of a QBF ϕ, sim-
plifies ϕ to ϕz and/or ϕz if z is the leftmost variable in the prefix, till either
an empty clause or the empty set of clauses are produced: On the basis of the
satisfiability of ϕz and ϕz, the satisfiability of ϕ can be determined according to
the semantics of QBFs.

There are some simple improvements to this basic procedure.
Let ϕ be a QBF (10.2). Consider ϕ.
The first improvement is that we can directly conclude that ϕ is unsatisfiable

if the matrix of ϕ contains a contradictory clause. A clause C is contradictory
if it contains no existential literal. An example of a contradictory clause is the
empty clause.

The second improvement is based on the fact that in a QBF we can swap two
variables in the prefix if they have the same level. In (10.2), the level of a variable
zi is 1 + the number of expressions QjzjQj+1zj+1 in the prefix with j ≥ i and
Qj 6= Qj+1. For example, in (10.3), x2 and x3 have level 1, y has level 2, x1 has
level 3. Thus, assuming that zi and z1 have the same level in (10.2), (10.2) is
logically equivalent to

QiziQ2z2 . . . Qi−1zi−1Q1z1Qi+1zi+1 . . . QnznΦ

and we can determine the satisfiability of ϕ on the basis of ϕzi
and/or ϕzi

. This
allows to introduce some heuristics in the choice of the literal for branching.

Finally, if a literal l is unit or monotone in ϕ, then ϕ is logically equivalent
to ϕl. In (10.2), a literal l is

• Unit if l is existential, and, for some m ≥ 0,
– a clause (l, l1, . . . , lm) belongs to Φ, and
– each literal li (1 ≤ i ≤ m) is universal and has a lower level than l. The

level of a literal l is the level of |l|.

682 Chapter 10. QBFs reasoning

0 function Q-DLL(ϕ, µ)
1 if (〈a contradictory clause is in the matrix of ϕµ〉) return False;
2 if (〈the matrix of ϕµ is empty〉) return True;
3 if (〈l is unit in ϕµ〉) return Q-DLL(ϕ, µ; l);
4 if (〈l is monotone in ϕµ〉) return Q-DLL(ϕ, µ; l);
5 l := 〈a literal at the highest level in ϕµ〉;

6 if (〈l is existential〉) return Q-DLL(ϕ, µ; l) or Q-DLL(ϕ, µ; l);

7 else return Q-DLL(ϕ, µ; l) and Q-DLL(ϕ, µ; l).

Figure 10.1. The algorithm of Q-DLL.

For example, in a QBF of the form

. . . ∃x1∀y1∃x2 . . . {{x1, y1}, {x2}, . . .},

both x1 and x2 are unit.
• Monotone or pure if

– either l is existential, l does not belong to any clause in Φ, and l occurs
in Φ;

– or l is universal, l does not belong to any clause in Φ, and l occurs in Φ.
For example, in the QBF

∀y1∃x1∀y2∃x2{{¬y1, y2, x2}, {x1,¬y2¬x2}},

the only monotone literals are y1 and x1.

With such improvements, the resulting procedure, called Q-DLL, is essentially
the one presented in the work of Cadoli, Giovanardi, and Schaerf [CGS98], which
extends DLL in order to deal with QBFs. Figure 10.1 is a simple, recursive
presentation of it. In the figure, given a QBF ϕ,

1. False is returned if a contradictory clause is in the matrix of ϕµ (line 1);
otherwise

2. True is returned if the matrix of ϕµ is empty (line 2); otherwise
3. at line 3, µ is recursively extended to µ; l if l is unit (and we say that l has

been assigned as unit); otherwise
4. at line 4, µ is recursively extended to µ; l if l is monotone (and we say that
l has been assigned as monotone); otherwise

5. a literal l at the highest level is chosen and

• If l is existential (line 6), µ is extended to µ; l first (and we say that
l has been assigned as left split). If the result is False, µ; l is tried
and returned (and in this case we say that l has been assigned as
right split).

• Otherwise (line 7), l is universal, µ is extended to µ; l first (and we
say that l has been assigned as left split). If the result is True,
µ; l is tried and returned (and in this case we say that l has been
assigned as right split).

Initially, ϕ is the input formula, and µ is the empty sequence of literals ǫ.

Chapter 10. QBFs reasoning 683

{}{{x1, y, x2}, {x1, y, x3}, {y, x2}, {y, x2, x3}, {x2, x3}}{}

{x1} 〈x1, l〉 {x1}
{{y, x3}, {y, x2}, {y, x2, x3}, {x2, x3}}

〈y, l〉 {y}
〈x2, p〉{y}

{y} {} {y}

〈y,r〉 {x1}
{x1, y, x3}〈x3,u〉{x1}

{y, x2}〈x2,u〉{y, x3}
{{}} {x2, x3}

{x1} 〈x1,r〉 {x1}
{{y, x2}, {y, x2}, {y, x2, x3}, {x2, x3}}

〈y, l〉 {y}
〈x2, p〉{y}

{y} {} {y}

〈y,r〉 {x1}
{x1, y, x2}〈x2,u〉{x1}

{{}} {y, x2}

Figure 10.2. The tree generated by Q-DLL for (10.3). The matrix of (10.3) is shown at the

root node, and the prefix is ∃x1∀y∃x2∃x3. u, p, l, r stand for “unit”, “pure”, “left split”, “right

split” respectively, and have the obvious meaning.

