DECISION PROCEDURES
FOR PROPOSITIONAL SATISFIABILITY AND BEYOND

Propositional Solvers and their extensions for
Knowledge Representation and Formal Verification

Armando Tacchella

A dissertation in
Electronics and Computer Science Engineering

Thesis Supervisors: Chiar.2® Prof. Mauro Di Manzo
Chiar.® Prof. Enrico Giunchiglia

Dipartimento di Informatica, Sistemistica e Telematica
Universita degli Studi di Genova.

Contents

1 Introduction 1
1.1 Research area, motivations and goals 1
1.2 Contribution of the thesis 1
1.3 Structure of the thesis 1

I Propositional Satisfiability (SAT) 2

2 Solving the satisfiability (SAT) problem 3
2.1 Propositional logic oo 3
2.2 Algorithms for SAT L., 3
2.3 The Davis-Logemann-Loveland (DLL) algorithm 3

3 A survey of relevant contributions 4
3.1 Enhancing the basic DLL algorithm 4

3.1.1 Heuristics o 4
3.1.2 Relaxations o 4
3.1.3 Advanced look-back techniques 4
3.1.4 Advanced look-ahead techniques 4
3.1.5 Randomization, 4
3.1.6 Preprocessingo 4
3.2 DLL-based SAT solvers 4
321 POSIT. 4
322 SATO 4
3.2.3 SATZ and EqSATZ 4
3.24 RelSAT 4
325 Boehm. 4
326 GRASP 4
3.3 Experimental analysis L. 4
3.3.1 A taxonomy of available benchmarks 4
3.3.2 Designingatestset, 4
3.3.3 A snapshot of DLL-based SAT solvers 4

4 Anatomy of a SAT solver 5

4.1 Data structure and primitiveso 0L 7
4.1.1 Formula and search state 7
4.1.2 Assigning and retracting truth values 11
4.1.3 Stackwise vs. non-stackwise operation 15

CONTENTS

4.2 Implementing Look-ahead
4.2.1 Boolean constraint propagation (BCP)
4.2.2 Monotone literal fixing (MLF)

4.3 Implementing Look-back
4.3.1 Chronological backtracking
4.3.2 Conflict-directed backjumping and learning

4.4 Implementing relaxations
441 Hornrelaxation.
4.4.2 Kromrelaxation

4.5 The DLL algorithm revisited

Heuristics and optimizations

5.1 Search heuristics oo oL
5.1.1 General framework for greedy heuristics
5.1.2 Jeroslow Wang (JW) and 2-sided Jeroslow Wang (2JW) .
5.1.3 Max occurrences in clauses of min size (MOMS)
5.1.4 Shortest non-horn first (SATO)
5.1.5 Lexycographic (Boehm)
5.1.6 General framework for BCP-based heuristics
5.1.7 Unit, Unirel and Unirel2 heuristics
5.1.8 Unit with tie breaking (Unitie)
5.1.9 Combining BCP-based greedy methods (Unimo)
5.1.10 SATZ heuristic oo
5.1.11 RelSAT heuristic

5.2 Randomization
5.2.1 Noisy heuristics oL
5.2.2 Serch cut offand restart

5.3 Preprocessing L oo e
5.3.1 Failed literals propagation
5.3.2 k-literals simplification oo
5.3.3 Tail resolution
5.3.4 Clause subsumption
5.3.5 Binary clauses propagation
5.3.6 Adding short resolvents

SIM: a DLL-based library of SAT solvers

6.1 Aimsanddesign
6.2 Features
6.3 Putting SIM tothetest

II Modal logics

7 Dealing with knowledge

7.1 Propositional modal logics
7.1.1 Classical modal logics
7.1.2 Standard modal logics

7.2 Algorithms for modal logics
7.2.1 Tableaux-based,
7.2.2 Translation-based

ii

CONTENTS

723 SAT-based

8 Contributions
8.1 Modal logic reasoners
811 DLP e
812 TA . . . e
8.2 Experimental analysis
821 Openproblems
8.2.2 Benchmarks in modal logics

9 DLL-based decision procedures
9.1 The basic generate and test loop
9.1.1 Using DLL to generate assignments
9.1.2 Outline of the test phase
9.2 Testing for consistency in modal logics
9.2.1 Logics E, EM, EN,EMN
9.2.2 Logics EC, ECM, ECN, EMCN (K)
923 LogicsTand S4
9.3 Enumerating modelsin LTL
9.3.1 The taming of eventualities
9.3.2 Ensuring termination,

10 Implementing modal decision procedures
10.1 Data structure for modal formulas
10.2 Rewriting and simplification
10.2.1 Rewriting modal formulas
10.2.2 Rewriting LTL formulas
10.3 Interfacing the SAT solver
10.3.1 Renaming modal formulas
10.3.2 Formula look up tables (LUT)
10.3.3 Conversion to clausal normal form (CNF)
10.4 Pruning techniques oL
10.4.1 Aggressive look-ahead (early pruning)
10.4.2 Modal backjumping and learning
10.5 Caching
10.5.1 The case study of modal K
10.5.2 Requirements for effective caching
10.5.3 Caching with hash tables
10.5.4 Caching with bit matrices

11 *SAT: modal decision procedures on top of SAT-solvers
11.1 Aimsand design o
11.2 Features i i
11.3 Putting *SAT tothetest

IIT Quantified propositional logic (QSAT)

12 Higher order satisfiability
12.1 Quantified propositional formulas

iii

43

44
44
44
44
44
44
44

45
45
45
45
45
45
45
45
45
45
45

46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46

47
47
47
47

48

49

CONTENTS

12.2 Algorithms for QSAT
12.3 The DLL-based algorithm for QSAT

13 State of the art
13.1 Enhancing the DLL-based algorithm
13.1.1 Heuristics o e
13.1.2 Advanced look-ahead techniques
13.1.3 Preprocessing
13.2 QSAT solvers
13.2.1 Evaluate L
13.2.2 Decideo
13.23 QSolve. oL
13.24 QKN
13.3 Experimental analysis
13.3.1 Available benchmarks
13.3.2 Designing atestset,
13.3.3 A snapshot of DLL-based QSAT solvers

14 From SAT to QSAT
14.1 Data structure and primitives
14.1.1 Formula and search state
14.1.2 Assigning and retracting truth values
14.2 Implementing Look-ahead
14.2.1 Extended BCP
14.2.2 Adapting MLF
14.2.3 Trivial truth oo oo oo
14.3 Implementing Look-back
14.3.1 Chronological backtracking
14.3.2 Conflict directed backtracking
14.3.3 A glimpse of learning L.
14.4 Search heuristics L.
14.4.1 Designing an heuristic for QSAT
14.4.2 Jeroslow Wang (JW) and 2-sided Jeroslow Wang (2JW) .
14.4.3 Lexycographic
1444 BCP-based,

15 QuBE: DLL-based procedure(s) for QSAT
15.1 Aimsand design Lo
15.2 Featuresl
15.3 Putting Qubetothetest

IV Bounded model checking (BMC)
16 Model checking
17 From SAT to BMC

18 Applications

iv

49
49

50
50
50
50
50
50
50
50
50
50
50
50
50
50

51
o1
o1
o1
51
51
51
51
51
51
51
51
51
51
o1
51
51

52
52
52
52

53

54

55

56

CONTENTS

19 Conclusions and future work
19.1 Wrapping up . . . -« o v v v i e e e e e e e
19.2 Future development(s)

A SIM system description
B *SAT system description

C QuBE system description

Bibliography

57
57
57

58
59

60

61

Chapter 1

Introduction

1.1 Research area, motivations and goals
1.2 Contribution of the thesis
1.3 Structure of the thesis

Part 1

Propositional Satisfiability
(SAT)

Chapter 2

Solving the satisfiability
(SAT) problem

2.1 Propositional logic
2.2 Algorithms for SAT

2.3 The Davis-Logemann-Loveland (DLL) algo-
rithm

e open literal

e unit propagation
e pure literal

o left, right split

o failed literal

e search tree, deep and shallow, depth of an assignment

Chapter 3

A survey of relevant
contributions

3.1 Enhancing the basic DLL algorithm

3.1.1 Heuristics

3.1.2 Relaxations

3.1.3 Advanced look-back techniques
3.1.4 Advanced look-ahead techniques
3.1.5 Randomization

3.1.6 Preprocessing

3.2 DLL-based SAT solvers

3.2.1 POSIT

3.2.2 SATO

3.2.3 SATZ and EqSATZ
3.2.4 RelSAT

3.2.5 Boehm

3.2.6 GRASP

3.3 Experimental analysis

3.3.1 A taxonomy of available benchmarks
3.3.2 Designing a test set
3.3.3 A snapshot of DLL-based SAT solvers

Chapter 4

Anatomy of a SAT solver

In this chapter we present the basic components of a DLL-based SAT solver,
from the data structure definitions to the most advanced look-back techniques,
concluding with a new synthesis of the DLL algorithm closer to the real imple-
mentation of a SAT solver. In more detail, in section 4.1 we define all the basic
components of the data structure and the conditions that they must obey; we
present the primitive to extend the valuation of the propositions to the formula,
and its counterpart, i.e., the primitive to retract the valuation of the proposi-
tions from the formula, restoring the conditions previous to the assignment. We
present two such assign-retract pairs, one working in a stack-wise fashion (the
last truth value extended is the first to be retracted) and the other one support-
ing dyamic reordering in the sequence of assignments. In sections 4.2 and 4.3
we present the most common look-ahead and look-back-techniques, introduc-
ing, when necessary, modifications to the basic data structure and primitives.
Section 4.4 is devoted to relaxations ... Finally, in section 4.5 we conclude the
picture by showing how the DLL algorithm can be implemented on top the data
structures and primitives introduced in this chapter.

The conventions that we use to present data structures and algorithms are
those of [CLR98] with some minor modifications/extensions for the sake of bet-
ter clarity and compactness. We now recall the conventions briefly, pointing out
any difference w.r.t. [CLR98].

