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Abstract. The 2006 evaluation of QBF solvers (QBFEVAL’06) is an automated
reasoning competition involving systems for deciding QBFs. Although QBFE-
VAL’06 is the fourth in a series of events, it is the first competitive one, and
also the one attracting the highest number of participants so far. QBFEVAL’06 is
meant to designate a winner, but, at the same time, it should also summarize the
performances of the solvers correctly, and provide some scientific insight about
the current state of the art in QBF reasoning. In order to fulfill such requirements
we had to deal with several research issues in the design of QBFEVAL’06, and,
among them, two that can be of more general interest: noisy CPU time data, and
the scoring methods used to compute the final ranking of the solvers. In this paper
we investigate the above two issues. First, we provide an empirical characteriza-
tion of CPU time noise, and we devise a model to deal with errors in CPU time
measures efficiently, i.e., without having to run a solver several times on the same
instance. Second, taking into account the noise model, we evaluate several scor-
ing methods, including a new one that we devised to overcome the limitations
of the others. Our method turns out to be a good compromise among competing
requirements, and to be robust with respect to changes in the competition settings.

1 Introduction

The 2006 evaluation of QBF solvers (QBFEVAL’06) is an automated reasoning com-
petition involving systems for deciding QBFs. Although QBFEVAL’06 is the fourth
in a series of events (see [1–3] for previous QBFEVAL reports) , it is the first com-
petitive one, and also the one attracting the highest number of participants so far. The
automated reasoning research community has grown accustomed to competitive events
like QBFEVAL’06. A non-exhaustive list of such sister events includes the CADE ATP
System Competition (CASC) [4] for theorem provers in first order logic, the SAT Com-
petition [5] for propositional satisfiability solvers, the International Planning Competi-
tion (see, e.g., [6]) for symbolic planners, the CP Competition (see, e.g., [7]) for con-
straint programming systems, and the Satisfiability Modulo Theories (SMT) Competi-
tion (see, e.g., [8]) for SMT solvers. The main purpose of the above events, including
QBFEVAL’06, is to designate a winner. Even if such perspective can be limiting, and
the results of automated reasoning systems competitions may provide less insight than
controlled experiments in the spirit of [9], there is a general agreement that competi-
tions raise interest in the community and play a fundamental role in the advancement
of the state of the art, helping to set research challenges for developers and assess the



current technological frontier for users. In order to (try to) meet the above requirements,
the results of competitive events should also summarize the performances of the solvers
as accurately as possible, and provide some scientific insight about the current state of
the art in the automated reasoning branch of concern. In trying to pursue such goals in
the design of QBFEVAL’06, we had to deal with several research issues, and, among
them, two that can be of more general interest: noisy CPU time data, and the scoring
method used to compute the final ranking of the solvers.

The issue of errors in CPU time measures occurred to us while designing QBFE-
VAL’06 (see [10] for a preliminary report). The phenomenon has to do with the inher-
ent inaccuracy of CPU time measures performed by most operating systems, including
QBFEVAL’06 platform. While such inaccuracy could be negligible for the casual user,
in the context of a competition it is not. An assertion of the sort “solver A is better than
solver B because the run-time of A is less than the run-time of B” should be based on
intrinsic merit of A over B, and not on random fluctuations in the CPU time measures.
When dealing with errors, the first question to ask is whether they are random errors
affecting the measure, or systematic drifts from the correct measure: while the former
ones can be dealt with, the latter ones must be eliminated. The second question to ask,
should the answer to the first one be positive, is what it makes for a good model of the
observed noise. In our case, while the answer to the first question is positive, i.e., CPU
time drifts are indeed random, the answer to the second one is elusive, mainly because
the observed run-times do not follow standard normal or log-normal distributions, even
under simplifying assumptions. However, we show that standard approximations allow
us to estimate with reasonable confidence the error to be taken into account when com-
paring the solvers, without having to run each solver several times on each instance.

Our analysis of scoring methods considers two different sets of them. The first
set is comprised of methods used in automated reasoning systems contests, namely
CASC [4], the SAT competitions [5], the (past) QBF evaluations [11], and a new method
called YASM (“Yet Another Scoring Method”) that we are evaluating as a candidate
scoring method for QBFEVAL’06. The second set of scoring methods is comprised of
procedures based on voting systems, namely Borda count [12], range voting [13] and
Schulze’s method [14]. The main difference between the methods of the first set is that
using the methods of the second set amounts to consider the solvers as candidates and
the problem instances as voters. Each voter ranks the candidates, i.e., the solver with the
best performance on the instance is the preferred candidate, and all the other solvers are
ranked accordingly. Finally, the votes are pooled to elect the winner of the contest. Our
results show that YASM provides a good compromise when considering some measures
that quantify desirable properties of the scoring procedures. In particular, the measures
we propose account for:

– the degree of fidelity of the scoring methods, i.e., given a synthesized set of raw
data, evaluate whether a scoring method distorts the results;

– the degree of stability of each scoring method with respect to perturbations (i) in
the size of the test set, (ii) in the amount of resources available (CPU time), and
(iii) in the quality of the test-set;

– the representativeness of each scoring method with respect to the state of the art
expressed by the competitors.



We compute the above measures using part of the results from QBFEVAL’05 [3] and
applying the noise model outlined above.

This paper builds on and extends previous work by one of the authors [10] in several
ways. First, we analyze noise in CPU time measures and extract a model that is used
to compare the scoring methods, while in [10] CPU times were assumed to be exact.
Moreover, the version of YASM that we present here is new and improves on the one
presented in [10]. The new YASM features a simpler calculation, and it is also more
effective when compared to the old YASM and the other scoring methods. Finally,
the comparison of scoring methods is broadened by the addition of new effectiveness
measures (fidelity, see Section 5), and deepened by taking into account CPU time noise
and an improved definition of SOTA relevance (see Section 5).