Theorem 1. Q-DLL(ϕ, ǫ) returns True if ϕ is true, and False otherwise.

Given what we have said so far, it is clear that Q-DLL evaluates ϕ by gen-
erating a semantic tree [Rob68] in which each node corresponds to an invocation
of Q-DLL and thus to an assignment µ. For us,

• an assignment (for a QBF ϕ) is a possibly empty sequence µ = l1; l2; . . . ; lm
(m ≥ 0) of literals such that for each li in µ, li is unit, or monotone, or at
the highest level in ϕl1;l2;...;li−1

;
• the (semantic) tree representing a run of Q-DLL on ϕ is the tree

– having a node µ for each call to Q-DLL(ϕ, µ); and
– an edge connecting any two nodes µ and µ; l, where l is a literal.

Any tree representing a run of Q-DLL has at least the node corresponding to the
empty assignment ǫ.

As an example of a run of Q-DLL, consider the QBF (10.3). For simplicity,
assume that the literal returned at line 5 in Figure 10.1 is the negation of the first
variable in the prefix which occurs in the matrix of the QBF under consideration.
Then, the tree searched by Q-DLL when ϕ is (10.3) can be represented as in
Figure 10.2. In the figure:

• Each node is labeled with the literal assigned by Q-DLL in order to extend
the assignment built so far. Thus, the assignment corresponding to a node
is the sequence of labels in the path from the root to the node. For instance,
the assignment corresponding to the node with label x3 is x1; y;x3.

• When literals are assigned as unit or monotone, the corresponding nodes
are aligned one below the other. Further for each assigned literal l, we also
show whether l has been assigned as unit, monotone, left or right split by
marking it as u, p, l, r respectively.

• When l has been assigned as a left or right split, we also show the matrix
of ϕµ;l, where µ is the sequence of literals assigned before l.

• When the node µ is a leaf, then the matrix of ϕµ is either empty (in which
case we write “{}” below the node), or it contains a contradictory clause
(in which case we write “{{}}” below the node).

684 Chapter 10. QBFs reasoning

{}{{x1, y, x2}, {x1, y, x3}, {y, x2}, {y, x2, x3}, {x2, x3}}{}

{x1} 〈x1, l〉 {x1}
{{y, x3}, {y, x2}, {y, x2, x3}, {x2, x3}}

〈y,r〉 {x1}
{x1, y, x3}〈x3,u〉{x1}

{y, x2}〈x2,u〉{y, x3}
{{}} {x2, x3}

{x1} 〈x1,r〉 {x1}
{{y, x2}, {y, x2}, {y, x2, x3}, {x2, x3}}

〈y,r〉 {x1}
{x1, y, x2}〈x2,u〉{x1}

{{}} {y, x2}

Figure 10.3. The clause resolution corresponding to the tree generated by Q-DLL for (10.3).

The prefix is ∃x1∀y∃x2∃x3.

Considering Figure 10.2, it is easy to see that Q-DLL would correctly return
False, meaning that (10.3) is false.

As in SAT, there is a close correspondence between the search tree explored by
Q-DLL and a resolution proof showing the (un)satisfiability of the input formula,
and this correspondence lays down the foundations for incorporating nogood and
good learning in Q-DLL [GNT06].

Consider a QBF ϕ. Assume ϕ is unsatisfiable and let Π be the search tree
explored by Q-DLL(ϕ, ǫ). Then, we can restrict our attention to the minimal false
subtree of Π, i.e., to the tree obtained from Π by deleting the subtrees starting
with a left split on a universal literal: These subtrees are originated from “wrong
choices” when deciding which branch to explore first. In the minimal false subtree
Π′ of Π, all the leaves terminate with the empty clause, and we can associate with
each node of Π′ a clause pretty much in the same way as in SAT. For instance, if
ϕ is (10.3), Figure 10.3 shows the minimal false subtree of Q-DLL’s computation,
and the clause associated to each node. In the figure,

• the clause associated with each node is written in gray and to the right of
the node itself;

• when a node corresponds to the assignment of a unit literal l, a clause of
ϕ which causes l to be unit at that node (used in the corresponding clause
resolution) is written in gray and to the left of the node.

Indeed, the clause associated to the root node ǫ of the figure, is the empty one,
meaning that (10.3) is unsatisfiable.

As in SAT, the leaves of the proof tree associated to the search tree are clauses
that generated the empty clause, and the clauses associated to the internal nodes
are obtained by resolving the clauses associated to children nodes in the search
tree (a literal l assigned as unit can be considered as assigned as right split:
performing a left split on l would immediately generate the empty clause and this
node would be a leaf of the search tree).

There are however two differences between the QBF and the SAT cases. The
first one, is that Q (clause) resolution [KBKF95] is used instead of plain resolution.

Chapter 10. QBFs reasoning 685

Q (clause) resolution (on a literal l) is the rule

C1 C2

min(C)
(10.4)

where

• l is an existential literal;
• C1, C2 are two clauses such that {l, l} ⊆ (C1∪C2), and for no literal l′ 6= l,
{l′, l′} ⊆ (C1 ∪ C2);

• C is (C1 ∪ C2) \ {l, l};
• min(C) is the clause obtained from C by removing the universal literals

whose level is lower than the level of all the existential literals in C.