1. Indentation indicates block structure: the body of functions, loops and
if-then-else statements is formatted accordingly. We use and indenta-
tion schema (below on the right) that is slighlty different than the one
of [CLR98] (below on the left):

while (test) while (test) do
do (statement-1) (statement-1)
(statement-n) (statement-n)

Also, when no confusion may arise, we abuse the notation and write if-
then-else consisting of a single statement per block arranged in one or
two lines like this:

CHAPTER 4. ANATOMY OF A SAT SOLVER 6

if (test) then (statement-1) else (statement-2)

if (test) then (statement-1)
else (statment-2)

2. The looping constructs while, for, and repeat and the conditional con-
structs if, then, and else have the same interpretation as in Pascal.

3. The symbol “p> ” indicates that the remainder of the line is a comment.

4. A multiple assignment of the form i < j + e assigns to both variables
i and j the value of the expression e, i.e., multiple assignments associate
from the right.

5. Variables are local to the given procedure. We do not use global variables
in the definition of our algorithms, i.e., all the procedures described are
reentrant. Local variables are not declared and we expect them to be
uninitialized.

6. Array elements are accessed by specifying the array name followed by the
index in square brackets: A[i] is the i-th element of the array A.

7. Compound data are organized into objects which are comprised of fields.
Objects may have several instances, and a particular field is accessed using
the field name followed by the name of the instance in square brackets. For
example, the object list has the fields car, ¢dr and given an instance my-
list, car[my-list] and cdr[my-list] access the corresponding fields. Variables
representing arrays and objects are treated as pointers to those objects.
The constant NIL denotes the null pointer.

8. Parameters are passed to a procedure by value: the called procedure re-
ceives its own copy of the the parameters. In case of object instances and
arrays the pointer gets copied, so any change to the array elements or the
instance fields is seen by the caller. We will use the keyword var to denote
when parameters are passed by reference

We now spend a few words about arrays which play a special réle in our
procedures. As in [CLR98], for each array A we define the field length[A] that
specifies the number of elements in A. Now, besides the usual direct-access
primitives, we wish to use arrays also as stacks and/or lists. The approach
resembles the one of [Str97] and the way arrays are implemented in the Standard
Template Library (see the template class vector, chapter 16 of [Str97]). For
each array A we define the following primitives:

PusH(A4, e)
1 i « length[A] < length[A] + 1
2 Ali] « e
3 return

Popr(4)
1 i < length[A]
2 length[A] + length[A] - 1
3 return A[i]

CHAPTER 4. ANATOMY OF A SAT SOLVER 7

Topr(A4)
1 i « length[A]
2 return Ai]

FrLusH(A)
1 length[A] + 0
2 return

which operate an array as a stack. Notice that each primitive runs in O(1) since
we add elements to the back of the array. This upper bound is always valid
for Pop, ToP and FLUSH, while in the case of PUSH we are assuming to have
always enough room to add the elements. The primitive:

DELETE(A4,)
1 bi « length[A]
2 A[i] = A[bi]
3 length[A] < length[A] - 1
4 return

perfoms a typical list operation (a deletion) using an array and an O(1) algo-
rithm. Clearly, the procedure is not stable, i.e., after a deletion the contents of
the array are not in the same order as they were before.

4.1 Data structure and primitives

In this section we present the (basic) data structure and the primitives to ex-
tend/retract valuations of the propositions. The data structure and the primi-
tive EXTEND-PROP are heavily inspired to those presented in in [Fre95] about
the DLL-based solver POSIT. Our implementation of RETRACT-PROP is in-
spired to analogous techniques that we find in state-of-the-art DLL-based solvers
like RelSAT [BS97] and Satz [LA97]. The extensions of EXTEND-PROP and
RETRACT-PROP to algorithms that assign and retract values without following
the stack order, is an original contribution of our work as far as we know.

4.1.1 Formula and search state

Let UN, PP, PN, RS, FL be five new constants. A proposition can then be
described by the following object:

id the proposition unique identifier;

value the value of the proposition (either TRUE , FALSE , or UNDEF);
mode the mode of assignment (either UN, PP, PN, RS, or FL);

level the assignment level;

Pos an array of clauses for positive occurrences

Neg the same for negative occurrences.

CHAPTER 4. ANATOMY OF A SAT SOLVER 8

Initially, for each proposition instance pi the following holds true:
value[pi] = UNDEF (4.1)

(length[Pos[pi]] # 0) V (length[Neg[pi]] # 0) (4.2)
Intuitively, the conditions state that each proposition is initially open (4.1) and
it occurs at least in one clause, either positively or negatively (4.2). We require
that the arrays Pos[pi] and Neg[pi] are indeed sets of clauses. So we state the
following condition for each proposition instance pi:

V¥ ((i #) > Poslpilli] # Pos[pillj]) (43)
where 1 < i < length[Pos[pi]], 1 < j < length[Pos[pi]], and the symmetric one:
Vivj((¢ # j) O Neglpi][i] # Neg[pi][j]) (4.4)

where 1 < i < length[Neg[pi]], 1 < i < length[Neg[pi]]. We also require that
Pos and Neg are non-overlapping, but this can be enforced more elegantly when
specifying the requirements for the clause instances (see below).

A clause can be described by the following object:

id the clause unique identifier;

open the number of open literals;

sub a pointer to a proposition;

Lits an array of literals, i.e., propositions with sign.

Given an index ¢ such that 1 < i < length[Lits|, prop[Lits[i]] is a proposition
instance and sign[Lits[4]] is the sign of the occurrence: TRUE for positive oc-
currences and FALSE for negative ones. Initially, for each clause instance cli the
following conditions hold:

sublcli] = NIL (4.5)
openfcli] = length[Lits[cli]] (4.6)
open[cli] # 0 (4.7

In words, each clause is open (4.5), each literal in the clause is open (4.6), and
the clause itself is not empty (4.7). We require that clause instances do not
contain the same proposition twice, so for each instance cli:

ViVi((i # j) D prop[Lits[cli][i]] # prop[Lits[cli][j]] (4.8)

where 1 < i < length[Lits[cli]], 1 < j < length[Lits[cli]]. Enforcing condition
(4.8) preserves the generality of the algorithm since in propositional logic we
have the facts pV p = p and pV —p = T: duplicate literals can be removed to
yield an equivalent clause, and complementary literals result in a tautological
clause which can be removed from the set of clauses to yield an equivalent set.
Notice that (4.8), together with (4.3) and (4.4), also implies that Pos[pi] and
Neg[pi] are pairwise disjoint sets for each proposition instance pi.

As a final requirement, we ensure that the combination of clauses and propo-
sitions instances correctly represents propositional formulas. Given a CNF for-
mula ¢, with cl; ...cl,, clauses and p; ...p, propositions we impose that:

CHAPTER 4. ANATOMY OF A SAT SOLVER 9

I v Jr vy v
p2 UNDEF p1 UNDEF p3 UNDEF :
| | | | | |
NI e B i

| :

] N

| T ! :

I . I :

I ' I :

t 'y 1 :
___________ I [R [P — N

a | 1 | :

| I :

10 \[v ¥ ¥ '] :

clq 2 clg 2 clg 3 cly 2 :
NIL | NIL | NIL NIL | :

Figure 4.1: Data structure for the formula (4.9)

e for each p € {p1...pn} there is a corresponding proposition instance pi
which fullfills the conditions from (4.1) to (4.4) and such that the contents
of Pos[pi] and Neg[pi] are exacty those of ¢: for each positive (negative)
occurrence of the proposition p in a clause ¢l € {cl; ...cly,} there exists
cli = Pos[pi][k] (cli = Neg[pos][k]) such that cli is the clause instance
corresponding to cl; there is no Pos[pi][k] (Neg[pos][k]) such that its cor-
responding clause does not have a positive (negative) occurrence of p;

o for each ¢l € {cli...cly} there is a corresponding clause instance cli,
which fullfills the conditions from (4.5) to (4.8) and such that the contents
of Lits[cli] are exactly those of cl: for every literal | € ¢l there exists lo
= Lits[cli][k] such that prop[lo] is the proposition instance corresponding
to p =|l| and sign[lo] is TRUE if | = p and FALSE otherwise; there is no
Lits[cli][k] such that the literal corresponding to it does not occur in ¢l.

Consider the following formula in CNF:

ci @ p1Vpe
cla : p2Vps

4.9
Cl3) V P2 V P3 ()
Cl4) Vv —p3

In figure 4.1 we show how this formula is represented, according to the objects
and the conditions that we defined to represent clauses and propositions. In the
figure, going from left to right, top to bottom, we first encounter the proposition
instances, each one represented as a box with six divisions, corresponding to the

CHAPTER 4. ANATOMY OF A SAT SOLVER 10

six fields of the objects. The two top-row cells in each box correspond to the
fields id and walue, which have been properly inizialized for each proposition
instance: id contains an unique identifier (we used the very same propositional
logic symbol) and value contains UNDEF for all the propositions according to
condition (4.1). The two middle-row fields in the boxes represent mode and
level respectively: they are shaded since we did not make any assumption on
their initial value. The bottom-row fields represent Pos and Neg respectively:
each one is an array of clause objects, and we depicted them as a sequence of
cells, an arrow going out from each cell and pointing to the corresponding clause
instance. To prevent clutter in the picture we used solid lines for Pos instances
and dashed lines for Neg instances. For example, we see in (4.9) that ps occurs
three times in the formula, twice positively (in ¢l; and cl2) and once negatively
(in cl3). Accordingly, in the instance representing p, the two arrows departing
from the field Pos are incident to the clause instances representing cly (first
from the left) and cls (second from the left), while the single arrow departing
from the field Neg is incident to the clause instance representing cl3 (third from
the left). Going back to our description of figure 4.1, we encounter the clause
instances, each one represented as a box with four divisions, again corresponding
to the fields of the object. In the top-row sit the fields id and open: for the
first one, we use the same symbol as in example (4.9), while the second one is
initialized to the length of each clause as stated in (4.6). In the bottow-row
sit the fields sub and Lits, the first one initialized to NIL according to (4.5)
and the second one holding the literals that occur in the clause. The array of
literals is depicted as a sequence of cells, an arrow departing from each one and
pointing the proposition instances corresponding to the propositions occurring
in the clause. We used two different traits for the arrows, an almost-solid one
and a dotted one: the reason of this goes beyond clutter prevention, and it
denotes that we can somehow manage to encode the sign of the proposition
instances being referenced without using an additional field for each element of
Lits. In more detail, given a generic pi and i such that 1 < i < length[Lits[pi]],
we have that prop[Lits[pi][i]] and sign[Lits[pi][i]] can be encoded in the same
data field. The cautious reader may notice here the lack of symmetry between
proposition instances, where we chose to have two separate arrays to encode the
sign of the occurrences, and the clause instances, where we did with just one
array plus some trick to encode the sign. The reason of this dicotomy will be
clarified in the remaninder of this chapter, but we anticipate that this choice
allows for much more elegant and slightly more efficient basic algorithms to be
implemented.