The paper is structured as follows. In Section 2 we introduce the case study of
QBFEVAL’05 [3], we outline the working hypotheses underlying our analysis, and we
introduce some state-of-the-art scoring methods. In Section 3 we propose a model for
dealing with noisy CPU time measures. In Section 4 we introduce our new scoring
method, and then we compare it with other methods in Section 5 using several effec-
tiveness measures. We conclude the paper in Section 6 with a discussion about the
current status of our research agenda. The appendices A and B contains tables, figures
and plots that are referenced throughout Section 3 and Section 5, respectively.

2 Preliminaries

2.1 QBFEVAL’05

QBFEVAL’05 [3] is the third in a series of non-competitive events that preceded QBFE-
VAL’06. QBFEVAL’05 accounted for 13 competitors, 553 QBFs and three QBF gen-
erators submitted. The test set was assembled using a selection of 3191 QBFs obtained
considering the submissions and the instances archived in QBFLIB [15]. The results
of QBFEVAL’05 can be listed in a table RUNS comprised of four attributes (column
names): SOLVER, INSTANCE, RESULT, and CPUTIME. The attributes SOLVER and IN-
STANCE report which solver is run on which instance. RESULT is a four-valued attribute:
SAT, i.e., the instance was found satisfiable by the solver, UNSAT, i.e., the instance was
found unsatisfiable by the solver, TIME, i.e., the solver exceeded a given time limit
without solving the instance (900 seconds in QBFEVAL’05), and FAIL, i.e., the solver
aborted for some reason (e.g., a run-time error, an inherent limitation of the solver, or
any other reason beyond our control). Finally, CPUTIME reports the CPU time spent
by the solver on the given instance, in seconds. In the analysis herewith presented we
used a subset of QBFEVAL’05 RUNS table, including only the solvers that passed to the
second stage of the evaluation, and the QBFs coming from classes of instances having
fixed structure (see [3] for more details). Under these assumptions, RUNS table reduces
to 4408 entries, one order of magnitude less than the original one. This choice allows
us to disregard correctness issues, to reduce considerably the overhead of the computa-
tions required for our analysis, and, at the same time, maintain a significant number of
runs.



2.2 Working hypotheses

The scoring methods that we evaluate, the measures that we compute and the results
that we obtain, are based on the assumption that a table identical to RUNS as described
above is the only input required by a scoring method. As a consequence, the scoring
methods (and thus our analysis) do not take into account (i) memory consumption, (ii)
correctness of the solution, and (iii) “quality” of the solution. As for (i), it turns out
that measuring and comparing memory consumption is a tough exercise during a con-
test, mainly for two reasons. First, there are several definitions of memory consumption,
e.g., peak memory usage as opposed to the total number of bytes in memory read/write
operations, and it is not clear which one should be preferred. Second, it is complicated
to measure memory consumption for systems as black boxes, which is usually the only
view that the organizers of the contest have. Regarding (ii), checking the correctness
of the solution is desirable for most automated reasoning systems. Unfortunately, the
size of the certificate can be prohibitive in practice, and this is precisely the case of
certificates for QBF (un)satisfiability which is a PSPACE-complete problem. Produc-
ing reasonably sized certificates, i.e., small proofs, from QBF solvers is still mainly a
research issue (see, e.g., [16, 17]), and thus we do not have any certificates associated
with QBFEVAL’05 RUNS table. Finally, (iii) matters only if there is indeed some solu-
tion on which quality indicators can be computed for the sake of comparison. No such
indicators can be computed for simple SAT/UNSAT results, and the solutions, i.e., the
proofs, are not currently available.

2.3 State of the art scoring methods

In the following we describe in some details the state of the art scoring methods used in
our analysis. For each method we describe only those features that are relevant for our
purposes. Further details can be found in the references provided.

CASC [4] The CASC scoring method applied to our setting yields the following guide-
lines. Solvers are ranked according to the number of problems solved, i.e., the number
of times RESULT is either SAT or UNSAT. In case of a tie, the solver faring the lowest
average on CPUTIME fields over the problems solved is preferred.

QBF evaluation [11] QBFEVAL scoring method is the same as CASC, except that ties
are broken using the sum of CPUTIME fields over the problems solved.

SAT competition [5] The last SAT competition uses a purse-based method, i.e., the
score of a solver on a given instance, is obtained by adding up three purses:

– the solution purse, which is divided equally among all solvers that solve the prob-
lem;

– the speed purse, which is divided unequally among all the competitors that solve
the problem, first by computing the speed factor Fs,i of a solver s on a problem
instance i:

Fs,i =
k

1 + Ts,i

(1)



where k is an arbitrary scaling factor (we set k = 104 according to [18]), and Ts,i

is the time spent by s to solve i; then by computing the speed award As,i, i.e., the
portion of speed purse awarded to the solver s on the instance i:

As,i =
Pi · Fs,i∑

r Fr,i

(2)

where r ranges over the solvers, and Pi is the total amount of the speed purse for
the instance i.

– the series purse, which is divided equally among all solvers that solve at least one
problem in a given series (a series is a family of instances that are somehow related,
e.g., different QBF encodings for some problem in a given domain).

The overall score of a solver is just the sum of its scores on all the instances of the test
set, and the winner of the contest is the solver with the highest sum.

