
Metodi di Calcolo dei Punteggi per la Valutazione di
Sistemi di Ragionamento Automatico
Scoring Methods for the Evaluation of

Automated Reasoning Systems
Massimo Narizzano Luca Pulina Armando Tacchella

SOMMARIO/ABSTRACT

La comunità di ricerca sul Ragionamento Automatico ha visto
consolidarsi la prassi relativa ad eventi competitivi in cui un
insieme di sistemi viene eseguito su un insieme di istanze di
problemi col proposito di stilare una classifica basata sulle
prestazioni dei sistemi. Alla base di tale classifica si ha il metodo
utilizzato per calcolare il punteggio di ogni sistema, ossia la
procedura usata per derivare una quantità numerica che dovrebbe
riassumere le prestazioni di un sistema rispetto agli altri e rispetto
all’insieme di istanze. In questo articolo analizziamo diversi
metodi per il calcolo dei punteggi, includendo sia metodi uti-
lizzati in competizioni per sistemi di ragionamento automatico,
sia metodi classici basati su elementi di teoria del voto, ed un
nuovo metodo da noi introdotto. La nostra ricerca ha lo scopo
di stabilire quale metodo massimizza le misure di efficacia da
noi sviluppate per quantificare le proprietà desiderabili delle
procedure per il calcolo dei punteggi. Il nostro è un metodo
empirico, dato che compariamo i metodi di calcolo dei punteggi
ottenendo le relative misure di efficacia dai dati della valutazione
sperimentale di sistemi per la soluzione di formule in logica
proposizionale con quantificatori tenutasi nel 2005. I risultati dei
nostri esperimenti offrono utili indicazioni sui punti di forza e di
debolezza dei metodi di calcolo dei punteggi da noi analizzati e
permettono di formulare alcune conclusioni indipendenti dallo
specifico metodo adottato.

The automated reasoning research community has grown accus-
tomed to competitive events where a pool of systems is run on a
pool of problem instances with the purpose of ranking the sys-
tems according to their performances. At the heart of such rank-
ing lies the method used to score the systems, i.e., the procedure
used to compute a numerical quantity that should summarize the
performances of a system with respect to the other systems and to
the pool of problem instances. In this paper we evaluate several
scoring methods, including methods used in automated reasoning
contests, as well as methods based on voting theory, and a new
method that we introduce. Our research aims to establish which
of the above methods maximizes the effectiveness measures that
we devised to quantify desirable properties of the scoring proce-
dures. Our method is empirical, in that we compare the scoring

methods by computing the effectiveness measures using the data
from the 2005 comparative evaluation of solvers for quantified
Boolean formulas. The results of our experiments give useful in-
dications about the relative strengths and weaknesses of the scor-
ing methods, and allow us to infer also some conclusions that are
independent of the specific method adopted.

1 Introduction

The automated reasoning research community has grown
accustomed to competitive events where a pool of systems
is run on a pool of problem instances with the purpose of
ranking the systems according to their performances. A
non exhaustive list of such contests includes the CADE
ATP System Competition (CASC) [1], the SAT Compe-
tition [2], the QBF Evaluation [3] for quantified Boolean
formulas (QBFs) solvers, and the International Planning
Competition (see, e.g., [4]). At the heart of the ranking
that determines the winner of such events, lies the method
used to score the systems, i.e., the procedure used to com-
pute a numerical quantity that should summarize the per-
formances of a system. Usually such quantities cannot be
interpreted as absolute measures of merit, but they should
represent the relative strength of a system with respect to
the other competitors based on the difficulty of the problem
instances used in the contest. There is a general agreement
that, although the results of automated reasoning systems
competitions may provide less insight than controlled ex-
periments in the spirit of [5], yet they play a fundamental
role in the advancement of the state of the art.

In this paper we evaluate two different sets of scor-
ing methods. The first set is comprised of some meth-
ods used in automated reasoning systems contests, namely
CASC [1], the SAT competition [2], and the QBF eval-
uation [3], and a new method called YASM (“Yet An-
other Scoring Method”) that we are evaluating as a candi-
date scoring method for the 2006 competitive evaluation
of QBF solvers. The second set of scoring methods is
comprised of procedures based on voting systems, namely

Borda count [6], range voting [7] and sum of victories
(based on ideas from [8]). Using these methods amounts
to considering the solvers as candidates and the problem
instances as voters. Each voter ranks the candidates, i.e.,
the solver with the best performance on the instance is the
preferred candidate, and all the other solvers are ranked ac-
cordingly. Finally, the votes are pooled to elect the winner
of the contest.