Besides proposition and clause objects, we need some additional structure
to effectively encode a propositional CNF formula and the associated search
state. The ensemble of these two elements, that we define simply as state, can
be described by the following object:

Props an array of propositions;
Clauses an array of clauses.
Stack a stack of propositions;
Unit a stack of clauses;

level the current search depth;

CHAPTER 4. ANATOMY OF A SAT SOLVER 11

open the current number of open clauses.

Initially, the following conditions must hold for each state instance si:

length[Stack[si]] = O (4.10)
level[si] = 0 (4.11)
open[si] = length[Clauses[si]] (4.12)

In words, the search stack is initially empty (4.10), the search did not begin
yet (4.10), the number of open clauses coincides with the number of initial
clauses (4.12). Initially, as well as during the search, the following requirements
hold for each state instance si:

length[Props[si]] # 0 (4.13)
length[Clauses[si]] # 0 (4.14)

which mean that there is at least one proposition (4.13) and at least one
clause (4.14), and:

ViV5((i # j) D id[Props|si|[i]] # id[Props[si][4]] (4.15)

where 1 < i < length[Props[fo]], 1 < j < length[Props[fo]]. In words, we forbid
to the same proposition instance to be stored twice in the array Props. Of
course, we can have two different propositions that occur exactly in the same
clauses with exactly the same sign, but this will do no harm. The same can
be said for clauses, since adding the same clause twice decreases efficiency, but
it does not jeopardize correctness. Finally, for each instance si we require that
Unit[si] contains all the clauses having one open literal:

Vi3j((open[Clauses[si][i]] = 1) D (Unit[si][j] = Clauses[si][¢])) (4.16)

where 1 < i < length[Clauses[si]], 1 < j < length[Unit[si]] and that all the
clauses contained in Unit[si] have only one open literal:

Viopen|Unit[si][i]] = 1 (4.17)

where 1 < i < length[Unit[si]]. Requirements (4.16) and (4.17) ensure that all
unit clauses are properly detected and that the unit clause stack indeed contains
unit clauses only. Notice that it is possible for the same clause to appear twice
or more in the unit stack, but this is handled transparently by the look-ahead
algorithm (see section 4.2 in this chapter).

In the following, when we speak about propositions, clauses, and (search)
state it will be clear that we refer to the corresponding proposition, clause
and state instances respectively. To denote instances we will use the identiers
p, cl, s without the additional “s” that we used in this section to distinguish
between the logic objects and the data structure elements. Given a state s and
a proposition identifier pid we assume the existence of a primitive ID-REV(s,
pid) which returns the unique proposition instance such that id[p] = pid.

4.1.2 Assigning and retracting truth values

In figure 4.2 we present the basic version of the primitive EXTEND-PROP-TRUE.
As the name suggests, the primitive extends the valuation TRUE of a proposition

CHAPTER 4. ANATOMY OF A SAT SOLVER 12

EXTEND-PROP-TRUE(S, p, m)
1 > Performing unit resolutions
2 for i « 1 to length[Neg[p]] do
3 ¢l « Neg[p][i]
4 if sub[cl] = NIL then
5 openlcl] < open|cl] - 1
6 if open[cl] = 1 then
7 PusH(Unit[s], cl)
8 else if open[cl] = 0 then

9 for j + i downto 1 do

10 ¢l « Neg[p][7]

11 if sub[cl] = NIL then

12 open]cl] + open]cl] + 1
13 return FALSE

14 > Setting proposition fields

15 value[p] < TRUE

16 mode[p] < m

17 level[p] + level[s]

18 PusH(Stack[s], p)

19 > Performing unit subsumptions
20 for i « 1 to length[Pos[p]] do
21 ¢l + Pos[p][7]

22 if sub[cl] = NIL then

23 sublcl] < p

24 open[s] < open]s] - 1

25 return TRUE

Figure 4.2: Extending the state s with the valuation of the proposition p.

p to the current state s: it returns TRUE if successfull (no empty clause was
detected) and FALSE otherwise. Additionally, the primitive sets the mode of
propagation m according to the value supplied by the caller. As we shall see,
the twin primitive EXTEND-PROP-FALSE is obtained by the one presented in
figure 4.2 with symmetry arguments. Therefore we describe in detail EXTEND-
PROP-TRUE only, but exactly the same considerations apply to EXTEND-PROP-
FALSE.
In figure 4.2 we describe the procedure EXTEND-PROP-TRUE

e In lines 1-13 the primitive performs unit resolutions, i.e., for each open
clause bearing a negative occurrence of the proposition p, the number of
open literals is decreased by one (lines 2-5): if the clause becomes unary,
it is pushed on the unit clauses stack (line 7); if the clause becomes empty,
all the open literal counters changed so far are restored (lines 9-12) and
the procedure returns FALSE (line 13).

e In lines 14-18 the primitive does some clerical work, setting the fields of
the proposition and pushing it in the search stack (line 18).

e In lines 19-24 the primitive performs unit subsumptions, i.e., each open
clause bearing a positive occurence of the proposition p is “freezed” by

CHAPTER 4. ANATOMY OF A SAT SOLVER 13

RETRACT-PROP-TRUE(s, p)
1 > Resetting proposition fields
2 value[p] + UNDEF
3 Pop(Stack[s], p)
4 > Retracting unit resolutions
5 for i < 1 to length[Neg[p]] do
6 ¢l « Neg[p][i]
7 if sub[cl] = NIL then
8 openlcl] < open]cl] + 1
9 > Retracting unit subsumptions
10 for i < 1 to length[Pos[p]] do
11 ¢l + Pos[p][i]
12 if sub[cl] = p then

13 sub[cl] + NIL
14 open|s] < open[s] + 1
15 return

Figure 4.3: Retracting the valuation of the proposition p from the state s.

storing p in the field sub (line 23); each time an open clause becomes
satisfied, we decrement open[s], the total number of open clauses in the
current state (line 24)

e the primitive returns TRUE (line 25)

To obtain EXTEND-PROP-FALSE it is sufficient to swap lines 2-3 with lines 20-21
and to change line 15 to assign FALSE instead of TRUE , the remainder of the
code being exactly the same.

In figure 4.3 we present the basic version of the primitive RETRACT-PROP-
TRUE. As the name suggests, the primitive retracts the valuation TRUE of a
proposition p from the current state s: it restores the state in exactly the same
conditions it was before the propagation with EXTEND-PROP-TRUE occurred.
As we shall see, the twin primitive RETRACT-PROP-FALSE is obtained by the
one presented in figure 4.3 with symmetry arguments. Therefore we describe in
detail RETRACT-PROP-TRUE only, but exactly the same considerations apply
to RETRACT-PROP-FALSE.

In figure 4.3 we describe the procedure EXTEND-PROP-TRUE.

e In lines 1-3 the primitive does some clerical work, resetting the fields of
the proposition and popping it from the search stack (line 3).

e In lines 4-8 the primitive retracts unit resolutions, i.e., for each open clause
bearing a negative occurrence of the proposition p, the number of open
literals is increased by one.

e In lines 9-14 the primitive retracts unit subsumptions, i.e., each clause that
was satisfied by p is forced open; each time an open clause becomes open,
we increment open[s], the total number of open clauses in the current state
(line 24)

CHAPTER 4. ANATOMY OF A SAT SOLVER 14

EXTEND-PROP(s, p, v, m)
1 if v = TRUE then
2 EXTEND-PROP-TRUE(S, p, m)
3 else
4 EXTEND-PROP-FALSE(Ss, p, m)

RETRACT-PROP(s, p)
1 if value[p] = TRUE then
2 RETRACT-PROP-TRUE(S, p)
3 else
4 RETRACT-PROP-FALSE(s, p)

Figure 4.4: EXTEND-PROP and RETRACT-PROP choose, respectively, the value
to propagate and to retract for the proposition p in the state s.

To obtain RETRACT-PROP-FALSE it is sufficient to swap lines 5-6 with lines
10-11, the remainder of the code being exactly the same.

In figure 4.4 we define EXTEND-PROP and RETRACT-PROP whose task is to
call the appropriate primitive to do the job. In the case of EXTEND-PROP is
the caller that determines the value of the propagation with the parameter v;
for RETRACT-PROP the value is already stored in the omonimous field, so the
user does not even need to supply it. The remainder of the parameters to be
supplied is teh same for both functions.

To show how EXTEND-PROP and RETRACT-PROP work, we rewrite the
example 4.9 as follows:

(2,NIL) : pLVpe

(2,NIL) : paVps

(3,NIL) : —p1 V-p2Vps (4.18)
(2,N1L) —p1 V —p3

where we show the pair (open, sub) with the current value of the fields for
each clause. Given f as the state corresponding to the formula, the effect of
EXTEND-PROP(f, ID-REV(f, p1), TRUE ,LS) ! is the following:

(2,Ip-REV(f, p1)) : p1 VD2

(2,NI1L) : p2Vp3

(2,NIL) DV op2 Vs (419
(1,N1L) P TP Vops

If p1 is true then p; V ps is satisfied: EXTEND-PROP marked the clause with
proposition corresponding to p;. If p; is true, then —p; V —py V p3 = —p2 V p3
and —p; V —p3 = —p3: EXTEND-PROP decreased the number of open literals in
both clauses. Notice that length[Unit[f]] = 1 because the last clause become
unary. If we try to propagate ps to true with EXTEND-PROP(f, ID-REV(f, p3),
TRUE ,LS) the net effect is to leave the formula as in 4.19 but the return value is

1The choice of a mode here is totally irrelevant: we opted for Ls but we could use any other
mode at this point.