C1 and C2 are the antecedents, and min(C) is the resolvent of the rule.
The second difference is that the process of associating a clause to each node

may require more than a single Q-resolution. Indeed, some clause resolutions can
be blocked because of universal variables occurring both as y and y in the clauses
to be used for the resolution. Consider for instance the QBF:

∃x1∃x2∀y∃x3{{x1, x3}, {x2, y, x3}, {x2, y, x3}, {x1, x3}}. (10.5)

Then, Q-DLL may explore the following branch:

〈x1, l〉
{x1, x3} 〈x3,u〉

{x2, y, x3} 〈x2,u〉 . . .
{{}} {x2, y, x3}

(10.6)

where it is not possible to perform the clause resolution associated with the node
having label 〈x2,u〉. As in the example, a clause resolution (10.4) may be blocked
only because of some “blocking” universal literal l

• with both l and l not in µ, and
• with l ∈ C1 and l ∈ C2.

Since both C1 and C2 are in minimal form, this is only possible if both C1 and
C2 contain an existential literal l′

• having level less than or equal to the level of all the other literals in the
clause; and

• assigned as unit.

Then, the obvious solution is to get rid of the blocking literals l in C1 (or in C2)
by resolving away from C1 (or from C2) the existential literals with a level lower
than the level of l.

In our example, if ϕ is (10.5) and with reference to the deduction in (10.6), the
blocked clause resolution is the one associated with the node x1;x3;x2. Indeed,
the two clauses C1 = {x2, y, x3} and C2 = {x2, y, x3} cannot be resolved on x2

because of the occurrences of y and y in the two clauses. Considering the first
clause {x2, y, x3}, since the level of y is less than the level of x2 and the clause is
in minimal form, there must be another existential literal (in our case x3) having

686 Chapter 10. QBFs reasoning

level less than the level of y and assigned as unit: By resolving {x2, y, x3} with the
clause {x1, x3} (which causes the assignment of x3 as unit) we get the resolvent
C3 = min({x1, x2, y}) = {x1, x2} which can be now resolved with C2 on x2. Thus,
the clause associated with each node is:

〈x1, l〉 {x1}
{x1, x3} 〈x3,u〉 {x1}

{x2, y, x3} 〈x2,u〉 {x1, y, x3}
{{}} {x1, x2} (From {x2, y, x3} {x1, x3}).

Notice that the choice of eliminating the blocking literal y in C1 while keeping
C2 the same, is arbitrary. Indeed, we could eliminate the blocking literal y in C2

and keep C1. In the case of the deduction in (10.6), this amounts to eliminate
the universal literal y in {x2, y, x3}: By resolving this clause with {x1, x3} on x3,
we get the resolvent {x1, x2}, which leads to the following legal deduction:

〈x1, l〉 {x1}
{x1, x3} 〈x3,u〉 {x1}

(From {x2, y, x3}, {x1, x3}) {x1, x2} 〈x2,u〉 {x1, y, x3}
{{}} {x2, y, x3}.

Variants of the above procedures are described in [GNT02, Let02, ZM02a].
In [GNT06], it is proved that we can always associate a clause C (resulting from
a sequence of clause resolutions) to the node ϕµ of the minimal false subtree
explored by Q-DLL: The clause C is such that for each existential literal l ∈ C,
l is in µ. Such clauses can be learned as nogoods, pretty much as in SAT.

If ϕ is satisfiable the situation is the dual one, except that we have to consider
terms or cubes instead of clauses. A term or cube is a conjunction of literals.
Terms are associated to the minimal true subtree Π′ explored by Q-DLL, i.e., to
the tree obtained from Π by deleting the subtrees starting with a left split on an
existential literal. In more details, to each node ϕµ of Π′ we associate a term T

such that for each universal literal l ∈ T , l is in µ. Such terms can be learned as
goods, to be treated as in disjunction with the matrix of ϕ. Because of the learned
goods, also universal literals can be assigned as unit at any point of the search
tree. Assuming the current assignment is µ, a universal literal l can be assigned
as unit if there exists a learned term T such that for each literal l ∈ T , l is not
in µ; whose only unassigned universal literal is l while all the other unassigned
literals have level lower than l. The process of associating terms to each node of
Π′ starts by associating the conjunction of the literals in µ when the matrix of
ϕµ becomes empty. Then, the situation is analogous to the previous case, except
that Q term resolution has to be used. Term resolution (on a literal l) is the rule

T1 T2

min(T)

where

• l is an universal literal;
• T1, T2 are two terms such that {l, l} ⊆ (T1 ∪ T2), and for no literal l′ 6= l,
{l′, l′} ⊆ (T1 ∪ T2);

Chapter 10. QBFs reasoning 687

• T is (T1 ∪ T2) \ {l, l};
• min(T) is the term obtained from T by removing the existential literals

whose level is lower than the level of all the universal literals in T .

As before, some term resolution may be blocked, but this situation can be solved
by getting rid of the existential blocking literals by performing term resolutions
on one of the antecedents. See [GNT02, Let02, ZM02b, GNT06] for more details,
and [GNT04] for a discussion about the interactions and problems related to the
implementation of learning in the presence of monotone literal fixing.

Given the above, it is possible to associate a clause/term resolution deduction
to each branch of the search tree explored by Q-DLL. The resolvents of such
deductions can be learned as in SAT. Further, the Unique Implication Point
(UIP) mechanism that has shown to be very effective in SAT (see [MSS96] for a
presentation of UIP based learning and [ZMMM01] for a comparison of different
UIP based learning mechanisms), can be generalized to the QBF case in a simple
way. Assume that we are backtracking on a literal l assigned at decision level n,
where the decision level of a literal is the number of branching nodes before l. The
clause/term corresponding to the reason for the current conflict (resp. solution)
is learned if and only if:

1. l is existential (resp. universal),
2. all the assigned literals in the reason except l, are at a decision level strictly

smaller than n, and
3. there are no unassigned universal (resp. existential) literals in the reason

that are before l in the prefix.