Our research aims to establish which of the above meth-
ods maximizes the measures that we devised to quantify
desirable properties of the scoring procedures. In particu-
lar, our measures should account for:

• the degree of (dis)agreement between the different
scoring methods;

• the degree of stability of each scoring method with
respect to perturbations (i) in the size of the test set,
(ii) in the amount of resources available (CPU time),
and (iii) in the quality of the test-set;

• the representativeness of each scoring method with
respect to the state of the art expressed by the com-
petitors.

In order to evaluate the relative quality of the scoring meth-
ods under test, we compute the above measures using part
of the results from the 2005 comparative evaluation of
QBF solvers (QBFEVAL 2005) [9]. Our analysis is thus
empirical, but we believe that the scenario of QBFEVAL
2005 is representative enough in order to allow some gen-
eralizations of our results, under the hypotheses presented
in Subsection 2.2.

The paper is structured as follows. In Section 2 we in-
troduce our case study, the 2005 comparative evaluation
of QBF solvers [9], and we outline the working hypothe-
ses underlying our analysis. In Section 3 we present the
scoring methods, and the effectiveness measures used to
compare and evaluate the methods. The results of such
comparison are the subject of Section 4, where we analyze
the data in order to pin down the methods that enjoy the
best performances overall. We conclude the paper in Sec-
tion 5 with a discussion about the impact of our results on
the evaluations of automated reasoning systems.

2 Preliminaries

2.1 QBFEVAL 2005

QBFEVAL 2005 [9] is the third in a series of non-
competitive events established with the aim of assessing
the advancements in the field of QBF reasoning and related
research. QBFEVAL 2005 accounted for 13 competitors,
553 QBFs and three QBF generators submitted. The test
set was assembled using a selection of 3191 QBFs obtained
considering the submissions and the instances archived in
QBFLIB [10]. The results of QBFEVAL 2005 can be listed
in a table, that we call RUNS in the following. RUNS is

comprised of four attributes (column names): SOLVER, IN-
STANCE, RESULT, and CPUTIME. The attributes SOLVER
and INSTANCE report which solver is run on which in-
stance. RESULT is a four-valued attribute: SAT, i.e., the
instance was found satisfiable by the solver, UNSAT, i.e.,
the instance was found unsatisfiable by the solver, TIME,
i.e., the solver exceeded a given time limit without solving
the instance (900 seconds in QBFEVAL 2005)1, and FAIL,
i.e., the solver aborted for some reason (e.g., a crash, or in-
sufficient memory to complete the task). Finally, CPUTIME
reports the CPU time spent by the solver on the given in-
stance, in seconds.2

2.2 Working hypotheses

The scoring methods that we evaluate, the measures that
we compute and the results that we obtain, are based on
the assumption that a table identical to RUNS as described
above is the only input required by a scoring method. As
a consequence, the scoring methods (and thus our anal-
ysis) do not take into account (i) memory consumption,
(ii) correctness of the solution, and (iii) “quality” of the
solution. As for (i), it turns out that measuring and com-
paring memory consumption is a tough exercise during a
contest, mainly for two reasons. First, there are several
definitions of memory consumption, e.g., peak memory
usage as opposed to the total number of bytes in mem-
ory read/write operations, and it is not clear which one
should be preferred. Second, it is complicated to measure
memory consumption for systems as black boxes, which
is usually the only view that the organizers of the contest
have. Regarding (ii), checking the correctness of the so-
lution is desirable for most automated reasoning systems.
Unfortunately, the size of the certificate can be prohibitive
in practice, and this is precisely the case of certificates for
QBF (un)satisfiability which is a PSPACE-complete prob-
lem. In the case of search-based solvers one could exploit
the ideas of [11] to produce a clause-term resolution proof
that certifies the result of the solver. Notice that such a
proof is not guaranteed to be small. However, its size is
proportional to the amount of space searched by the solver,
and we can expect it to be reasonable once the solution
time, and hence the amount of space explored, is reason-
ably small. In the general case, producing reasonably sized
certificates is still a research issue (see, e.g., [12, 13]), and
thus we do not have any certificates associated with QBFE-

1The solvers are not given the time limit as input, thus they have no
ways of tuning their internal heuristics in order to take the time resource
bound into account.