CHAPTER 4. ANATOMY OF A SAT SOLVER 15

FALSE since propagating ps to true yields an empty clause. Therefore, it is not
necessary to retract the proposition that caused the contradiction because this
is done by EXTEND-PROP. So we propagate ps to false with EXTEND-PROP(Y,
ID-REV(J, p3), FALSE ,LS) to yield:

(2,Ip-REV(f, p1)) : p1 VD2

(1,N1L) T paVops

(2,NIL) i pLVopa Vops (4.20)
(1,ID-REV(f, p3)) : —p1V —p3

The last clause is freezed, and the second one is now equivalent to ps. If, by
mistake, we now try to retract the assignment of p; with EXTEND-PROP(,
ID-REV(f, p1)) we yield:

(2,NIL) : p1Vops

(1,N1L) P2V D3

(3, NIL) ;1 V P2 Vpg (421)
(1,ID-REV(f, p3)) : -1V —p3

which is only apparently correct, because retracting p3 will bring us in an in-
consistent situation:

(2,NIL) : p1 Vpo

(I,NIL) : paVps

(3,NIL) : —p1V-p2Vps (4.22)
(1,N1L) —p1 V —p3

Needless to say, if we had applied RETRACT-PROP in stack-wise order retracting
ps3 first and the p;, we would have restored the initial state correctly. It is to
allow the user to retract propositions without respecting the stack order, that
in the next subsection we present improved algorithms for extending/retracting
truth values.

4.1.3 Stackwise vs. non-stackwise operation

As we outlined before, the primitives EXTEND-PROP and RETRACT-PROP pre-
sented in the previous subsection are suited for stack-wise operation only. In
examples 4.18-4.21 we confirmed that using the primitives in the wrong way
brings us to inconsistent states. In order to solve this, we need a minor modi-
fication of the clause objects defined in 4.1.1. Precisely, the field sub becomes
now a stack Sub, its initial condition being for any clause cl:

length[Sub[cl]] = 0 (4.23)

In stack-wise operations we need to record only the first literal that satisfies
the clause. Indeed, many literals in the clause may be contemporarily assigned
to TRUE in the current state. In case of stack-wise operations this does not
matter: assignments are retracted in reverse order and each literal that satisfied
the clause after the first one will be retracted before we retract the first one.
This is not true when we do not follow the stack order. In this case we need to
know, when retracting a proposition, if some other proposition in the current
assignment is still satisfying the clause.

CHAPTER 4. ANATOMY OF A SAT SOLVER

DB-EXTEND-PROP-TRUE(S, p, m)
1 > Performing unit resolutions
2 for i « 1 to length[Neg[p]] do

3 ¢l « Neg[p][i]

4 open|cl] + open]c]] - 1

5 if open[cl] = 1 then

6 PusH(Unit[s], cl)

7 else if open|cl] = 0 then

8 for j + i downto 1 do

9 ¢l « Neg[p][7]
10 open|cl] < open|cl] + 1
11 return FALSE

12 > Setting proposition fields

13 wvalue[p] < TRUE

14 mode[p] < m

15 level[p] + level[s]

16 PusH(Stack[s], p)

17 > Performing unit subsumptions
18 for i « 1 to length[Pos[p]] do
19 ¢l « Pos[p][i]

20 if length[Sub[cl]] = 0 then
21 open[s] « open]s] - 1

22 PusH(Sub[cl], p)

23 return TRUE

Figure 4.5: Redefining EXTEND-PROP-TRUE for non-stackwise operation.

16

In figure 4.5 we present the basic version of the primitive DB-EXTEND-
PROP-TRUE, i.e., the modification of EXTEND-PROP-TRUE to handle extend
operations in algorithms that do not follow the stack order. As in the case of
EXTEND-PROP-TRUE the primitive extends the valuation TRUE of a proposi-

tion p to the current state s: it returns TRUE if successfull (no empty clause

was detected) and FALSE otherwise. Additionally, the primitive sets the mode
of propagation m according to the value supplied by the caller. Again, the
twin primitive DB-EXTEND-PROP-FALSE is obtained by the one presented in
figure 4.5 with symmetry arguments. Therefore we describe in detail EXTEND-
PROP-TRUE only, but exactly the same considerations apply to EXTEND-PROP-

FALSE.

In figure 4.5 we describe the procedure EXTEND-PROP-TRUE.

e In lines 2-11 the primitive performs unit resolutions, i.e., for each clause
bearing a negative occurrence of the proposition p, the number of open
literals is decreased by one (lines 2-4): if the clause becomes unary, it is

pushed on the unit clauses stack (line 6); if the clause becomes empty, all

the open literal counters changed so far are restored (lines 7-10) and the

procedure returns FALSE (line 11).

e In lines 12-16 the primitive does some clerical work, setting the fields of

the proposition and pushing it in the search stack (line 18).

CHAPTER 4. ANATOMY OF A SAT SOLVER 17

DB-RETRACT-PROP-TRUE(S, p)
1 > Resetting proposition fields
2 value[p] + UNDEF
3 DELETE(Stack[s], p)
4 > Retracting unit resolutions
5 for i < 1 to length[Neg[p]] do
6 ¢l « Neg[p][i]
7 open[cl] < open]cl] + 1
8 > Retracting unit subsumptions
9 for i < 1 to length[Pos[p]] do
10 ¢l < Pos[p][i]
11 DELETE(Sub[cl], p)
12 if length[Sub[cl]] = 0 then
13 open|s] < open[s] + 1
14 return

Figure 4.6: Redefining RETRACT-PROP-TRUE for non-stackwise operation.

e In lines 17-22 the primitive performs unit subsumptions, i.e., for each
clause bearing a positive occurence of the proposition p, p itself is pushed
in the stack Sub; each time an open clause becomes satisfied for the first
time, we decrement open[s], the total number of open clauses in the current
state (lines 20-21)

e the primitive returns TRUE (line 23)

To obtain EXTEND-PROP-FALSE it is sufficient to swap lines 2-3 with lines 18-19
and to change line 15 to assign FALSE instead of TRUE , the remainder of the
code being exactly the same.

In figure 4.6 we present the basic version of the primitive DB-RETRACT-
PROP-TRUE, i.e., the modification of RETRACT-PROP-TRUE to handle retract
operations in algorithms that do not follow the stack order. As in the case of
RETRACT-PROP-TRUE the primitive retracts the valuation TRUE of a propo-
sition p from the current state s: it restores the state in a consistent con-
dition as if the propagation with DB-EXTEND-PROP-TRUE never occurred.
Again, the twin primitive DB-RETRACT-PROP-FALSE is obtained by the one
presented in figure 4.6 with symmetry arguments. Therefore we describe in de-
tail RETRACT-PROP-TRUE only, but exactly the same considerations apply to
RETRACT-PROP-FALSE.

In figure 4.6 we describe the procedure DB-RETRACT-PROP-TRUE.

e In lines 12-16 the primitive does some clerical work, resetting the fields of
the proposition and deleting it from the search stack (line 18).

e In lines 4-7 the primitive retracts unit resolutions, i.e., for each clause
bearing a negative occurrence of the proposition p, the number of open
literals is increased by one.

e In lines 8-13 the primitive retracts unit subsumptions, i.e., for each clause
bearing a positive occurence of the proposition p, p itself is deleted from

CHAPTER 4. ANATOMY OF A SAT SOLVER 18

the stack Sub; each time a satsfied clause ceases to be so, we decrement
open|s], the total number of open clauses in the current state (lines 12-13)

To obtain DB-RETRACT-PROP-FALSE it is sufficient to swap lines 5-6 with lines
9-10, the remainder of the code being exactly the same.

In the remainder of this chapter and in the following, we will always deal with
stack-wise operation of the data structure. The look-ahead primitives presented
in section 4.2 can be easily extended to deal with non stack-wise operation of
the data structure, while the look-back ones (4.3) are inerently stack-wise: this
is the place where we should intervene to create a non-stackwise version of the
search algorithms. Once this is done, the DLL-core (described in 4.5) will do
with minor modifications.

4.2 Implementing Look-ahead

In this section we present the two commonest look-ahead primitives: boolean
constraint propagation (BCP, a.k.a. unit clause propagation) and monotone lit-
eral fixing (MLF, a.k.a. pure literal rule). In particular, BCP is so fundamental
that we included a mechanism for constant time detection of unit clauses in our
primitives (see previous section). As reported for example in [Fre95], BCP is
by far the most useful look-ahead technique among those seen in the literature.
Our presentation of the look-ahead primitive BCP parallels the one of [Fre95].
MLF did not receive as much attention as BCP, probably because its lack of
effectivness on some kind of formulas (see again [Fre95]). As a result, many
state-of-the-art solvers, like RelSAT [BS97] and GRASP [SS96] do not even im-
plement MLF, and most solvers that do, like SATO [Zha97] and SATZ [LA97],
rely on the heuristic to detect pure literals and to propagate them. Here we
suggest an intermediate approach: we rely on a dedicated primitive MLF for
propagation and on the heuristics for detection.

4.2.1 Boolean constraint propagation (BCP)

In figure 4.7 we present the basic version of the primitive BCP. As the name
suggests, the primitive performs the propagation of boolean contstraints (unit
clauses) in state s. The primitive assigns a truth value to the single open
proposition of each open unary clause that occurs in the Unit stack. The value
assigned depends on the sign of the literal corresponding to the open proposition
in unary clauses. BCP relies on EXTEND-PROP to extend each single valuation
to the formula, and EXTEND-PROP pushes new unit clauses on the stack, so the
net effect for BCP is to loop until:

e the formula does not contain unary open clauses any more, or
e an empty clause was found

Incidentally, we notice that BCP alone is able to decide the subclass of CNF
formulas consisting of Horn clauses only.
In figure 4.7 we describe the procedure Bcp.

e In line 1, the result r is initialized to TRUE .