Borda count [12] Suppose that n solvers are participating to the contest. Each voter
(instance) ranks the candidates (solvers) in ascending order considering the value of
the CPUTIME field. Let ps,i be the position of a solver s in the ranking associated with
instance i (1 ≤ ps,i ≤ n). The score of s computed according to Borda count is just
Ss,i = n − ps,i. In case of time limit attainment and failure, we default Ss,i to 0. The
total score Ss of a solver s is the sum of all the scores, i.e., Ss =

∑
i Ss,i, and the

winner is the solver with the highest score.

Range voting [13] The ranking position ps,i of each solver s on each instance i is
computed as in Borda count. Then an arbitrary scale is used to associate a weight wp

with each of the n positions and the score Ss,i is computed as Ss,i = wp · ps,i (default
to 0 in case of time limit attainment or failure) and Ss =

∑
i Ss,i, as in Borda count. To

compute wp in our experiments we use a geometric progression with a common ratio
r = 2 and a scale factor a = 1, i.e., wp = arn−p with 1 ≤ p ≤ n.

Schulze’s method [14] It is a pairwise voting method that enjoys the Condorcet prop-
erty, i.e., the winner (resp. the loser) is guaranteed to beat (resp, lose to) every other
solver in pairwise comparison. Borda count enjoys only the Condorcet property on the
loser side, while Range voting does not enjoy such property. Schulze’s method works
as follows. A n × n square matrix M is computed, where the entries Ms,t with s 6= t

account for the number of times that solver s is faster than t on some instance, while
Ms,t = 0 if s = t. No points are awarded in case of ties, time limit attainment and fail-
ure. The score Ss according to which a solver s is ranked is computed as Ss =

∑
t Ms,t.

3 Noisy CPU time data

Given the setting described in Subsection 2.2, the only measures of merit at our disposal
are the number of problems solved and the CPU times. The number of problems solved
is correct as long as the CPU time measure used to enforce the time limit is so. There-
fore, it turns out that to ensure accuracy of the results in our setting it is very important
to tame potential sources of errors in the CPU time measures. In [10], it is assumed that



CPU times are unaffected by errors and such assumption is listed as a working hypothe-
sis. If this assumption were true, repeated runs of a deterministic algorithm on the same
instance should always yield the same quantity. However, as noticed also in [10], this is
indeed not true on the current QBFEVAL platform.1

In order to study the influence of errors on CPU time measures, we used an im-
plementation of the function PROBE presented in Figure 2 (Appendix A). The task
accomplished by PROBE is quite simple: multiply two square matrices filled with ran-
dom integers. We came up with this model considering that QBF solvers are CPU-
intensive programs that rarely use floating point calculations, and that perform most of
their computations on data stored in tabular format. Since most QBF solvers are also
memory-intensive programs, we used dynamic memory allocation in PROBE in order to
obtain a simple, yet realistic enough model.2 Notice that we are not using QBFEVAL’05
solvers in this analysis since all of them are available to us as black boxes, they show
different behaviors on the same instance, and their complex structure makes difficult
to tune their expected run-time with sufficient precision. On the other hand, looking at
Figure 2 we see that the size DIM of the multiplied matrices is the only parameter that
can be used to tune the expected run-time of PROBE, which is monotonically increas-
ing with DIM. The CPU time statistics of 100 runs of PROBE for expected run-times in
the set Γ = {1, 5, 10, 20, 40, 50, 100, 500, 900} are reported in Table 3 (Appendix A).
The choice of such run-times is motivated by the fact that at least 85% of the problems
solved by each solver in QBFEVAL’05 are processed in at most 50 seconds. In the fol-
lowing, we call N -sequence each sequence corresponding to some expected run-time
N ∈ Γ of PROBE. Inspection of Table 3 reveals that even for such a simple program as
PROBE, notwithstanding the light-load conditions under which the data were obtained,
there are fluctuations in the observed run-times that can make the comparisons between
CPU times unreliable. As we will shortly see, the following facts are also true:

1. The errors in CPU time measures are random, i.e., there seems to be no systematic
drift that can (and should) be eliminated a priori in the N -sequences.

2. The distribution of the observed run-times does not follow a standard, i.e., nor-
mal (or log-normal), distribution, unless the run-time is relatively high (around 900
seconds).

3. The statistics that measure the spread, i.e., standard deviation and interquartile
range, of the observed run-times are not constant, but they appear to grow together
with the measures of center, i.e., the mean and the median, of the observed run-
times.

We now analyze each of these facts in turn using the data summarized in Table 3 and,
in the end, we propose an approximated model to deal with the CPU time noise.

To confirm fact (1) above, we can resort to autocorrelation plots for each of the
N -sequences. Autocorrelation plots, see Figure 3 (Appendix A), are obtained by com-
puting autocorrelations for the observed run-times in a given N -sequence at varying

1 A farm of identical 3GHz PIV PCs with 1GB of main memory, running Debian
GNU/Linux (sarge distribution with a 2.4.x kernel)

2 It can be observed that PROBE does not deallocate memory dynamically. However, although
QBF solvers can in principle perform allocations and deallocations, in our experience their
memory consumption is rarely found to be substantially decreasing during their computation.



time lags. If the sequence is truly random, such autocorrelations should be near zero
for any and all time-lag separations (except, of course, time-lag 0 which is 1 by def-
inition). If non-random, then one or more of the autocorrelations will be significantly
non-zero, where “significantly” here means outside a reasonable confidence interval
(we use a 95% confidence interval in our analysis). As we can see in Figure 3, for each
N -sequence, the corresponding autocorrelation plot does not show any particular pat-
tern, and most of the correlation values are well within the confidence band. From this
analysis, we can conclude that the N -sequences can be considered random, and thus
devoid of systematic errors. Moreover, this also justifies the use of statistical tools and
tests to analyze the sequences, which would not make sense otherwise.