2With the only exception of WalkQSAT, all the solvers submitted to
QBFEVAL’05 are deterministic, and thus only one run for each solver
and benchmark (modulo noise) is enough to assess its performances. The
case of WalkQSAT is in principle more complex, as it would require mul-
tiple runs to be averaged in order to obtain its performance on a single
benchmark. Here we assume that the only time we sampled is indeed the
average: such assumption is clearly not valid in general, but since we are
comparing scoring methods (not solvers) it seems perfectly reasonable in
this context.

VAL 2005 RUNS table. Finally, (iii) matters only if there
is indeed some solution on which quality indicators can be
computed for the sake of comparison. For instance, should
a resolution proof be available for all the solvers, one could
compare the quality of the solution by comparing, e.g., the
number of deduction steps in each proof. No such indica-
tors can be computed for simple SAT/UNSAT results, and,
as we said before, obtaining solutions from QBF solvers is
not an easy task.

Given the setting described above, one more working
hypothesis concerns CPU times, that we will assume to
be unaffected by noise. It turns out that such assumption
makes for a rather idealistic model, at least on the current
QBFEVAL 2005 platform3. Even under light-load condi-
tions, the noise affecting the CPU time measured by the
operating system can be substantial, with standard errors
in the order of 1% to 10% of the average CPU time over
several runs of the same program with the same inputs.
Besides, according to some preliminary experiments that
we performed, the distribution of such errors does not ap-
pear to be normal, unless CPU times in the order of 1000
seconds are considered, and the variance of the observed
times grows proportionally with their mean, i.e., a higher
run time implies higher noise in the measure.

3 Methods and measures

3.1 State of the art scoring methods

In the following we describe in some details the state of the
art scoring methods used in our analysis. For each method
we describe only those features that are relevant for our
purposes. Further details can be found in the references
provided.

CASC [1] The CASC scoring method applied to our set-
ting yields the following guidelines. Solvers are ranked
according to the number of problems solved, i.e., the num-
ber of times RESULT is either SAT or UNSAT. In case of a
tie, the solver faring the lowest average on CPUTIME fields
over the problems solved is preferred.

QBF evaluation [3] QBFEVAL scoring method is the
same as CASC, except that ties are broken using the sum
of CPUTIME fields over the problems solved.

SAT competition [2] The last SAT competition uses a
purse-based method, i.e., the score of a solver on a given
instance, is obtained by adding up three purses:

• the solution purse, which is divided equally among all
solvers that solve the problem;

3A farm of identical 3GHz PIV PCs with 1GB of main memory, run-
ning Debian GNU/Linux (sarge distribution with a 2.4.x kernel)

• the speed purse, which is divided unequally among all
the competitors that solve the problem, first by com-
puting the speed factor Fs,i of a solver s on a problem
instance i:

Fs,i =
k

1 + Ts,i

(1)

where k is an arbitrary scaling factor (we set k = 104

according to [14]), and Ts,i is the time spent by s to
solve i; then by computing the speed award As,i, i.e.,
the portion of speed purse awarded to the solver s on
the instance i:

As,i =
Pi · Fs,i
∑

r Fr,i

(2)

where r ranges over the solvers, and Pi is the total
amount of the speed purse for the instance i.

• the series purse, which is divided equally among all
solvers that solve at least one problem in a given se-
ries (a series is a family of instances that are somehow
related, e.g., different QBF encodings for some prob-
lem in a given domain).

The overall score of a solver is just the sum of its scores
on all the instances of the test set, and the winner of the
contest is the solver with the highest sum.

Borda count [6] Suppose that n solvers are participating
to the contest. Each voter (instance) ranks the candidates
(solvers) in ascending order considering the value of the
CPUTIME field. Let ps,i be the position of a solver s in
the ranking associated with instance i (1 ≤ ps,i ≤ n).
The score of s computed according to Borda count is just
Ss,i = n − ps,i. In case of time limit attainments and
failures, we default Ss,i to 0. The total score Ss of a solver
s is the sum of all the scores, i.e., Ss =

∑

i Ss,i, and the
winner is the solver with the highest score.