CHAPTER 4. ANATOMY OF A SAT SOLVER 19

Bcp(s)
1 r < TRUE
2 while length[Unit[s]] > 0 and r = TRUE do

3 ¢l = Por(Unit[s])

4 if sub[cl] = NIL then

5 > Locating the single open literal in ¢l (if any)
6 i+ 1

7 repeat

8 I = Lits[cl][4]

9 i1+ 1
10 until value[prop[l]] = UNDEF
11 > Propagating the valuation of p
12 r < EXTEND-PROP(s, prop[l], sign[l], UN)

13 return r
Figure 4.7: Boolean constraint (unit clause) propagation.

e In lines 3-12 sits the body of the main loop that spins (line 2) while there
are still unit clauses to propagate and the result is TRUE ; inside the
loop, clauses popped from the Unit stack (line 3) that did not loose their
eligibility for BCP (line 4) are searched for their unique open literal (lines
6-10); whenever an open literal bl is found the corresponding proposition
propll] is propagated with value sign[l] (line 12)

e In line 13 the result r is returned: r will be FALSE if a call to EXTEND-
PROP returns FALSE and TRUE otherwise

Notice that the correctness of BCP relies on EXTEND-PROP not to push any false
units, i.e., clauses ¢! where open[cl] = 1 and sub[cl] = NIL , but value[prop[l]]
UNDEF for each [in Lits[cl]. Such a thing may indeed happen if EXTEND-
PROP performs unit resolutions only, but this is not the case of the primitives
presented in section 4.1.

4.2.2 Monotone literal fixing (MLF)

In order to accomodate for monotone literal fixing to be performed indepen-
dently from the detection we need to enhance the definition of state that we
introduced in section 4.1 Precisely, we add a field Pure to the object represent-
ing the state, its runtime condition being for any state s:

Vi(p = Pure[i]A
(Vjsub[Pos[p[j]] # NIL) v (Vjsub[Neg[p][j]] # NIL V)

where 1 < i < length[Pure[si]], and k and j have the obvious bounds for each
proposition p. The stack Pure can thus be filled in some place, e.g., the heuristic,
and then discharged using the primitive that we now define.

In figure 4.8 we present MLF. The primitive performs the fixing of mono-
tone literals (pure literals) in state s. The primitive assigns a truth value to
each proposition that occurs in the Pure stack, unless it was assigned by means

(4.24)

CHAPTER 4. ANATOMY OF A SAT SOLVER 20

MLF(s)
1 r + TRUE
2 while length[Pure[s]] > 0 do
3 p = Popr(Pure[s])
4 if mode[p] = PP or mode[p] = PN then
) > Propagating the valuation of p
6 if mode[p] = PP then
7 r + EXTEND-PROP-TRUE(S, p, PP)
8 else
9 r EXTEND-PROP-FALSE(S, p, PN)
10 return r

Figure 4.8: Monotone literal fixing (pure literal).

of something else, namely, unit propagation, split or failed literal. The value as-
signed depends on whether the proposition occurs only positively or negatively:
it is TRUE in the former case, FALSE in the latter. Unless EXTEND-PROP itself
performs pure literal detection, MLF does not “propagate” pure literals in the
same sense that BCP propagates unit clauses: once the original Pure stack is
exhausted MLF stops even if new pure literals were created in the meantime.
Also notice that assigning a proposition that occurs only positively (negatively)
to TRUE (FALSE), never causes an inconsistency to arise. Therefore, the result
of MLF will be always TRUE .
In figure 4.7 we describe the procedure MLF.

e In line 1, the result r is initialized to TRUE .

e In lines 3-9 sits the body of the main loop that spins (line 2) while there
are still pure literals to propagate; inside the loop, propositions popped
from the Pure stack (line 3) that did not loose their eligibility for MLF
(line 4) are assigned a value according to the sign of their occurrences
(lines 6-9)

e In line 13 the result r is returned: as noticed before, r is bound to be
TRUE .

Notice that the correctness of MLF relies on the function performing the detec-
tion not to push any valued (non open) proposition: should this happen calling
EXTEND-PROP on a valued proposition would disrupt the counters and bring
to an inconsistent state. Also, for any proposition p pushed in Pure, the value
of mode[p] must correctly reflect the situation of p, i.e., it has to be mode[p] =
PP for positive pure literals and mode[p] = PN for negative pure literals.

4.3 Implementing Look-back

In this section we present two stack-wise look-back primitives: chronological
backtracking, the classic and simple algorithm that resumes the search from
the most recent open branch, and conflict-directed backjumping with learning
enhancement, a recent and more appealing combination of techniques. The

CHAPTER 4. ANATOMY OF A SAT SOLVER 21

BACKTRACK(s, var v, var m)
1 FrusH(Unit[s])
2 > Go back in the search stack retracting valuations
3 repeat
4 p = Topr(Stack[s])
5 if mode[p] # LS then
6 RETRACTPROP(p)
7 until length[Stack[s]] = 0 or mode[p] = Ls
8 if length[Stack[s]] > 0 then
9 > An open branch was located
10 if value[p] = TRUE then v ¢ FALSE else v - TRUE
11 m = RS
12 level[s] = level[p]
13 RETRACTPROP(s, p)
14 else
15 p+0
16 return p

Figure 4.9: Chronological backtracking.

original part of our work here is not the development of the techniques, but is
their application on a destructive extend/retract operation of the data struc-
tures which is aligned to state of the art solvers like, e.g., RelSAT [BS97],
SATZ [LA97], SATO [Zha97] and GRASP [SS96]. Of the DLL-based solvers
cited, all but GRASP, use some kind of conflict-directed technique in order to
prune the search space and to avoid local and global minima. In particular Rel-
SAT code offered us the best source of inspiration for the algorithms presented
in the subsection 4.3.2.

4.3.1 Chronological backtracking

In figure 4.7 we present the primitive BACKTRACK for chronological backtrack-
ing. The primitive restores the state s to the situation it was before the most
recent assignment of a proposition p such that mode[p] = Ls: the function re-
turn such proposition and sets suitably the by-reference parameters v and m.
BACKTRACK relies on RETRACT-PROP to retract each single valuation from the
formula, so the net effect for BACKTRACK is to loop until:

e the field Stack is empty
e a proposition p assigned such that mode[p] = Ls is found

Incidentally, we notice that BACKTRACK allows us to concretely implement a
model of explicit recursion for our SAT solver.
In figure 4.9 we describe the procedure BACKTRACK.

e In lines 1-2, the stacks Unit and Pure are flushed since their content will
not be significant any more at the end of backtracking.

e In lines 3-8 sits the body of the main loop that spins (line 8) until either
Stack is empty or a proposition p such that Vmodep = NIL is found; inside

CHAPTER 4. ANATOMY OF A SAT SOLVER 22

the loop, when the top proposition of the stack was not propagated with
LS it is retracted (therefore also popped from Stack).

e In lines 9-16, when an open branch on p is located, the value value[p]
is reversed (line 11) to obtain the new branching value v; after the new
branching mode m and the new current level has been set (lines 12-13),
the proposition is finally retracted (line 14); on the other hand, if Stack
became empty, then no more branching is possible and p is set to NIL .

e In line 17 the result p is returned: p will be NIL if there are no more
open branches, or will be the proposition assigned in the most recent open
branch.

Notice that the correctness of BACKTRACK relies on the search algorithms to
correctly set the mode of each proposition. In particular, UN, RS and FL share
the meaning of a deduction, while Ls has the meaning of a decision (terminology
of [SS96]): as their name suggests, deductions are not to be traded in, whereas
we may upturn our decisions.

4.3.2 Conflict-directed backjumping and learning

The complexity of the look-back techniques described in this section goes far be-
yond that of chronological backtracking. For one thing, backjumping and learn-
ing call for an extension of the data structure and, consequently, a modification
of the primitives EXTEND-PROP, RETRACT-PROP and BCP. Moreover the look-
back algorithm is itself more complicated that chronological backtracking. In
this subsection we will describe the necessary changes to the data structure first,
then we will present the modified versions of the aforementioned primitives, and
finally we describe the algorithm for enhanced look-back with conflict analysis
and learning.
For each proposition (object) p we need to add the following fields:

reason a clause, the reason (if any) of the propagation
Learned-pos an array for positive occurrences in learned clauses
Learned-neg the same for negative occurrences

Initially, for each proposition p we have the conditions:

reason[p] = NIL (4.25)
length|[Learned-pos[cl]] = 0 (4.26)
length[Learned-neg[cl]] = 0 (4.27)

(4.28)

In words, for each proposition the reason is initially empty (??) and there are
neither positive (
For each clause (object) ¢l we need to add the following fields:

l-tag the learned tag

ul-tag the learned unary clauses tag

CHAPTER 4. ANATOMY OF A SAT SOLVER 23

Initially, for each clause ¢! we have the conditions:

l-taglp] = 0O (4.29)
ul-taglp] = 0 (4.30)
(4.31)

In words, at the beginning each clause is not learned (??) and it is not a learned
unary clause (77).

Let RELEVANCE and SIZE be two new constants. Also the state needs to be
enhanced as follows:

type is the learning strategy, either RELEVANCE or SIZE
order is the learning order

Wr-lits an array of literals, the working reason
Wr-is-in membership flags for the working reason

Initially, for each proposition s we have the conditions:

order[s] > 1 (4.32)

length[Wr-lits[s]] = 0 (4.33)

length| Wr-is-in[s]] = length[Props[s]] (4.34)
(4.35)

In words, the learning order is at least one (??) for each proposition the reason
is initially empty (??) and there are neither positive (

4.4 TImplementing relaxations

4.4.1 Horn relaxation

4.4.2 Krom relaxation

4.5 The DLL algorithm revisited

CHAPTER 4. ANATOMY OF A SAT SOLVER 24

EXTEND-PROP-TRUE(S, p, m)
1 for i < 1 to length[Neg[p]] do
2 cl « Neg[p][i]
3 if sub[cl] = NIL then
4 open]cl] < open]cl] - 1
5 if open|cl] = 1 then
6 PusH(Unit[s], cl)
7 else if open[cl] = 0 then
8 ¢l + CHOOSE-EMPTY-CL(p, 4, TRUE)

9 INIT-WR(s, cl, p)

10 if LENGTH-WR(s) < order[s] or learn[s] = RELEVANCE then
11 LEARN-CLAUSE(s, MAKE-CLAUSE-FROM-WR(s))

12 for j + i downto 1 do

13 cl « Neg[p][i]

14 if sub[cl] = NIL then

15 open]cl] « open]cl] + 1

16 return FALSE

17 for i < 1 to length[Learned-neg[p]] do
18 ¢l « Learned-neg[p][i]

19 open[cl] < open[c]] - 1

20 if open|cl] = 1 then

21 PusH(Unit[s], cl)

22 else if open[cl] = 0 then

23 ¢l « CHOOSE-EMPTY-CL(p, i, TRUE)

24 INIT-WR(s, cl, p)

25 if LENGTH-WR(s) < order[s] or learn[s] = RELEVANCE then
26 LEARN-CLAUSE(s, MAKE-CLAUSE-FROM-WR(s))
27 for j + i downto 1 do

28 for j + i downto 1 do

29 ¢l « Learned-neg[p][i]

30 open[cl] < open[cl] + 1

31 for j < length[Neg[p]] downto 1 do

32 cl + Neg[p][i]

33 if sub[cl] = NIL then

34 open|cl] < open|cl] + 1

35 return FALSE

36 wvalue[p] + TRUE

37 mode[p] « m

38 level[p] + level[s]

39 PusH(Stack[s], p)

40 for i < 1 to length[Pos[p]] do
41 ¢l « Pos[p][i]

42 if sub[cl] = NIL then

43 sublcl] < p

44 open[s] « open]s] - 1

45 return TRUE

Figure 4.10: Redefining EXTEND-PROP-TRUE for conflict-directed backjumping
and learning.