We now turn to the question of the distribution characterizing each N -sequence.
The results of this analysis are summarized in Figures 4 and 5 and in Table 4 (Ap-
pendix A). In Figure 4, for each N -sequence we provide: (i) a histogram describing the
frequency distribution of the observed data; (ii) an estimate of the probability density
function (pdf) based on the observations (red dots), and (iii) the pdf of a normal distri-
bution having the same mean and standard deviation of the observed data (blue dots).
Figure 4 tells us that most N -sequences yield a distribution of the observed run-times
which is both skewed, i.e., not symmetric, and kurtotic, i.e., with a substantial num-
ber of observations that are far from the center of the distribution (a.k.a. “fat tails”).
This is confirmed quantitatively by the skewness and kurtosis values reported in Fig-
ure 4 which are significantly different from zero in most cases. The only exception is
the 900-sequence whose distribution is approximately normal (red and blue dots almost
coincide). The suspect of non-normality for most of the N -sequences is confirmed in
Figure 5, where normal quantile-quantile plots are shown. Should the observed data
be normally distributed, the points in the scatter plots of Figure 5 would fall approx-
imately on a straight line. Indeed this is almost always false, both considering all the
observed data (blue line across the plots in Figure 5) and when excluding more extreme
observations (red line in Figure 5). The only exception to this pattern is represented
by the 900-sequence and, to a lesser extent, by the 500-sequence. A final confirmation
of this trend comes from the p-values obtained performing the Shapiro-Wilk normality
test and reported in the 4th (normality) and 5th (log-normality) columns of Table 4.
The Shapiro-Wilk test [19] is a nonparametric test to assess normality. A test for log-
normality can thus be obtained by applying the natural logarithm to the sequence under
test. The null hypothesis H0 of the test is that the observed values came from a nor-
mal distribution (the alternative hypothesis Ha states of course the contrary). Since the
p-values obtained from the test are very small, we can safely reject H0 and conclude
that all the N -sequences are not normally (or log-normally) distributed, with the only
exception of the 900-sequence that yields a sufficiently high p-value for normality to
conclude that we cannot safely reject H0 in this particular case. Wrapping up, we con-
firm fact (2) above, and conclude that the N -sequences most probably do not follow a
normal (or log-normal) distribution, particularly for small values of N . For increasing
values of N , the distribution becomes close to normal (see, e.g., the blue and red line in
Figure 5 that get closer for increasing values of N ).

Fact (3), can be appreciated by looking at the first two columns of Table 4 (Ap-
pendix A). It is quite clear that the larger the mean µ, the larger the standard deviation



σ. Quantitatively, this can be checked by performing Pearson’s test for (linear) correla-
tion strength between the values of µ and σ. The correlation coefficient thereby obtained
is 99.68% and the p-value of the test is less than 0.001, indicating that we can safely
reject H0, i.e., the null correlation hypothesis.

Although fact (2) left us with no simple means to estimate average or maximum
errors, we checked how many observations for each N -sequence fall in the µ ± 3σ

interval. If the distributions were normal, then 99.7% of the observations should fall in
such interval. As we can see from column six in Table 4, this is indeed not true for the
N -sequences, but nevertheless the percentage of observations that fall in the µ ± 3σ

interval is always a respectable 97% at least. Leveraging fact (3), we can thus proceed
to obtain an error estimate as follows. We obtain σ̂(µ) = a · µ + b by performing
least squares regression, yielding estimated values of a = 0.02 (slope) and b = −0.35
(intercept). The confidence turns out to be high for the slope (the probability of the
slope being 0 is less than 0.001), and more modest for the intercept (there is a 14%
chance that the intercept is 0). We therefore set b = 0 and compute the estimate σ̂(µ)
of σ as σ̂ = 0.02µ. As we can see from column seven of Table 4 this turns out to be an
overestimation of the actual standard deviation σ particularly for small CPU times, but
since we are looking for uncertainty on CPU times, overestimation is definitely safer.
Indeed, considering Table 4 (last column) we can see that at least 98% of the observed
values fall within the µ ± 3σ̂ interval.

Summing up, when comparing run-times t1 and t2 in the scoring methods we con-
clude that they are different iff either t1 < t2 and (t1 + 0.06t1) < (t2 − 0.06t2), or
t1 > t2 and (t1 − 0.06t1) > (t2 + 0.06t2); in all the other cases, t1 and t2 must be
considered indistinguishable.

4 YASM: Yet Another Scoring Method (Revisited)

While the scoring methods used in CASC and QBF evaluations are straightforward,
they do not take into account some aspects that are indeed considered by the purse-
based method used in the last SAT competition. On the other hand, the purse-based
method used in SAT requires some oracle to assign purses to the problem instances, so
the results can be influenced heavily by the oracle. In [10] a first version of YASM was
introduced as an attempt to combine the two approaches: a rich method like the purse-
based one, but using the data obtained from the runs only. As reported in [10], YASM
featured a somewhat complex calculation, yielding unsatisfactory results, particularly
in the comparison with scoring methods based on voting systems. Here we revise the
original version of YASM to make its computation simpler, and to improve its per-
formance using ideas borrowed from voting systems. From here on, we call YASMv2
the revised version, and YASM the original one presented in [10]. YASMv2 requires a
preliminary classification whereby a hardness degree Hi is assigned to each problem
instance i using the same equation as in CASC [4] (and YASM):

Hi = 1 −
Si

St

(3)

where Si is the number of solvers that solved i, and St is the total number of par-
ticipants to the contest. Considering equation (3), we notice that 0 ≤ Hi ≤ 1, where



CASC QBF SAT YASM YASMv2 Borda r.v. Schulze
CASC – 1 0.71 0.86 0.79 0.86 0.71 0.86
QBF – 0.71 0.86 0.79 0.86 0.71 0.86
SAT – 0.86 0.86 0.71 0.71 0.71
YASM – 0.86 0.71 0.71 0.71
YASMv2 – 0.86 0.86 0.86
Borda – 0.86 1
r. v. – 0.86
Schulze –

Table 1. Homogeneity of scoring methods.