Under the above conditions, it is possible to backjump to the node at the maxi-
mum decision level among the literals in the reason, excluding l, and to assign l

(resp. l) as unit.
Also the ideas underlying the heuristic to be used for selecting the next literal

to branch one, can be generalized from the SAT case. However, it is also clear
that the effectiveness of any devised heuristic not only depends on the structure
of the matrix of the QBFs, but also and in a crucial way, on the structure of the
prefix. Indeed, QBFs range from formulas like

∃x1∀x2∃x3...∀xn−1∃xnΦ (10.7)

to formulas like
∃x1∃x2 . . . ∃xmΦ, (10.8)

i.e., to SAT instance. If we consider QBFs of the type (10.7) then it is likely
that the heuristic is almost useless: unless an atom |l| is removed from the prefix
because l is either unit or monotone, the atom to pick at each node is fixed.
On the other hand, considering QBFs of the sort (10.8), we know from the SAT
literature that nontrivial heuristics are essential to reduce the search space. In
practice, QBF instances lay between the extremes marked by (10.7) and (10.8),
and instances like (10.7) are fairly uncommon, particularly on QBFs encoding
real-world problems. Because of this, the scoring mechanisms devised SAT in
order to decide which literal is best to branch on, are applied also to the QBF
case. However, it is clear that the literal with the highest score can be selected

688 Chapter 10. QBFs reasoning

only if it has also the highest level among the unassigned literals. These ideas
can be effectively implemented by arranging literals in a priority queue according
to (i) the prefix level of the corresponding atom, and (ii) their score. In this way,
atoms at prefix level i are always assigned before atoms at prefix level j > i no
matter the score, and atoms with the same prefix level are assigned according to
their score.

The limitation to branch on literals at the highest level is one of the drawbacks
of search based procedures. [Rin99b] proposed techniques based on the inversion
of quantifiers, e.g., on assigning universal literals not at the highest level. Indeed,
assigning a universal (resp. existential) literal not at the highest level corresponds
to weakening (resp. strengthening) the satisfiability of the QBF: If the resulting
QBF is unsatisfiable (resp. satisfiable), so it is the original one. These ideas have
been proposed and used also in [CSGG02, SB05]. In [CSGG02] a SAT solver is
called at each recursive call on the SAT formula obtained by removing all the
universal literals from the matrix (this corresponds to consider the QBF in which
all the universal quantifiers are pushed down the prefix till level 1): If the SAT
formula is satisfiable, this is also the case for the original QBF. Along the same
lines, [SB05] calls a SAT solver on the matrix of the QBF (this corresponds to
consider the QBF in which all the universal quantifiers are changed to existential
ones): If the SAT formula is unsatisfiable, so is also the QBF; in the case an
assignment satisfying the matrix is found, such assignment is used to guide the
search in the QBF solver.

Beside the above, [GGN+04] presents lazy data structures for unit and mono-
tone literal detection. [GNT01, GNT03] show how Q-DLL can be extended with
conflict and solution backjumping. [GHRS03] combines Conflict and Solution Di-
rected Backjumping (CSBJ) with a Stochastic Local Search procedure: The result
is a procedure which in some cases is unable to determine the (un)satisfiability
of the QBF (in which cases it returns “Unknown”), but otherwise the result is
guaranteed to be correct. [CMBL05] presents a branching heuristics promoting
renamable Horn formulas. [SB06] proposes the use of binary clause reasoning and
hyper-resolution.

10.4.2. Solvers based on variable elimination

An alternative approach consists in eliminating variables till the formula contains
the empty clause or becomes empty. Elimination of variables can be performed
in QBF on the basis that for any QBF (non necessarily in prenex CNF form) ϕ,
∃xϕ and ∀yϕ are logically equivalent to (ϕx ∨ ϕx) and (ϕy ∧ ϕy) respectively.

The main problem of this approach is that at each step the formula can double
its size. There are however several ways to address these issues. The first one, is
that if a variable is unit or monotone then it can be simplified as we have seen in
the previous section.

Further, in the case of universal variables, each clause C can be replaced with
min(C), and we can avoid the duplication of the clauses not in their minimal
scope. Given a universal variable y, a clause C is in the minimal scope of y if y
occurs in C, or if C is y-connected to a clause already determined to be in the
minimal scope of y. Two clauses are y-connected if there exists an existential

Chapter 10. QBFs reasoning 689

variable with level lower than y occurring in both clauses. For example, in (10.3)
the minimal scope of y consists of all the clauses in the matrix. In other cases
however, the minimal scope can be (significantly) smaller, as in

∀y∃x1∃x2∃x3{{y, x1}, {y, x1}, {x2, x3}, {x2, x3}}

in which the minimal scope of y are just the first two clauses in the matrix. The
expansion of a variable y is obtained by

1. adding a variable z′ for each variable z with level lower than the level of y
and occurring in minimal scope of y,

2. quantifying each variable z′ in the same way and at the same level of the
variable z,

3. for each C in the minimal scope of y, adding a new clause C ′ obtained
from C by substituting the newly introduced variables z′ to z,

4. considering the newly introduced clauses, those containing y are eliminated
and y is eliminated from the others.