CHAPTER 4. ANATOMY OF A SAT SOLVER 25

RETRACT-PROP-TRUE(s, p)
1 if mode[p] = RS then
2 DELETE-CL(reason[p])
3 reason[p] = NIL
4 value[p] < UNDEF
5 Pop(Stack[s], p)
6 for i < 1 to length[Neg[p]] do
7 ¢l « Neg[p][4]
8 if sub[cl] = NIL then
9 open|cl] « open]cl] + 1
10 for i < 1 to length[Learned-neg[p]] do
11 ¢l « Learned-neg[p][]
12 open]cl] + open|cl] + 1
13 if open|cl] > order[s] then

14 UNLEARN-CLAUSE(s, cl)

15 else if open[cl] = 1 then

16 PusH(Learned-unit[s], cl)

17 lu-tag[cl] = length[Learned-unit[s]]

18 else if open|cl] = 2 and lu-tag[cl] # 0 then
19 DELETE(Learned-unit[s], cl)

20 lu-tag[cl] = 0

21 for i < 1 to length[Pos[p]] do
22 cl + Pos[p][7]
23 if sub[cl] = p then

24 sublcl] + NIL
25 open[s] < open[s] + 1
26 return

Figure 4.11: Redefining RETRACT-PROP-TRUE for conflict-directed backjump-
ing and learning.

Bcp(s)
1 r < TRUE
2 while length[Unit[s]] > 0 and r = TRUE do
3 ¢l =Por(Unit[s])

4 if sub[cl] = NIL then

5 i+ 1

6 repeat

7 I = Lits[cl][¢]

8 i1+ 1

9 until i > length[Lits[cl]] or value[prop[l]] = UNDEF
10 if ¢ < length[Lits[cl]] then

11 reason[prop[l]] + cl

12 r < EXTEND-PROP(s, prop[l], sign[l], UN)

13 return r

Figure 4.12: Redefining BcP for conflict-directed backjumping and learning.

CHAPTER 4. ANATOMY OF A SAT SOLVER 26

BACKTRACK(s, var v, var m)
1 FrusH(Unit[s])
2 FrusH(Pure[s])
3 repeat
p = Topr(Stack[s])
if IsS-MEMBER-WR(s, p) then
if mode[p] € {UN, FL, RS} then

4

00 3 O Ut

26
27
28
29

UPDATE-WR(s, p)

> Learn the clause because of size or relevance

if LENGTH-WR(s) < order[s] or learn][s] = RELEVANCE then
LEARN-CLAUSE(s, MAKE-CLAUSE-FROM-WR(s))

RETRACTPROP(s, p)

else if mode[p] = Ls

else

if value[p] = TRUE then v « FALSE else v + TRUE
m = RS
level[s] = level[p] - 1
RETRACTPROP(s, p)
> Propagate the learned unit clauses
if LEARNED-BCP(s) = TRUE then
if mode[p] = UNDEF then
level[s] = level[s] + 1
reason[p] = MAKE-CLAUSE-FROM-WR(s)
return p
else
return CHOOSE-LITERAL(s, v, m)
else
FLusH(Unit[s])

> The proposition was irrelevant to the conflict
RETRACTPROP(s, p)

30 until length[Stack[s]] = 0

31 return NIL

Figure 4.13: Conflict directed backjumping with learning.

CHAPTER 4. ANATOMY OF A SAT SOLVER

EXTEND-PROP-FALSE(S, p, m)

1 for i + 1 to length[Pos[p]] do
cl « Pos[p][]
3 if sublcl] = NIL then
4 if pos[cl] = 2 then
) > The clause is becoming Horn
6 DELETE(NhClauses|[s], cl)
7
8

[\V]

open|[s] < open[s] - 1
pos[cl] < pos[cl] - 1

9 open[cl] < open|cl] - 1

10 if open[cl] = 1 then

11 PusH(Unit[s], cl)

12 else if open[cl] = 0 then

13 for j + i downto 1 do

14 cl « Pos[p][i]

15 if sub[cl] = NIL then

16 if pos[cl] = 1 then

17 PusH(NhClauses[s], cl)
18 open[s] < open[s] + 1
19 pos[cl] « pos[cl] + 1

20 open]cl] «+ opencl] + 1
21 return FALSE

22 value[p] + TRUE

23 mode[p] < m

24 level[p] + level]s]

25 PusH(Stack[s], p)

26 for i < 1 to length[Neg[p]] do
27 cl + Neg[p][i]

28 if sub[cl] = NIL then

29 sublcl] < p

30 > Check out non-Horn clauses only
31 if pos[cl] > 1 then

32 open|[s] < open[s] - 1

33 return TRUE

Figure 4.14: Redefining EXTEND-PROP-FALSE to handle Horn relaxation.

27

CHAPTER 4. ANATOMY OF A SAT SOLVER 28

EXTEND-PROP-TRUE(S, p, m)
1 for i < 1 to length[Neg[p]] do
2 ¢l + Neg[p][4]
3 if sub[cl] = NIL then
4 if open[cl] = 3 then
5 > The clause is becoming Krom (binary)
6 DELETE(NkClauses[s], cl)
7 open[s] < open[s] - 1
8 open|cl] < open|cl] - 1

9 if open[cl] = 1 then

10 PusH(Unit[s], cl)

11 else if open[cl] = 0 then

12 for j + i downto 1 do

13 cl + Neg[p][i]

14 if sub[cl] = NIL then

15 if open[cl] = 2 then

16 PusH(NkClauses|[s], cl)
17 open[s] < open[s] + 1
18 open]cl] «+ open]cl] + 1
19 return FALSE

20 value[p] + TRUE

21 mode[p] < m

22 level[p] + level[s]

23 PusH(Stack[s], p)

24 for i < 1 to length[Pos[p]] do
25 ¢l « Pos[p][i]

26 if sub[cl] = NIL then

27 sublcl] < p

28 > Check out non-Krom clauses only
29 if open[cl] > 2 then

30 open[s] < open[s] - 1

31 return TRUE

Figure 4.15: Redefining EXTEND-PROP-TRUE to handle Krom (binary clauses)
relaxation.

CHAPTER 4. ANATOMY OF A SAT SOLVER

DLL-SOLVE(s)

1 repeat
if Bcp(s) = TRUE and MLF(s) = TRUE then

if open[s] = 0 then return TRUE

p < CHOOSE-LITERAL(s, v, m)
else

p + BACKTRACK(Ss, v, m)
if p # NIL then

EXTEND-PROP(s, p, v, m)
9 until p = NIL
10 return (open[s] = 0)

no

0 g O Ut W

Figure 4.16: Iterative version of the DLL algorithm

29

Chapter 5

Heuristics and
optimizations

5.1 Search heuristics

5.1.1 General framework for greedy heuristics

5.1.2 Jeroslow Wang (JW) and 2-sided Jeroslow Wang
(2IJW)

5.1.3 Max occurrences in clauses of min size (MOMS)
5.1.4 Shortest non-horn first (SATO)

5.1.5 Lexycographic (Boehm)

5.1.6 General framework for BCP-based heuristics
5.1.7 TUnit, Unirel and Unirel2 heuristics

5.1.8 Unit with tie breaking (Unitie)

5.1.9 Combining BCP-based greedy methods (Unimo)

CHOOSE-LITERAL-UNIMO(Ss, var v, var m)
1 if level[s] < swiTCH then
2 if branch[s] = MODEL then

3 return BCP-HEUR(s, Model-props[s], var v, var m)
4 else
5 return BCP-HEUR(s, Props[s], var v, var m)
6 else
7 if branch[s] = MODEL then
8 return GREEDY-HEUR(s, Model-props[s], var v, var m)
9 else
10 return GREEDY-HEUR(s, Props[s], var v, var m)

30

CHAPTER 5. HEURISTICS AND OPTIMIZATIONS

GREEDY-HEUR(s, P, var v, var m)
1 best-w < 0
2 best-p <+ NIL
3 for each p € P do
4 if value[p] = UNDEF then
) pos-w < neg-w < 0
6 for each ¢l € Pos[p] do
7 if sub[cl] = NIL then
8 len + CLAUSE-LENGTH(cl)

9 pos-w < SCORE(pos-w, len)

10 for each ¢l € Neg[p] do

11 if sub[cl] = NIL then

12 len + CLAUSE-LENGTH-JW(cl)
13 neg-w < SCORE(neg-w, len)

14 w + COMBINE(pos-w, neg-w)

15 if w > best-w then

16 best-w + w

17 best-p <+ p

18 if neg-w > pos-w then v < FALSE else v + TRUE
19 m « Ls

20 level[s] + level[s] + 1
21 return best-p

Figure 5.1: General template for greedy heuristics

5.1.10 SATZ heuristic
5.1.11 RelSAT heuristic

5.2 Randomization

5.2.1 Noisy heuristics
5.2.2 Serch cut off and restart

5.3 Preprocessing

5.3.1 Failed literals propagation
5.3.2 k-literals simplification
5.3.3 Tail resolution

5.3.4 Clause subsumption

5.3.5 Binary clauses propagation

5.3.6 Adding short resolvents

31

CHAPTER 5. HEURISTICS AND OPTIMIZATIONS

CHOOSE-LITERAL-JW(s, var v, var m)
1 if branch[s] = MODEL then
2 return GREEDY-HEUR(s, Model-props[s], var v, var m)
3 else
4 return GREEDY-HEUR(s, Props[s], var v, var m)

CLAUSE-LENGTH-JW(¢cl)
1 if open[cl] > MAXLEN then
2 return 0
3 else
4 return (MAXLEN - length[Lits[cl]])

SCORE-JW (w, len)
1w+ w + Expr2(len)
2 return w

COMBINE-JW (pos-w, neg-w)
1 if neg-w > pos-w then
2 return < neg-w
3 else
4 return pos-w

COMBINE-2JW (pos-w, neg-w)
1 return pos-w + neg-w

Figure 5.2: Obtaining Jeroslow-Wang heuristics from GREEDY-HEUR.