Hi = 0 means that i is relatively easy, while Hi = 1 means that i is relatively hard.
We can then compute the score SBs,i of a solver s on a given instance i (this definition
changes with respect to YASM):

Ss,i = ks,i · (1 + Hi) ·
L − Ts,i

L− Mi

(4)

where L is the time limit, Ts,i is the CPU time used up by s to solve i (Ts,i ≤ L),
and Mi = mins{Ts,i}, i.e., Mi is the time spent on the instance i by the SOTA solver
defined in [3] to be the ideal solver that always fares the best time among all the par-
ticipants. The hybridization with voting systems comes into play with the coefficient
ks,i which is computed as follows. Suppose that n solvers are participating to the con-
test. Each instance ranks the solvers in ascending order considering the value of the
CPUTIME field. Let ps,i be the position of a solver s in the ranking associated with in-
stance i (1 ≤ ps,i ≤ n), then ks,i = n − ps,i. In case of time limit attainment and
failure, we default ks,i to 0, and thus also Ss,i is 0. The total score of a solver Ss is just
the sum of the scores obtained on the instances, i.e., Ss =

∑
i Ss,i.

We can see from equation (4) that in YASMv2 the score of a solver on a given in-
stance is influenced by three factors, namely (i) a Borda-like positional weight (ks,i),
(ii) the relative hardness of the instance (1 + Hi), and (iii) the relative speed of the
solver with respect to the fastest solver on the instance ( L−Ts,i

L−Mi
). Intuitively, coefficient

(ii) rewards the solvers that are able to solve hard instances, while (iii) rewards the
solvers that are faster than other competitors. The coefficient ks,i has been added to
stabilize the scores and make them less sensitive to an initial bias in the test set. As we
show in the next Section, this combination allows YASMv2 to reach the best compro-
mise among different effectiveness measures.

5 Experimental Evaluation

5.1 Homogeneity

The rationale behind this measure (introduced in [10]) is to verify that, on a given test
set, the scoring methods considered (i) do not produce exactly the same solver rankings,
but, at the same time, (ii) do not yield antithetic solver rankings. Thus, homogeneity
is not an effectiveness measure per se, but it is a preliminary assessment that we are
performing an apple-to-apple comparison and that the apples are not exactly the same.



Method Mean Std Median Min Max IQ Range F
QBF 182.25 7.53 183 170 192 13 88.54
CASC 182.25 7.53 183 170 192 13 88.54
SAT 87250 12520.2 83262.33 78532.74 119780.48 4263.94 65.56
YASM 46.64 2.22 46.33 43.56 51.02 2.82 85.38
YASMv2 1257.29 45.39 1268.73 1198.43 1312.72 95.11 91.29
Borda 984.5 127.39 982.5 752 1176 194.5 63.95
r. v. 12010.25 5183.86 12104 5186 21504 8096 24.12
SCHULZE 982.3 57.23 986 875 1072 76.5 81.62

Table 2. Fidelity of scoring methods. As far as SAT is concerned, the series purse is not assigned.

Homogeneity is computed as in [10] considering the Kendall rank correlation coef-
ficient τ [20] which is a nonparametric coefficient best suited to compare rankings. τ is
computed between any two rankings and it is such that −1 ≤ τ ≤ 1, where τ = −1
means perfect disagreement, τ = 0 means independence, and τ = 1 means perfect
agreement. Table 1 shows the values of τ computed for the scoring methods consid-
ered, arranged in a symmetric matrix where we omit the elements below the diagonal
(r.v. is a shorthand for range voting). Values of τ close to, but not exactly equal to 1 are
desirable. Table 1 shows that this is indeed the case for the scoring methods considered
using QBFEVAL’05 data. Only two couples of methods (QBF-CASC and Schulze-
Borda) show perfect agreement, while all the other couples agree to some extent, but
still produce different rankings.

5.2 Fidelity

We introduce this measure to check whether the scoring methods under test introduce
any distortion with respect to the true merits of the solvers. Our motivation is that we
would like to extract some scientific insight from the final ranking of QBFEVAL’06
and not just winners and losers. Of course, we have no way to know the true merits
of the QBF solvers: this would be like knowing the true statistic of some population.
Therefore, we measure fidelity by feeding each scoring method with “white noise”,
i.e., a table RUNS having the same structure outlined in Subsection 2.1 and filled with
random results. In particular, we assign to RESULT one of SAT/UNSAT, TIME and FAIL

values with equal probability, and a value of CPUTIME chosen uniformly at random in
the interval [0;1]. Given this artificial setting, we know in advance that the true merit of
the competitors is approximately the same. A high-fidelity scoring method is thus one
that computes approximately the same scores for each solver, and thus produces a final
ranking where scores have a small variance-to-mean ratio.