5. considering the clauses in the original minimal scope of y, those containing
y are eliminated and y is eliminated from the others.

For example, the expansion of the universal variable y in (10.3) yields the SAT
formula:

∃x1∃x2∃x3∃x
′

2∃x
′

3{{x2, x3}, {x2, x3}, {x1, x
′

2}, {x
′

2}, {x
′

2, x
′

3}, {x1, x
′

3}}.

which can be determined to be unsatisfiable by a call to a SAT solver. In order to
determine the cost of such expansion, for a literal l let Sl be the set of clauses C
with l ∈ C, o(l) be |Sl| and s(l) be the sum of the sizes of the clauses in Sl (i.e.,∑

C∈Sl
|C|). Then, if minscope(y) is the size of the clauses in the minimal scope

of y, after y expansion, the size of the matrix of the QBF increases or decreases
by

minscope(y) − (s(y) + s(y) + o(y) + o(y)). (10.9)

Notice that when the variable y occurs in all the clauses in its minimal scope,
then minscope(y) = s(y)+s(y) and (10.9) is negative, i.e., the matrix of the QBF
shrinks after the expansion.

Alternatively to the expansion of a universal variable y, we can eliminate
the existential variables in its minimal scope. In general, the elimination of an
existential variable x is performed only when x occurs in clauses in which all the
other literals have level greater than or equal to the level of x. If this is the case,
we say that x is an innermost variable (notice that all the variables with level 1
are innermost). If x is an innermost variable, we can eliminate x by replacing Sx

and Sx with the clauses obtained by resolving each clause in Sx with each clause
in Sx on x, i.e., with the clauses in

{C ∪ C ′ : C ∪ {x} ∈ Sx, x 6∈ C,C ′ ∪ {x} ∈ Sx, x 6∈ C ′}.

For example, the elimination of the innermost variable x3 from (10.3) yields the
QBF:

∃x1∀y∃x2{{x1, y, x2}, {y, x2}, {x1, y, x2}, {y, x2}}. (10.10)

690 Chapter 10. QBFs reasoning

0 function Q-DP(ϕ)
1 if (〈a contradictory clause is in the matrix of ϕ〉) return False;
2 if (〈the matrix of ϕ is empty〉) return True;
3 if (〈l is unit in ϕ〉) return Q-DP(ϕl);
4 if (〈l is monotone in ϕ〉) return Q-DP(ϕl);
5 z := 〈a variable in ϕ having level ≤ 2〉;
6 if (〈z is existential〉) return Q-DP(resolve(z, ϕ));
7 else return Q-DP(expand(z, ϕ)).

Figure 10.4. The algorithm of Q-DP.

After the elimination of a variable x, the size of the resulting formula can increase
or decrease by

o(x) × (s(x) − o(x)) + o(x) × (s(x) − o(x)) − (s(x) + s(x)), (10.11)

where

1. the first (resp. second) addendum takes into account the fact that each
clause containing x (resp. x) has to be resolved with all the clauses in Sx

(resp. Sx); and
2. the last addendum takes into account the fact that all the clauses in Sx

and Sc can be removed.

From (10.11) it is easy to see that there are cases in which the formula can shrink,
i.e., in which (10.11) is negative. This is always the case, e.g., when o(x) = 1 and
s(x) = 2, as it is the case for x3 in (10.3). Further, in practice the size of the
resulting formula may result to be smaller than the one predicted by (10.11). For
instance, the size of matrix of (10.10) is 10, while the one predicted by (10.11) is
11. It is however easy to have cases in which (10.11) is positive and the size of
the resulting formula is exactly the one predicted by (10.11), e.g., when o(x) > 1,
s(x) > 2 and the variables in Sx are distinct from the variables in Sx.

For example, the elimination of x3 from (10.3) yields the QBF:

∃x1∀y∃x2{{x1, y, x2}, {y, x2}, {x1, y, x2}, {y, x2}},

in which the elimination of x2 leads to

∃x1∀y{{x1, y}, {y}, {x1, y}},

which can be immediately concluded to be unsatisfiable because of the contradic-
tory clause {y}.

Alternatively, the expansion of y in (10.3) yields the SAT formula:

∃x1∃x2∃x3∃x
′

2∃x
′

3{{x2, x3}, {x2, x3}, {x1, x
′

2}, {x
′

2}, {x
′

2, x
′

3}, {x1, x
′

3}}

which can be determined to be unsatisfiable by a call to a SAT solver, or by
repeated applications of variable eliminations till the empty clause is produced.

Figure 10.4 presents a high level description of a recursive procedure incorpo-
rating the above ideas. In the figure, given a QBF ϕ, lines (1)-(4) are analogous
to the ones in Figure 10.1, while at line (5)

Chapter 10. QBFs reasoning 691

1. either an existential variable z at level 1 is chosen and then the call
resolve(z, ϕ) eliminates z by resolution (line (6)).

2. or a universal variable z at level 2 is chosen and then the call expand(z, ϕ)
eliminates z by expansion (line (7)).

If ϕ is a SAT formula, Q-DP behaves as the Davis Putnam procedure [DP60].

Theorem 2. Q-DP(ϕ) returns True if ϕ is true, and False otherwise.