Range voting [7] The ranking position ps,i of each
solver s on each instance i is computed as in Borda count.
Then an arbitrary scale is used to associate a weight wp

with each of the n positions and the score Ss,i is computed
as Ss,i = wp · ps,i (default to 0 in case of time limit attain-
ment or failure) and Ss =

∑

i Ss,i, as in Borda count. To
compute wp in our experiments we use a geometric pro-
gression with a common ratio r = 2 and a scale factor
a = 1, i.e., wp = arn−p with 1 ≤ p ≤ n.

Sum of victories A non-Condorcet method based on
ideas from [8] which works as follows. A n × n square
matrix M is computed, where the entries Ms,t with s 6= t
account for the number of times that solver s is faster than
t on some instance, while Ms,t = 0 if s = t. No points
are awarded in case of ties, time limit attainment and fail-
ure. The score Ss according to which a solver s is ranked
is computed as Ss =

∑

t Ms,t.

3.2 YASM: Yet Another Scoring Method

While the scoring methods used in CASCs and QBF eval-
uations are straightforward, they do not take into account
some aspects that are indeed considered by the purse-based
method used in the last SAT competition. On the other
hand, the purse-based method requires some oracle to as-
sign purses to the problem instances, so the results can be
influenced heavily by the oracle. YASM is a first attempt
to combine the two approaches: a rich method like the
purse-based one, but using the data obtained from the runs
only. As such, YASM requires a preliminary classification
whereby a hardness degree Hi is assigned to each problem
instance i using the same equation as in CASC [1]:

Hi = 1 −
Si

St

(3)

where Si is the number of solvers that solved i, and St is
the total number of participants to the contest. Considering
equation (3), we notice that 0 ≤ Hi ≤ 1, where Hi = 0
means that i is relatively easy, while Hi = 1 means that i
is relatively hard. We can then compute the score SBs,i of
a solver s on a given instance i:

SBs,i = k · Hi ·
L − Ts,i

L − Mi

(4)

where k is a constant (we fix k = 100 to normalize Hi in
the range [0; 100]), L is the time limit, Ts,i is the CPU time
used up by s to solve i (Ts,i ≤ L), and Mi = mins{Ts,i}.
Notice that SBs,i = 0 whenever RESULT is TIME and we
force SBs,i = 0 also when RESULT is FAIL. Mi is the
time spent on the instance i by the SOTA solver defined
in [9] to be the ideal solver that always fares the best time
among all the participants. The score of a solver SBs is
just the sum of the scores obtained on the instances, i.e.,
SBs =

∑

i SBs,i.
The score SBs introduced so far is just a combined

speed/solution bonus, and it does not take into account ex-
plicitly the number of times that RESULT is either TIME
or FAIL. To complete the YASM method and compute the
total score Ss of a solver s, we extend the basic scoring
mechanism of equations (3) and (4) by awarding bonuses
to solvers in such a way that the amount of bonuses re-
ceived is inversely proportional to the number of times that
the solvers reach the time limit or fail. Let Γ be the set of
instances used for the contest and Γl,s (resp. Γf,s) be the
set of instances on which the solver s reaches the time limit
(resp. fails). We compute the time limit bonus LBs of a
solver s as:

LBs = kl ·
|Γ| − |Γl,s|

|Γ|
+ kl · Cl,s (5)

and the fail bonus FBs as:

FBs = kf ·
|Γ| − |Γf,s|

|Γ|
+ kf · Cf,s (6)

CASC QBF SAT YASM Borda r.v. s.v.
– 1 0.71 0.86 0.86 0.71 0.86

– 0.71 0.86 0.86 0.71 0.86
– 0.86 0.71 0.71 0.71

– 0.71 0.71 0.71
– 0.86 1

– 0.86
–

Table 1: Homogeneity between scoring methods.

where kl and kf are constant parameters (we set kl = kf =
1/2 · maxs{Ss}); Cl,s and Cf,s are the time limit coeffi-
cient and the failure coefficient respectively. Cx,s with
x ∈ {f, l} is given by:

Cx,s =











∑

i∈Γx,s
Hi

|Γx,s|
if |Γx,s| > 0

1 otherwise

(7)

Equations (5) and (6) convey the intuition that a good
solver is one that reaches the time limit or fails in a small
number of cases (first addendum), and when it does, this
happens mainly on hard instances (second addendum).
Notice that LBs (resp.FBs) has the highest value when
|Γl,s| = 0 (resp. |Γf,s| = 0), i.e., there are no instances
on which s reaches the time limit (resp. fails). In this
case, considering our choice of kl and kf detailed above,
LBs = FBs = maxs{Ss}.