The results of the fidelity test are presented in Table 2. In the Table, each line con-
tains the statistics of a scoring method, and the columns show, from left to right, the
mean, the standard deviation, the median, the minimum, the maximum and the in-
terquartile range of the scores produced by each scoring method when fed by white
noise. The last column is our fidelity coefficient F, i.e., the percent ratio between the
lowest score (solver ranked last) and the highest one (solver ranked first): the higher the
value of F, the more the fidelity of the scoring method. As we can see from Table 2,
the fidelity of YASMv2 is better than that of all the other methods under test, including



QBF and CASC which are second best, and have higher fidelity than YASM. Notice
that range voting, and to a lesser extent also SAT and Borda methods, introduce a sub-
stantial distortion. In the case of range voting, this can be explained by the exponential
spread that separates the scores, and thus amplifies even small differences.

5.3 RDT-stability and DTL-stability

Stability on a randomized decreasing test set (RDT-stability), and stability on a de-
creasing time limit (DTL-stability) have been introduced in [10] to measure how much
a scoring method is sensitive to perturbations that diminish the size of the original test
set, and how much a scoring method is sensitive to perturbations that diminish the max-
imum amount of CPU time granted to the solvers, respectively. The results of RDT-
and DTL-stability tests are presented in the plots of Figures 6 and 7 (Appendix B). We
obtained such plots using the CPU time noise model herewith introduced, and consid-
ering YASMv2 instead of YASM. However, the conclusion that we reach are the same
of [10], and precisely:

– All the scoring methods considered are RDT-stable up to 400, i.e., a random sample
of 151 instances is sufficient for all the scoring methods to reach the same conclu-
sions that each one reaches on the heftier set of 551 instances used in QBFEVAL’05.

– Decreasing the time limit substantially, even up to one order of magnitude, is not
influencing the stability of the scoring methods considered, except for some minor
perturbations for QBF/CASC and SAT methods. Moreover, independently from the
scoring method used and the amount of CPU time granted, the best solver is always
the same.

Indeed, while the above measures can help us extract general guidelines about running
a competition, in our setting they do not provide useful insights to discriminate the
relative merits of the scoring methods.

5.4 SBT-stability

Stability on a solver biased test set (SBT-stability) is introduced in [10] to measure how
much a scoring method is sensitive to a test set that is biased in favor of a given solver.
Let Γ be the original test set, and Γs be the subset of Γ such that the solver s is able
to solve exactly the instances in Γs. Let Rq,s be the ranking obtained by applying the
scoring method q on Γs. If Rq,s is the same as the original ranking Rq , then the scoring
method q is SBT-stable with respect to the solver s. Notice that, contrarily to what stated
in [10], SBT-stability alone is not a sufficient indicator of the capacity of a scoring
method to detect the absolute merit of the participants. Indeed, it turns out that a very
low-fidelity method such as range voting is remarkably SBT-stable. This because we
can raise the SBT-stability of a scoring by decreasing its fidelity: in the limit, a scoring
method that assigns fixed scores to each solver, has the best SBT-stability and the worst
fidelity. Therefore, a scoring method showing a high SBT-stability is relatively immune
to bias in the test set, but it must also feature a high fidelity if we are to conclude that
the method provides a good hint at detecting the absolute merit of the solvers.



Fig. 1. SBT-stability plots.

Figure 1 shows the plots with the results of the SBT-stability measure for each
scoring method considering the noise model and YASMv2 (the layout is the same as
Figures 6 and 7 in Appendix B). The x-axis reports the name of the solver s used to
compute the solver-biased test set Γs and the y-axis reports the score value. For each
of the Γs’s, we report eight bars showing the scores obtained by the solvers using only
the instances in Γs. The order of the bars (and of the legend) corresponds to the ranking
obtained with the given scoring method on the original test set Γ . As we can see from
Figure 1 (top-left), CASC/QBF scoring methods are not SBT-stable: for each of the Γs,
the original ranking is perturbed and the winner becomes s. Notice that on ΓQUANTOR ,
CASC/QBF yield the same ranking that they output on the complete test set Γ . The
SAT competition scoring method (Figure 1, top-center) is not SBT-stable, not even
on the test set biased on its alleged winner QUANTOR. YASMv2 is better than both
CASC/QBF and SAT, since its alleged winner QUANTOR is the winner on biased test
sets as well. Borda count (Figure 1, bottom-left) is not SBT-stable with respect to any
solver, but the alleged winner (QUANTOR) is always the winner on the biased test sets.
Moreover, the rankings obtained on the test sets biased on QUANTOR and SEMPROP are
not far from the ranking obtained on the original test set. Also range voting (Figure 1,
bottom-center), is not SBT-stable with respect to any solver, but the solvers ranking first
and last do not change over the biased test sets. Finally, Schulze’s method (Figure 1,
bottom-right) is SBT-stable only with respect to its alleged winner QUANTOR.

Looking at the results presented above, we can see that YASMv2 performance in
terms of SBT stability lies in between classical automated reasoning contests methods
and methods based on voting systems. This fact is highlighted in Table 5 (Appendix B),
where for each scoring method we compute the Kendall coefficient between the ranking
obtained on the original test set Γ and each of the rankings obtained on the Γs test sets,
including the mean coefficient observed. Overall, YASMv2 turns out to be, on average,
better than CASC/QBF, SAT, and YASM, while it is worse, on average, than the meth-
ods based on voting systems. However, if we consider also the results of Table 2 about
fidelity, we can see that YASMv2 offers the best compromise between SBT-stability



and fidelity. Indeed, while CASC/QBF methods have a relatively high fidelity, they per-
form poorly in terms of SBT-stability, and SAT method is worse than YASMv2 both in
terms of fidelity and in terms of SBT-stability. Methods based on voting systems are all
more SBT-stable that YASMv2, but they have poor fidelity coefficients, with the only
exception of Schulze’s method whose fidelity coefficient is within 10% of YASMv2
coefficient. We consider this good performance of YASMv2 a result of our choice to
hybridize classical methods used in automated reasoning contests and methods based
on voting systems. This helped us to obtain a scoring method which is less sensitive to
bias, and, at the same time, a good indicator of the absolute merit of the competitors.