CHOOSE-LITERAL-MOMS(s, var v, var m)
1 if branch[s] = MODEL then
2 return GREEDY-HEUR(s, Model-props[s], var v, var m)
3 else
4 return GREEDY-HEUR(s, Props[s], var v, var m)

CLAUSE-LENGTH-MOMS(cl)
1 if open[cl] > 2 then
2 return w3
3 else
4 return w2

SCORE-MOMS(w, len)
1w+ w+ len
2 return w

COMBINE-MOMS(pos-w, neg-w)
1 return (pos-w + 1) - (neg-w + 1)

Figure 5.3: Obtaining MOMS heuristic from GREEDY-HEUR.

CHAPTER 5. HEURISTICS AND OPTIMIZATIONS

CHOOSE-LITERAL-SATO(s, var v, var m)
1 min-len < length[Props[s]]
2 for each ¢l € NhClauses[s] do
3 if sub[cl] = NIL then
4 if open[cl] < min-len then
5 min-len < open[cl]
6 FrusH(C)
7 PusH(C, cl)
8 else if length[C] < MAGIC and open[cl] = min-len then
9 PusH(C, cl)
10 FLUsH(P)
11 while length[P] < MAGIC do
12 ¢l = Pop(C)
13 for each [€ Lits[cl] do

14 p + prop[l]

15 if value[p] = UNDEF then
16 value[p] + TRUE

17 PusH(P, p)

18 for each p € P do
19 walue[p] < UNDEF
20 return GREEDY-HEUR(s, P, v, m)

Figure 5.4: Shortest non-Horn first (SATO) heuristic

33

CHAPTER 5. HEURISTICS AND OPTIMIZATIONS

CHOOSE-LITERAL-BOEHM(S, var v, var m)
1 if branch[s] = MODEL then P = Model-props[s] else P = Props|[s]
2 best-w < best-wall < 0
3 best-p + NIL
4 min-len < length[Props[s]]
5 for each p € P do

6 if value[p] = UNDEF then

7 pos-w pos-wall < 0

8 for each ¢l € Neg[p] do

9 if sub[cl] = NIL then

10 pos-wall + pos-wall + 1

11 len < open|cl]

12 if len < min-len then

13 best-p < p

14 min-len < len

15 pos-w 1

16 else if len = min-len then

17 pos-w < pos-w + 1

18 neg-w < neg-wall < 0

19 for each ¢l € Neg[p] do
20 if sub[cl] = NIL then
21 neg-wall + neg-wall + 1
22 len <+ open|cl]
23 if len < min-len then

24 best-p « p

25 min-len < len

26 neg-w 1

27 else if len = min-len then

28 neg-w < neg-w + 1

29 w A - MAX(pos-w, neg-w) + B - MIN(pos-w, neg-w)
30 wall < A - MAX(pos-wall, neg-wall) + B - MIN(pos-wall, neg-wall)
31 if best-p = p then
32 if neg-w > pos-w then v < FALSE else v < TRUE
33 best-w + w
34 best-wall < wall
35 else if pos-w > 0 or neg-w > 0 then
36 if (w > best-w) or (w = best-w and wall > best-wall) then
37 best-p < p
38 if neg-w > pos-w then v < FALSE else v < TRUE
39 best-w + w
40 best-wall < wall
41 m + LS

42 level[s] « level[s] + 1
43 return best-p

Figure 5.5: Lexycographic (Boehm’s) heuristic

34

CHAPTER 5. HEURISTICS AND OPTIMIZATIONS

LEAN-EXTEND-PROP-TRUE(ls, p)
1 PusH(Changed[ls], p)
2 value[p] < TRUE
3 for each cl € Neg[p] do
4 if sub[cl] = NIL then
5 PusH(Managed|ls], cl)
6 len < open]cl] «+ open[cl] - 1
7 ExT-SCORE(ls, p, cl)
8 if len =1 then

9 PusH(Unit[ls], cl)
10 else if len = 0 then
11 INIT-WR(s, cl, p)
12 return FALSE

13 for each ¢l € Learned-Neg[p] do
14 if sub[cl] = NIL then

15 PusH(Managed|ls], cl)

16 len < open]cl] « open]cl] - 1
17 ExT-SCcORE(ls, p, cl)

18 if len = 1 then

19 PusH(Unit[ls], cl)

20 else if len = 0 then

21 INIT-WR(s, cl, p)

22 return FALSE

23 return TRUE

Figure 5.6: Fast EXTEND-PROP-TRUE for BCP-based heuristics.

LEAN-BcPp(ls)
1 7 < TRUE
2 while length[Unit[s]] > 0 and r = TRUE do
3 ¢l = Por(Unit[ls)])

4 i1

5 repeat

6 I = Lits[cl][4]

7 i1+ 1

8 until ¢ > length[Lits[cl]] or value[prop[l]] = UNDEF
9 if i < length[Lits[cl]] then

10 reason[prop[l]] « cl

11 Bcp-Score(ls, p)

12 r < LEAN-EXTEND-PROP(Is, propl[l])

13 return r

Figure 5.7: Fast Bcp for BCP-based heuristics.

CHAPTER 5. HEURISTICS AND OPTIMIZATIONS

LEAN-BACKTRACK-FALSE(ls)
1 while length[Managed|[ls]] > 0 do
2 ¢l + Por(Managed|[ls])
3 open[cl] « open[cl] + 1
4 while length|Changed[ls]] > 1 do
5 p < Popr(Changed|ls])
6 UpDATE-WR(ls, p)
7 wvalue[p] < UNDEF
8 p + PoP(Changed|[ls))
9 value[p] + UNDEF
10 return MAKE-CLAUSE-FROM-WR(Is)

Figure 5.8: Fast BACKTRACK for BCP-based heuristics (failed literal).

CHAPTER 5. HEURISTICS AND OPTIMIZATIONS

BcP-HEUR(s, P, var v, var m)
1 repeat
2w+ best-w < 0

3 best-p + NIL

4 FLUsH(Best)

5 foreach p € P do

6 if value[p] = UNDEF then

7 INIT-SCORES(ls, TRUE)

8 LEAN-EXTEND-PROP-TRUE(ls, p)

9 if LEAN-BCP(ls) = FALSE then

10 reason[p] <~ LEAN-BACTRACK-FALSE(ls)
11 EXTEND-PROP-FALSE(S, p, FL)

12 if BCP(s) = FALSE then

13 return BACKTRACK(Ss, v, m)
14 else

15 LEAN-BACTRACK-TRUE(Is)

16 INIT-SCORES(ls, FALSE)

17 LEAN-EXTEND-PROP-FALSE(Ils, p)
18 if LEAN-BCP(ls) = FALSE then
19 reason[p] < LEAN-BACTRACK-FALSE(ls)
20 EXTEND-PROP-TRUE(S, p, FL)
21 Ber(s)
22 else
23 LEAN-BACTRACK-TRUE(Is)
24 w < COMBINE(ls)
25 if w > best-w then
26 best-w — w
27 FLUSH(Best)
28 PusH(Best, p)

29 best-p + CHOOSE-BEST(Best, v)

30 until best-p = NIL or value[best-p] = UNDEF
31 m < LS

32 level[s] < level[s] + 1

33 return best-p

Figure 5.9: General template for BCP-based heuristic.

37

CHAPTER 5. HEURISTICS AND OPTIMIZATIONS

CHOOSE-LITERAL-UNIT(s, var v, var m)
1 return BCP-HEUR(s, Props[s], var v, var m)

INIT-SCORES-UNIT(Is, v)
1 if v = TRUE then
2 pos-w[ls] 1
3 walue[ls] < TRUE
4 else
5 meg-w[ls] «+ 1
6 walue[ls] « FALSE

BcCP-SCORE-UNIT(Is, p)
1 if value[ls] = TRUE then
2 pos-w[ls] « pos-w[ls] + 1
3 else
4 neg-w[ls] + neg-w[ls] + 1

COMBINE-UNIT(Is)
1 w + pos-w[ls] - neg-w[ls] - SPREAD + pos-w[ls] + neg-w[ls] + 1
2 return w

Figure 5.10: Obtaining Unit heuristic from BCP-HEUR.

CHOOSE-LITERAL-UNIREL(S, var v, var m)
1 return BCP-HEUR(s, Props[s], var v, var m)

INIT-SCORES-UNIREL(ls, v)
1 if v = TRUE then
2 pos-w[ls] < 0
3 walue[ls] < TRUE
4 else
5 mneg-w[ls] + 0
6 wvalue[ls] < FALSE

BCP-SCORE-UNIREL(ls, p)
1 if m-tag[p] > 0 then
2 if value[ls] = TRUE then
3 pos-w(ls] «+ pos-w(ls] + 1
4 else
5 neg-w[ls] < neg-w(ls] + 1

CHOOSE-LITERAL-UNIREL2(s, var v, var m)
1 return BCP-HEUR(s, Model-props[s], var v, var m)

Figure 5.11: Obtaining Unirel and Unirel2 heuristics from BCP-HEUR.