As for Q-DLL, there are many variable elimination procedures which are
variations to the above presented procedure. For example, in [Ben04, Bie04] a
SAT solver is called as soon as the formula does not contain universal variables.
In [Ben04, Bie04], existential variables get first eliminated if they are detected to
appear in a binary equivalence: Indeed, if two clauses {l, x} and {l, x} are in the
matrix of QBF, assuming x has a level not greater than the level of l, x can be
safely substituted by l. In [Ben04, Bie04, PV04], simplification mechanisms are
defined and used in order to remove subsumed clauses: a clause C is subsumed
if there exists another clause C ′ with C ′ ⊂ C. Considering the way variables are
selected for elimination, in [Ben04, Bie04] the choice takes into account the size
of the resulting formula as estimated by equations (10.9) and (10.11); in [PV04],
universal variables are never expanded since the variables being eliminated are
always at level 1. Further, these procedures differ also for the way they represent
the matrix. In [Ben04] the QBF is first Skolemized: Each clause corresponds to a
disjunction of Boolean functions and is represented via Binary Decision Diagrams
(BDDs) [Bry92]. In [PV04] clauses are represented and manipulated as BDDs and
ZDDs. In [Bie04] a clause is represented as a set of literals.

The procedure described in [PBZ03] is somehow different from Q-DP though
it is based on the elimination of variables from the matrix of the QBF. Given a
QBF ϕ, the basic idea of the procedure is to replace a quantified subformula ϕ′

of ϕ with a logically equivalent formula ϕ′′ without quantifiers: ϕ′′

1. is in CNF since it corresponds to the conjunction of the negation of the
valuations falsifying ϕ′; and

2. can be computed using a SAT solver as back-engine if all the quantifiers
in ϕ′ are of the same type, or using a QBF solver as back-engine in the
general case.

Thus, in [PBZ03], more than a variable can be eliminated in a single step, and
these variables can be of different type. Indeed, it is crucial the selection of the
subformula ϕ′ which corresponds to the set V of variables to be eliminated: If
S is the union of the minimal scopes of the variables in V , the intuition for the
selection of V is to

1. try to minimize the set of variables in S and not in V , and, at the same
time,

2. try to maintain V reasonably small in order to be able to enumerate the
valuations falsifying ϕ′.

692 Chapter 10. QBFs reasoning

10.5. Other approaches, extensions and conclusions

Given a QBF, it is indeed possible to alternate the techniques described in the
previous sections for solving it. This is what it has been proposed in [Ben05b],
where variable elimination and search techniques can be alternated inside one
solver. In [PT07] a portfolio of solvers is considered, and the best one is selected
using machine learning techniques. [DLMS02] shows how it is possible to encode
QBFs in the language of the model checker NuSMV [CCG+02], and then use it
as engine.

Extensions to the above procedures in order to deal with non prenex, non
CNF QBFs have been proposed. When dealing with solvers based on variable
elimination, we already mentioned that it is useful to compute the minimal
scope of variables and this indeed corresponds to deal with non prenex QBFs,
see [Bie04, Ben05a, PV04, PBZ03]. In [GNT07] it is shown that basic Q-DLL
search procedures can be extended to take into account the quantifier structure,
and that substantial speed ups can be obtained. Finally, non prenex QBFs are
naturally handled by solvers based on Skolemization of the input QBF, which nat-
urally allow for handling the more general Henkin’s branching quantifiers [Hen61].

Non clausal QBF solvers have been proposed in [Zha06, SAG+06, ESW06].
In more details, the first two papers show that non clausal formulas can be more
naturally encoded in both conjunctive and disjunctive normal forms allowing at
the same time for substantial speed ups. The last paper presents a procedure
which can be directly applied to formulas in negation normal form.

Acknowledgments

This work is partially supported by the Italian Ministero dell’Universitá e della
Ricerca.

References

[AB00] Ayari Abdelwaheb and David Basin. Bounded model construction
for monadic second-order logics. In 12th International Conference
on Computer-Aided Verification (CAV’00), number 1855 in Lecture
Notes in Computer Science, pages 99–113, Chicago, USA, July 2000.
Springer-Verlag.

[AGS05] Carlos Ansótegui, Carla P. Gomes, and Bart Selman. The achilles’
heel of qbf. In Proc. AAAI, pages 275–281, 2005.

[Ben04] Marco Benedetti. Evaluating qbfs via symbolic skolemization. In
Proc. LPAR, pages 285–300, 2004.

[Ben05a] Marco Benedetti. Quantifier Trees for QBFs. In 8th International
Conference on Theory and Applications of Satisfiability Testing (SAT
2005), volume 3569 of Lecture Notes in Computer Science. Springer
Verlag, 2005.

[Ben05b] Marco Benedetti. skizzo: A suite to evaluate and certify qbfs. In
Proc. CADE, pages 369–376, 2005.

[Bie04] Armin Biere. Resolve and expand. In Proc. SAT, pages 59–70, 2004.

Chapter 10. QBFs reasoning 693

[BLS03] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Con-
vergence testing in term-level bounded model checking. In Proc.
CHARME, pages 348–362, 2003.

[Bry92] Randal E. Bryant. Symbolic Boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys, 24(3):293–318,
September 1992.

[BSTW05] Philippe Besnard, Torsten Schaub, Hans Tompits, and Stefan
Woltran. Representing paraconsistent reasoning via quantified propo-
sitional logic. In Leopoldo E. Bertossi, Anthony Hunter, and Torsten
Schaub, editors, Inconsistency Tolerance, pages 84–118, 2005.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An open-
source tool for symbolic model checking. In Proc. CAV, 2002.

[CGS98] M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate
quantified Boolean formulae. In Proc. AAAI, 1998.