5.5 SOTA-relevance

This measure was introduced in [10] to understand the relationship between the rank-
ing obtained with a scoring method and the strength of a solver, as witnessed by its
contribution to the SOTA solver. As mentioned in Subsection 4, the SOTA solver is the
ideal solver that always fares the best time among all the participants. Indeed, a partici-
pant contributes to the SOTA solver whenever it is the fastest solver on some instance.
In [10] SOTA-relevance was obtained by counting the number of such events for any
given solver, and then computing the Kendall coefficient between the ranking thereby
induced and the ranking obtained with any given scoring method. However, it turns out
that evaluating the SOTA-contribution of each solver by simply counting the number of
times that it is faster than other solvers can be misleading. To understand this, consider
the following example. Suppose that a solver A solves 50% of the test set using time
at most tA and times out on the rest, and that solver B, on the contrary, solves all the
problems where A times out using time at most tB but it does time out on the prob-
lems that A solves. Finally, suppose that a solver C is able to solve all the problems in
the test set using time at least tC where tC > tA and tC > tB . Given our definition
of SOTA solver, it turns out that C is never contributing to it. Evaluating the SOTA
contribution using a simple count as described in [10] would induce a ranking where
C is last. However, C is, on average, better than both A and B and this will probably
be correctly spotted by high-fidelity methods, which would turn out to have a very low
SOTA-relevance.

In order to overcome the above problem we redefine here SOTA-relevance in terms
of SOTA-distance. SOTA-distance is the distance metric obtained by computing the
Euclidean norm between the CPU times of any given solver and the SOTA solver. The
resulting values of the metrics induce a ranking that can be used to compute the Kendall
coefficient yielding the SOTA-relevance. Table 6 (Appendix B) shows the values of the
coefficients thereby obtained for each scoring method. Notice that according to our new
definition of SOTA-relevance, CASC/QBF methods turn out to have the highest such
relevance possible, i.e., τ = 1. Therefore the other coefficients correspond to the first
row of Table 1 about homogeneity results. Notice that YASMv2 has a better SOTA
relevance than SAT and range voting, but worse than all the other methods, including
YASM. Given the positive results of YASMv2 insofar fidelity and SBT-stability are
concerned, we consider this an indication that the SOTA solver abstraction, despite
its relevance for practical purposes, might not be a good indicator of the merit of the
solvers.



6 Conclusions

Summing up, the analysis presented in this paper allowed us to make substantial progress
in the research agenda of QBFEVAL’06. In [10], modeling the CPU time noise and im-
proving YASM were cited as future directions. In this paper we have presented a thor-
ough analysis of the CPU time noise that allowed us to reach some understanding of the
phenomenon, and to come up with a rough but effective model that deals with errors
in CPU time measures. We have also improved YASM with YASMv2, which features
a simpler calculation, yet it is more powerful than YASM in terms of SBT-stability and
fidelity. Our empirical evaluation tools of scoring methods have also improved with
the addition of the noise model, the fidelity measure and the improved definition of
SOTA-relevance. We confirmed some of the conclusions reached in [10], namely that
independently of the specific scoring method used, a larger test set is not necessarily
a better test set, and that a higher time limit does not necessarily result in a more in-
formative contest. On the other hand, while scoring methods based on voting systems
emerged from [10] as “moral” winners over other scoring methods, the analysis pre-
sented in this paper shows that better results can be achieved using hybrid techniques
such as YASMv2.

The next items in our research agenda include two main issues. The first has to
do with the analysis of the statistical significance of the rankings obtained in the spirit
of [6] and, particularly, the relationship between the various scoring methods and the in-
dications obtained using statistical hypothesis testing. The second, although not directly
linked to the results herewith presented, is the investigation on computing efficient cer-
tificates for QBFs (un)satisfiability. This would allow us to relax further our working
hypothesis and broaden the spectrum of our conclusions, since we could take into ac-
count correctness of the solvers and, possibly, the quality of the solutions.
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A Tables and figures of Section 3

1 PROBE( DIM:integer )
2 M, N, P: vector< vector< integer > >
3 M.resize(DIM)
4 N.resize(DIM)
5 for i← 1 to DIM do
6 M[i].resize(DIM)
7 N[i].resize(DIM)
8 for j← 1 to DIM do
9 M[i][j] = {a random number}

10 N[i][j] = {a random number}
11 P.resize(DIM)
12 for i← 1 to DIM
13 P[i].resize(DIM);
14 for j← 1 to DIM
15 P[i][j]← 0
16 for k← 0 to DIM
17 P[i][j] = P[i][j] + M[i][k] * N[k][j]
18 return P

Fig. 2. Probe to model CPU time noise. PROBE implements a matrix multiplication algorithm with dynamically sized ma-
trices. The parameter DIM enables tuning of the expected CPU time. Dynamic allocation occurs in lines 5,6 (M and N row
indexes), 8,9 (M and N row vectors), 13 (P row indexes) and 15 (P row vectors).
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Fig. 3. Autocorrelation of repeated CPU time samples, for expected run-times of 1s, 5s, 10s (first row), 20s, 40s, 50s (second
row), and 100s, 500s and 900s (third row). The Y axis reports the value of the autocorrelation coefficient (in the range [-1;1])
for increasing lags reported on the X axis. The dashed lines delimit 95% confidence intervals.



Run-time Min Q1 Median Mean Q3 Max Std. dev.