CHAPTER 5. HEURISTICS AND OPTIMIZATIONS

CHOOSE-LITERAL-UNITIE(s, var v, var m)
1 if branch[s] = MODEL then
2 return BCP-HEUR(s, Model-props[s], var v, var m)
3 else
4 return BCP-HEUR(s, Props|s], var v, var m)

INIT-SCORES-UNITIE(!s, v)
1 if v = TRUE then
2 pos-w[ls] + 1
3 posZ-w[ls] < 0

4 walue[ls] < TRUE

5 else

6 neg-w[ls] « 1

7T neg2-w[ls] + 0

8 walue[ls] < FALSE

EXT-SCORE-UNITIE(ls, p, cl)
1 if open|cl] = 2 then
2 if value[ls] = TRUE then
3 pos2-w[ls] « pos2-w[ls] + 1
4 else
5 neg2-w(ls] + neg2-w(ls] + 1

BcP-SCORE-UNITIE(ls, p)
1 if value[ls] = TRUE then
2 pos-w[ls] « pos-w[ls] + 1
3 else
4 neg-w[ls] « neg-w[ls] + 1

COMBINE-UNITIE(!s)
1 w < posZ-w[ls] - neg2-w[ls] - SPREAD + pos-w[ls] + neg-w[ls] + 1
2 return w

Figure 5.12: Obtaining basic Unitie heuristic from BCP-HEUR.

39

CHAPTER 5. HEURISTICS AND OPTIMIZATIONS

CHOOSE-BEST-FIRST(Best, var v)
1 if length[Best] = 0 then return NIL
2 backup + ToPr(Best)
3 v < TRUE
4 for each p € Best do
5 if value[p] = UNDEF then
6 return p
7 return backup

CHOOSE-BEST-RANDOM(Best, var v)
1 if length[Best] = 0 then return NIL
2 backup + Top(Best)
3 v < TRUE
4 FLUSH(Best-open
5 i + RANDOM mod (length[Best])
6 for each p € Best do
7 if value[p] = UNDEF then

8 if 4 = 0 then

9 return p

10 else

11 1 14-1

12 PusH(Best-open, p)

13 if length[Best-open] = 0 then

14 return backup

15 else

16 return Best-open[i mod length[Best-open]]

CHOOSE-BEST-GREEDY(Best, var v)
1 if length[Best] = 0 then return NIL
2 best-w + 0
3 best-p < Topr(Best)
4 for each p € Best do

5 if value[p] = UNDEF then

6 pos-w < neg-w <+ 0

7 for each ¢l € Pos[p] do

8 if sub[cl] = NIL then pos-w + pos-w + 1
9 for each ¢! € Neg[p] do

10 if sub[cl] = NIL then neg-w + neg-w + 1
11 if pos-w > best-w or neg-w > best-w then
12 best-p <+ p

13 if neg-w > pos-w then

14 best-w + meg-w

15 v < FALSE

16 else

17 best-w < pos-w

18 v < TRUE

19 return best-p

Figure 5.13: Strategies for breaking ties in CHOOSE-LITERAL-UNITIE.

CHAPTER 5. HEURISTICS AND OPTIMIZATIONS 41

CHOOSE-LITERAL-SATZ(s, var v, var m)
1 repeat
2 best-w + 0
3 best-p < NIL
4 for each p € Props[s] do
5 if value[p] = UNDEF then
6 idp «+ id[p]
7 pw < pwa < Redp[ls][idp] <+ 0
8 nw < nwa < Redn[ls][idp] < 0

9 for each ¢l € Pos[p] do

10 if sub[cl] = NIL then

11 if open|cl] = 2 then pw + pw + 1 else pwa «+ pwa + 1
12 Plen|ls][idp] + pw

13 Plen-all[ls][idp] < pwa

14 for each ¢l € Neg[p] do

15 if sub[cl] = NIL then

16 if open[cl] = 2 then nw < nw + 1 else nwa + nwa + 1
17 Nlen[ls][idp] + nw

18 Nlen-all[ls][idp] + nwa

19 if PrROP-4-1(pw, nw) then

20 r < EXAMINE(Ils, p)

21 if 7 = FALSE then return BACKTRACK(s, var v, var m)
22 else if r # TRUE then PusH(Chosen][ls], p)

23 if length[Chosen[ls]] < T then
24 for each p € Props[s] do

25 if value[p] = UNDEF then

26 idp < id[p]

27 if PrROP-4-1(Plen]ls][idp], Plen[ls][idp]) = FALSE then

28 if PROP-3-1(Plen|ls][idp], Plen[ls][idp]) = TRUE then

29 r < EXAMINE(Is, p)

30 if r = FALSE then return BACKTRACK(s, var v, var m)
31 else if r # TRUE then PusH(Chosen|ls], p)

32 if length[Chosen]ls]] < T then

33 FLUsH(Chosen|ls])

34 if branch[s] = MODEL then P = Model-props[s] else P = Props|s]
35 for each p € P do

36 if value[p] = UNDEF then

37 r < ExaMINe-0(Is, p)

38 if 7 = FALSE then return BACKTRACK(s, var v, var m)
39 else if r # TRUE then PusH(Chosen|[ls], p)

40 for each p € Chosen][ls] do

41 w < posZ2-wl[ls] - neg2-w[ls] - SPREAD + pos-w|[ls] + neg-w[ls] + 1

42 if w > best-w then

43 best-w — w

44 best-p « p

45 until best-p = NIL or value[best-p] = UNDEF
46 v < TRUE

47 m + LS

48 level[s] « level[s] + 1

49 return best-p

Figure 5.14: SATZ heuristic.

Chapter 6

SIM: a DLL-based library
of SAT solvers

6.1 Aims and design
6.2 Features

6.3 Putting SIM to the test

42

Part 11

Modal logics

43

Chapter 7

Dealing with knowledge

7.1 Propositional modal logics

7.1.1 Classical modal logics

7.1.2 Standard modal logics
7.2 Algorithms for modal logics

7.2.1 Tableaux-based
7.2.2 Translation-based
7.2.3 SAT-based

44

Chapter 8

Contributions

8.1 Modal logic reasoners

8.1.1 DLP
8.1.2 TA

8.2 Experimental analysis

8.2.1 Open problems

8.2.2 Benchmarks in modal logics

45

Chapter 9

DLL-based decision
procedures

9.1 The basic generate and test loop

9.1.1 Using DLL to generate assignments
9.1.2 Outline of the test phase

9.2 Testing for consistency in modal logics

9.2.1 Logics E, EM, EN, EMN
9.2.2 Logics EC, ECM, ECN, EMCN (K)
9.2.3 Logics T and S4

9.3 Enumerating models in LTL

9.3.1 The taming of eventualities

9.3.2 Ensuring termination

46

Chapter 10

Implementing modal
decision procedures

10.1 Data structure for modal formulas

10.2 Rewriting and simplification

10.2.1 Rewriting modal formulas

10.2.2 Rewriting LTL formulas
10.3 Interfacing the SAT solver

10.3.1 Renaming modal formulas
10.3.2 Formula look up tables (LUT)

10.3.3 Conversion to clausal normal form (CNF)
10.4 Pruning techniques

10.4.1 Aggressive look-ahead (early pruning)
10.4.2 Modal backjumping and learning

10.5 Caching
10.5.1 The case study of modal K

10.5.2 Requirements for effective caching
10.5.3 Caching with hash tables
10.5.4 Caching with bit matrices

47

Chapter 11

*SAT: modal decision
procedures on top of
SAT-solvers

11.1 Aims and design
11.2 Features
11.3 Putting *SAT to the test

48

Part 111

Quantified propositional
logic (QSAT)

49

Chapter 12

Higher order satisfiability

12.1 Quantified propositional formulas
12.2 Algorithms for QSAT
12.3 The DLL-based algorithm for QSAT

50

Chapter 13

State of the art

13.1 Enhancing the DLL-based algorithm

13.1.1 Heuristics
13.1.2 Advanced look-ahead techniques
13.1.3 Preprocessing

13.2 QSAT solvers

13.2.1 Evaluate
13.2.2 Decide
13.2.3 QSolve
13.2.4 QKN

13.3 Experimental analysis

13.3.1 Available benchmarks
13.3.2 Designing a test set
13.3.3 A snapshot of DLL-based QSAT solvers

51

Chapter 14

From SAT to QSAT

14.1 Data structure and primitives
14.1.1 Formula and search state

14.1.2 Assigning and retracting truth values
14.2 Implementing Look-ahead

14.2.1 Extended BCP
14.2.2 Adapting MLF
14.2.3 Trivial truth

14.3 Implementing Look-back

14.3.1 Chronological backtracking
14.3.2 Conflict directed backtracking
14.3.3 A glimpse of learning

14.4 Search heuristics

14.4.1 Designing an heuristic for QSAT

14.4.2 Jeroslow Wang (JW) and 2-sided Jeroslow Wang
(2JW)

14.4.3 Lexycographic
14.4.4 BCP-based

52

Chapter 15

QuBE: DLL-based
procedure(s) for QSAT

15.1 Aims and design
15.2 Features

15.3 Putting Qube to the test

53

Part IV

Bounded model checking
(BMC)

54

Chapter 16

Model checking

55

Chapter 17

From SAT to BMC

56

Chapter 18

Applications

57

Chapter 19

Conclusions and future
work

19.1 Wrapping up

19.2 Future development(s)

58

Appendix A

SIM system description

59

Appendix B

*SAT system description

60

Appendix C

QuBE system description

61

Bibliography

[BS97]

[CLRYS]

[Fre95]

[LA97]

[SS96]

[Str97]

[Zha97]

Roberto J. Bayardo, Jr. and Robert C. Schrag. Using CSP look-back
techniques to solve real-world SAT instances. In Proceedings of the
14th National Conference on Artificial Intelligence and 9th Innovative
Applications of Artificial Intelligence Conference (AAAI-97/TAAI-97),
pages 203—-208, Menlo Park, July 27-31 1997. AAAT Press.

Thomas H. Cormen, Charles E. Leiserson, and Ronald R. Rivest. In-
troduction to Algorithms. MIT Press, 1998.

Jon W. Freeman. Improvements to propositional satisfiability search
algorithms. PhD thesis, University of Pennsylvania, 1995.

Chu Min Li and Anbulagan. Heuristics based on unit propagation for
satisfiability problems. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI-97), pages 366-371, San
Francisco, August 23-29 1997. Morgan Kaufmann Publishers.

Jodo P. Marques Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. Technical report, University of Michigan,
April 1996.

Bjarne Stroustrup. The C++ Programming Language - 3rd edition.
Addison-Wesley, 1997.

H. Zhang. SATO: An efficient propositional prover. In William Mc-
Cune, editor, Proceedings of the 14th International Conference on
Automated deduction, volume 1249 of LNAI pages 272-275, Berlin,
July13-17 1997. Springer.

62