[CGT03] Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella.
SAT-based planning in complex domains: Concurrency, constraints
and nondeterminism. Artificial Intelligence, 147(1-2):85–117, july
2003.

[CKS05] Byron Cook, Daniel Kroening, and Natasha Sharygina. Symbolic
model checking for asynchronous Boolean programs. In Proc. SPIN,
pages 75–90, 2005.

[CMBL05] Sylvie Coste-Marquis, Daniel Le Berre, and Florian Letombe. A
branching heuristics for quantified renamable horn formulas. In SAT,
pages 393–399, 2005.

[CSGG02] M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An algo-
rithm to evaluate quantified Boolean formulae and its experimental
evaluation. Journal of Automated Reasoning, 28:101–142, 2002.

[DHK05] Nachum Dershowitz, Ziyad Hanna, and Jacob Katz. Bounded model
checking with qbf. In SAT, pages 408–414, 2005.

[DLMS02] Francesco M. Donini, Paolo Liberatore, Fabio Massacci, and Marco
Schaerf. Solving QBF by SMV. In Proc. KR, pages 578–592, 2002.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201–215, 1960.

[DSTW04] James P. Delgrande, Torsten Schaub, Hans Tompits, and Stefan
Woltran. On computing belief change operations using quantified
boolean formulas. Journal of Logic and Computation, 14(6):801–826,
2004.

[EETW00] Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran. Solving
advanced reasoning tasks using Quantified Boolean Formulas. In Pro-
ceedings of the 7th Conference on Artificial Intelligence (AAAI-00)
and of the 12th Conference on Innovative Applications of Artificial
Intelligence (IAAI-00), pages 417–422, Menlo Park, CA, July 30– 3
2000. AAAI Press.

[EST+03] Uwe Egly, Martina Seidl, Hans Tompits, Stefan Woltran, and
Michael Zolda. Comparing different prenexing strategies for quanti-
fied Boolean formulas. In SAT, pages 214–228, 2003.

694 Chapter 10. QBFs reasoning

[ESW06] Uwe Egly, Martina Seidl, and Stefan Woltran. A solver for qbfs in
nonprenex form. In ECAI, pages 477–481, 2006.

[FG00] Paolo Ferraris and Enrico Giunchiglia. Planning as satisfiability in
simple nondeterministic domains. In AIPS’2000 Workshop on Model
Theoretic Approaches to Planning, pages 55–61, 2000.

[GGN+04] I. Gent, E. Giunchiglia, M. Narizzano, A. Rowley, and A. Tacchella.
Watched data structures for QBF solvers. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability
Testing, 6th International Conference, (SAT), volume 2919 of LNCS,
pages 25–36. Springer, 2004.

[GHRS03] Ian P. Gent, Holger H. Hoos, Andrew G. D. Rowley, and Kevin
Smyth. Using stochastic local search to solve quantified Boolean
formulae. In Proc. CP, pages 348–362, 2003.

[GNT01] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
Backjumping for quantified Boolean logic satisfiability. In Proc. IJ-
CAI, pages 275–281, 2001.

[GNT02] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
Learning for Quantified Boolean Logic Satisfiability. In Proc. 18th
National Conference on Artificial Intelligence (AAAI) (AAAI’2002),
pages 649–654, 2002.

[GNT03] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
Backjumping for Quantified Boolean Logic Satisfiability. Artificial
Intelligence, 145:99–120, 2003.

[GNT04] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
Monotone literals and learning in QBF reasoning. In Tenth Interna-
tional Conference on Principles and Practice of Constraint Program-
ming, CP 2004, pages 260–273, 2004.

[GNT06] E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/term reso-
lution and learning in the evaluation of quantified Boolean formulas.
Journal of Artificial Intelligence Research (JAIR), 26:371–416, 2006.

[GNT07] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantifiers struc-
ture in search based procedures for QBF. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
26(3):497–507, March 2007.

[GR04] Ian P. Gent and Andrew G. D. Rowley. Encoding connect-4 using
quantified boolean formulae. In Proc. 2nd International Workshop
on Modelling and Reformulating Constraint Satisfaction Problems,
pages 78–93, February 2004.

[HBS06] Marc Herbstritt, Bernd Becker, and Christoph Scholl. Advanced sat-
techniques for bounded model checking of blackbox designs. In Proc.
MTV, pages 37–44, 2006.

[Hen61] L. A. Henkin. Some remarks on infinitely long formulas. In In-
finitistic Methods: Proceedings of the Symposium on Foundations
of Mathematics, pages 167–183. Pergamon Press and Państwowe
Wydawnisctwo Naukowe, 1961.

[JB07] Toni Jussila and Armin Biere. Compressing bmc encodings with qbf.
Electr. Notes Theor. Comput. Sci., 174(3):45–56, 2007.

Chapter 10. QBFs reasoning 695

[JS04] Paul Jackson and Daniel Sheridan. Clause form conversions for
Boolean circuits. In Proceedings of the International Conference on
Theory and Applications of Satisfiability Testing, pages 183–198, May
2004.

[KBKF95] H. Kleine-Büning, M. Karpinski, and A. Flögel. Resolution for quan-
tified Boolean formulas. Information and Computation, 117(1):12–18,
1995.

[KHD05] Jacob Katz, Ziyad Hanna, and Nachum Dershowitz. Space-efficient
bounded model checking. In Proc. DATE, pages 686–687, 2005.