~1 0.99 1.00 1.00 0.99 1.00 1.01 0.005
~5 4.91 5.10 5.10 5.10 5.11 5.13 0.021

~10 10.13 10.32 10.33 10.32 10.33 10.50 0.032
~20 21.56 21.74 21.75 21.75 21.76 22.08 0.051
~40 39.48 39.56 39.57 39.58 39.60 40.07 0.065
~50 52.31 52.41 52.50 52.57 52.66 53.59 0.220

~100 101.10 101.90 102.40 103.00 103.60 108.50 1.647
~500 497.00 519.00 526.10 527.10 533.70 563.90 12.079
~900 817.80 850.40 860.90 861.20 871.40 914.20 17.664

Table 3. CPU time statistics of PROBE. The columns report (from left to right) the expected run-time, the minimum, the
1st quartile, the median (2nd quartile), the mean, the 3rd quartile, the maximum and the standard deviation of the observed
run-times.
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Fig. 4. CPU time frequency distributions of PROBE. Each plot shows an histogram that represents the frequency distribution
of the observed values (bins of equal size, total area 1), and two pdf estimates: the red dots are the pdf estimated from
observed run-times, while the blue dots represent a normal pdf with the mean and standard deviation computed from the
observed run-times. The title of each plot reports the expected run-time, as well as skewness (s) and kurtosis (k) values of the
pdf plotted in red (notice that a normal pdf is such that s=k=0).
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Fig. 5. Normal quantile-quantile plots of the CPU time statistics of PROBE. In the plots, the normal quantiles (Theoretical
Quantiles) range on the X axis, while the quantiles of the observed run-times range on the Y axis (Sample Quantiles). The
blue line joins the points corresponding to the minimum (bottom-right) and maximum (top-left) observed run-times, while
the red line joins the points corresponding to the 1st and 3rd quartile.

Run-time Mean(µ) Std. dev.(σ) Norm Log-norm µ ± 3σ σ̂ µ± 3σ̂

~1 0.99 0.005 <0.001 <0.001 100 0.02 100
~5 5.10 0.102 <0.001 <0.001 99 0.021 100

~10 10.32 0.032 <0.001 <0.001 97 0.206 100
~20 21.75 0.051 <0.001 <0.001 97 0.435 100
~40 39.58 0.065 <0.001 <0.001 98 0.792 100
~50 52.57 0.220 <0.001 <0.001 99 1.051 100

~100 103.00 1.647 <0.001 <0.001 97 2.061 100
~500 527.10 12.079 0.005 <0.001 99 10.543 98
~900 817.80 17.664 0.821 <0.001 100 17.224 99

Table 4. Analysis of the CPU time statistics of PROBE. The table reports, going from left to right, the expected run-time,
the mean µ and the standard deviation σ computed from the observed run-times; the p-values of the Shapiro-Wilk test for
normality and log-normality (only p-values greater than 0.001 are reported); the percentage of observed run-times that fall in
the interval µ± 3σ; the value of σ̂, i.e., the estimate of σ obtained as described in section 3, and the percentage of observed
run-times that fall in the interval µ ± 3σ̂.



B Additional tables and figures of Section 5

Fig. 6. RDT-stability plots. The first row shows, from left to right, the plots regarding QBF/CASC, SAT and YASMv2 scoring
methods, while the second row shows, again from left to right, the plots regarding Borda count, range voting and Schulze’s
method. Each histogram reports, on the x-axis the number of problems m discarded from the original test set (0, 100, 200
and 400 out of 551) and on the y-axis the score. For each value of the x-axis, eight bars are displayed, corresponding to the
scores of the solvers. The legend is sorted according to the ranking computed by the specific scoring method, and the bars
are also displayed accordingly. This makes easier to identify perturbations of the original ranking, i.e., the leftmost group of
bars in each plot corresponding to m = 0.

Fig. 7. DTL-stability plots. The histograms are arranged in the same way as Figure 6, except that the x-axis now reports the
amount of CPU time seconds used as a time limit when evaluating the scores of the solvers. The leftmost value is L = 900,
i.e., the original time limit that produces the ranking according to which the legend and the bars are sorted, and then we
consider the values L′

= {700, 500, 300, 100, 50, 10, 1}.



CASC/QBF SAT YASM YASMv2 Borda r. v. Schulze
OPENQBF 0.43 0.57 0.36 0.64 0.79 0.79 0.79

QBFBDD 0.43 0.43 0.36 0.64 0.79 0.86 0.79
QMRES 0.64 0.86 0.76 0.79 0.71 0.86 0.71

QUANTOR 1 0.86 0.86 0.86 0.93 0.86 1
SEMPROP 0.93 0.71 0.71 0.79 0.93 0.86 0.93
SSOLVE 0.71 0.57 0.57 0.79 0.86 0.79 0.86

WALKQSAT 0.57 0.57 0.43 0.71 0.64 0.79 0.71
YQUAFFLE 0.71 0.64 0.57 0.71 0.86 0.86 0.86

Mean 0.68 0.65 0.58 0.74 0.81 0.83 0.83

Table 5. Kendall coefficient between the ranking obtained on the original test set and each of the
rankings obtained on the solver-biased test sets. Each column is relative to a scoring method, and
each row, but the first and the last, is relative to a specific set biased on the named solver. The last
row reports the mean value of the coefficients for each scoring method.

SOTA-distance
CASC 1
QBF 1
SAT 0.71

YASM 0.86
YASM v2 0.79

Borda 0.86
range voting 0.71

Schulze 0.86

Table 6. SOTA-relevance, i.e., Kendall coefficient between the ranking induced by computing
the distance of any given solver w.r.t. the SOTA-solver and the ranking obtained by any given
scoring method.