The total score Ss of a solver according to YASM is thus
computed with a weighted sum of three elements:

Ss = α · SBs + β · LBs + γ · FBs (8)

The parameters α, β and γ can be tuned to improve the
quality of the scoring method, or to take into account spe-
cific characteristics of the solver, e.g., in a competition of
incomplete solvers it may be reasonable to set γ = 0. In
the analysis hereafter presented we set α = 0.5, β = 0.25
and γ = 0.25.

3.3 Effectiveness measures

This Subsection describes the measures that we introduce
to assess quantitatively the effectiveness of the scoring
methods.

Homogeneity The rationale behind this measure is to
verify that, on a given test set, the scoring methods consid-
ered (i) do not produce exactly the same solver rankings,
but, at the same time, (ii) do not yield radically different
solver rankings. If (i) was the case, evaluating different
methods would not make a lot of sense, since any of them
would produce the same results. If (ii) was the case, since
we have no clue about the absolute value of the competi-
tors, it would be impossible to decide which method is the
right choice. Measuring homogeneity is thus fundamental

Figure 1: RDT-stability plots.

to ensure that we are considering alternative scoring meth-
ods, yet we are performing an apple-to-apple comparison.

To measure homogeneity, we consider the Kendall rank
correlation coefficient τ [15]. τ is computed between any
two rankings and is such that −1 ≤ τ ≤ 1, where τ = −1
means perfect disagreement, i.e., one ranking is the oppo-
site of the other, τ = 0 means independence, i.e., the rank-
ings are not comparable, and τ = 1 means perfect agree-
ment, i.e., the two rankings are the same. For 0 ≤ τ ≤ 1,
increasing values of τ imply increasing agreement between
the rankings. Table 1 shows the values of τ computed for
the scoring methods considered, arranged in a symmetric
matrix where we omit the row names, and the elements
below the diagonal (r.v. is a shorthand for range voting,
while s.v. is a shorthand for sum of victories). Values of τ
close to, but not exactly equal to 1 are desirable. Table 1
shows that this is indeed the case for the scoring methods
considered using QBFEVAL 2005 data. Only two cou-
ples of methods (QBF-CASC and sum of victories-Borda)
show perfect agreement, while all the other couples agree
to some extent, but still produce different rankings.

RDT-stability Stability on a randomized decreasing test
set (RDT-stability for short) aims to measure how much
a scoring method is sensitive to perturbations that dimin-
ish the size of the original test set. We evaluate RDT-
stability using several test sets computed by removing in-
stances uniformly at random from the original test set. On
the reduced test sets we compute the scores, and then we
take the median over the reduced test sets in order to es-
tablish a new ranking. If such ranking is the same as the

one obtained on the original test set, then we conclude that
the scoring method is RDT-stable up to the number of in-
stances discarded from the original test set.

More precisely, assume that n solvers are participat-
ing to the contest, let Γ be the set of instances used
for the contest, and Rq be the ranking produced by a
given scoring method q. We consider a set of k test sets
{Γm,1, . . . ,Γm,k}, where each Γm,i is obtained by dis-
carding, uniformly at random without repetitions, m in-
stances from Γ. For each Γm,i, we then apply q con-
sidering only the entries in RUNS whose INSTANCE val-
ues appear in Γm,i. Thus, for each Γm,i, we obtain the
set of n scores {S1|Γm,i, . . . , Sn|Γm,i}. Let Sj |Γm =
mediani(Sj |Γm,i). The set {S1|Γm, . . . , Sn|Γm} is used
to produce a ranking Rq,m. If Rq,m is the same as Rq , then
we say that q is RDT-stable up to m. In the experiments
presented in Section 4 the value of k is always 100.

DTL-stability Stability on a decreasing time limit
(DTL-stability for short) aims to measure how much a
scoring method is sensitive to perturbations that diminish
the maximum amount of CPU time granted to the solvers.
Let L be initial value of such quantity. To compute DTL-
stability of a scoring method q, we apply it considering a
new time limit L′ such that L − L′ = t and t > 0. If the
ranking R′

q obtained using L′ instead of L is the same as
the original ranking Rq, then we conclude that the scor-
ing method is DTL-stable up to t, i.e., the amount of time
subtracted from the original time limit.