[Let02] R. Letz. Lemma and model caching in decision procedures for quan-
tified Boolean formulas. In Proceedings of Tableaux 2002, LNAI 2381,
pages 160–175. Springer, 2002.

[LSB05] Andrew C. Ling, Deshanand P. Singh, and Stephen Dean Brown.
FPGA logic synthesis using quantified Boolean satisfiability. In Proc.
SAT, pages 444–450, 2005.

[MS04] Maher N. Mneimneh and Karem A. Sakallah. Computing vertex
eccentricity in exponentially large graphs: QBF formulation and so-
lution. In Theory and Applications of Satisfiability Testing, 6th Inter-
national Conference, (SAT), volume 2919 of LNCS, pages 411–425.
Springer, 2004.

[MSS96] J. P. Marques-Silva and K. A. Sakallah. GRASP - A New Search Al-
gorithm for Satisfiability. In Proceedings of IEEE/ACM International
Conference on Computer-Aided Design, pages 220–227, November
1996.

[MVB07] H. Mangassarian, A. Veneris, and M. Benedetti. Fault diagnosis
using quantified Boolean formulas. In Proc. IEEE Silicon Debug and
Diagnosis Workshop (SDD), May 2007.

[OSTW06] Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran.
ccT: A correspondence-checking tool for logic programs under the
answer-set semantics. In Proc. JELIA, pages 502–505, 2006.

[Pap94] Christos H. Papadimitriou. Computatational Complexity. Addison-
Wesley, Reading, Mass., 1994.

[PBZ03] David A. Plaisted, Armin Biere, and Yunshan Zhu. A satisfiability
procedure for quantified Boolean formulae. Discrete Applied Mathe-
matics, 130(2):291–328, 2003.

[PG86] D. A. Plaisted and S. Greenbaum. A Structure-preserving Clause
Form Translation. Journal of Symbolic Computation, 2:293–304,
1986.

[PT07] Luca Pulina and Armando Tacchella. A multi-engine solver for quan-
tified Boolean formulas. In Proc. CP, pages 494–497, 2007.

[PV03] Guoqiang Pan and Moshe Y. Vardi. Optimizing a BDD-based modal
solver. In Proc. CADE-19, pages 75–89, 2003.

[PV04] Guoqiang Pan and Moshe Y. Vardi. Symbolic decision procedures
for qbf. In Proc. CP, pages 453–467, 2004.

[Rin99a] Jussi Rintanen. Constructing conditional plans by a theorem prover.
Journal of Artificial Intelligence Research, 10:323–352, 1999.

[Rin99b] Jussi Rintanen. Improvements to the evaluation of Quantified

696 Chapter 10. QBFs reasoning

Boolean Formulae. In Dean Thomas, editor, Proceedings of the 16th
International Joint Conference on Artificial Intelligence (IJCAI-99-
Vol2), pages 1192–1197, S.F., July 31–August 6 1999. Morgan Kauf-
mann Publishers.

[Rob68] Alan Robinson. The generalized resolution principle. In Machine
Intelligence, volume 3, pages 77–93. Oliver and Boyd, Edinburgh,
1968. Reprinted in [SW83].

[SAG+06] Ashish Sabharwal, Carlos Ansótegui, Carla P. Gomes, Justin W.
Hart, and Bart Selman. QBF modeling: Exploiting player symmetry
for simplicity and efficiency. In Proc. SAT, pages 382–395, 2006.

[SB01] C. Scholl and B. Becker. Checking equivalence for partial implemen-
tations. In Proceedings of the 38th Design Automation Conference
(DAC’01), pages 238–243, 2001.

[SB05] Horst Samulowitz and Fahiem Bacchus. Using SAT in QBF. In CP,
pages 578–592, 2005.

[SB06] Horst Samulowitz and Fahiem Bacchus. Binary clause reasoning in
QBF. In SAT, pages 353–367, 2006.

[SW83] Jörg Siekmann and Graham Wrightson, editors. Automation of Rea-
soning: Classical Papers in Computational Logic 1967–1970, volume
1-2. Springer-Verlag, 1983.

[Tom03] Hans Tompits. Expressing default abduction problems as quantified
boolean formulas. AI Commununications, 16(2):89–105, 2003.

[Tse70] G. Tseitin. On the complexity of proofs in propositional logics. Sem-
inars in Mathematics, 8, 1970. Reprinted in [SW83].

[Tur02] Hudson Turner. Polynomial-length planning spans the polynomial
hierarchy. In Proc. JELIA, pages 111–124, 2002.

[Zha06] Lintao Zhang. Solving QBF by combining conjunctive and disjunctive
normal forms. In Proc. AAAI, 2006.

[ZM02a] L. Zhang and S. Malik. Conflict driven learning in a quantified
Boolean satisfiability solver. In Proceedings of International Con-
ference on Computer Aided Design (ICCAD’02), 2002.

[ZM02b] Lintao Zhang and Sharad Malik. Towards a symmetric treatment of
satisfaction and conflicts in quantified Boolean formula evaluation.
In Proceedings of the Eighth International Conference on Principles
and Practice of Constraint Programming, pages 200–215, 2002.

[ZMMM01] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient
conflict driven learning in a Boolean satisfiability solver. In Inter-
national Conference on Computer-Aided Design (ICCAD’01), pages
279–285, November 2001.

	QBFs reasoning
	Introduction
	Quantified Boolean Logic
	Applications of QBFs and QBF reasoning
	QBF solvers
	Other approaches, extensions and conclusions
	References