SBT-stability Stability on a solver biased test set (SBT-
stability for short) aims to measure how much a scoring
method is sensitive to a test set that is biased in favor of a
given solver. Let Γ be the original test set, and Γs be the
subset of Γ such that the solver s is able to solve exactly
the instances in Γs. Let Rq,s be the ranking obtained by
applying the scoring method q on Γs. If Rq,s is the same
as the original ranking Rq , then the scoring method q is
SBT-stable with respect to the solver s. Notice that a good
SBT-stability is necessary for a scoring method to detect
the absolute quality of the participants, even against flaws
in the design of the test set.

SOTA-relevance This measure aims to understand the
relationship between the ranking obtained with a scoring
method and the strength of a solver, as witnessed by its
contribution to the SOTA solver. As mentioned in Subsec-
tion 3.2, the SOTA solver is the ideal solver that always
fares the best time among all the participants. Indeed, a
participant contributes to the SOTA solver whenever it is
the fastest solver on some instance. The count of such
events for a given solver is the quantitative measure of the
SOTA contribution. We measure the SOTA-relevance us-
ing Kendall coefficient to compare the ranking induced by
the SOTA contribution with the rankings obtained using
each of the scoring methods considered.

4 Experimental results

In this section we present the experimental evaluation
of the scoring methods presented in the Subsections 3.1
and 3.2, using the measures introduced in Subsection 3.3.

We start from RDT-stability and the plots in Fig-
ure 1. The histograms are arranged in two rows and three
columns: the first row shows, from left to right, the plots
regarding QBF/CASC, SAT and YASM scoring methods,
while the second row shows, again from left to right, the
plots regarding Borda count, range voting and sum of vic-
tories. Each histogram in Figure 1 reports, on the x-axis
the number of problems m discarded from the original test
set (0, 100, 200 and 400 out of 551) and on the y-axis
the score. For each value of the x-axis, eight bars are dis-
played, corresponding to the scores of the solvers admitted
to the second stage of QBFEVAL 2005. In all the plots of
Figure 1 the legend is sorted according to the ranking com-
puted by the specific scoring method, and the bars are also
displayed accordingly. This makes easier to identify per-
turbations of the original ranking, i.e., the leftmost group
of bars corresponding to m = 0.

Considering Figure 1, we can immediately conclude that
all the scoring methods considered are RDT-stable up to
400. This means that a random sample of 151 instances is
sufficient for all the scoring methods to reach the same con-
clusions that each one reaches on the much heftier test set
of 551 instances used in QBFEVAL 2005. A general con-
sideration that may be extracted from these results is that

a substantial number of problem instances is not needed in
order to perform a proper evaluation, at least with the scor-
ing methods that we consider. On the other hand, RDT-
stability does not allow us to discriminate among the dif-
ferent scoring methods, since all of them perform equally
well under this point of view.

We continue our analysis by considering DTL-stability.
Figure 2 reports six histograms arranged in the same
way as Figure 1, except that the x-axis now reports
the amount of CPU time seconds used as a time limit
when evaluating the scores of the solvers. The left-
most value is L = 900, i.e., the original time limit
that produces the ranking according to which the legend
and the bars are sorted, and then we consider the val-
ues L′ = {700, 500, 300, 100, 50, 10, 1} corresponding to
t = {200, 400, 600, 800, 850, 890, 899}.

Considering Figure 2 we see that CASC/QBF scoring
methods (Figure 2, top-left) are DTL-stable up to t = 400.
For L′ = 300, there is a noticeable perturbation, i.e., an
exchange of position in the ranking between WALKQSAT
and OPENQBF. The ranking then stabilizes until L′ = 100
and then, as one would expect, it is perturbed more heavily
in the rightmost part of the plot. Also the SAT competition
scoring method (Figure 2, top-center) is DTL-stable up to
t = 400, while perturbations occur for higher values of
t. YASM (Figure 2, top-right) DTL-stable up to t = 850.
For t = 890 and t = 899 there is a relatively high insta-
bility, but, as for all the other scoring methods analyzed so
far, the relative position of the best solver and the worst
solver does not change. Borda count (Figure 2, bottom-
left) is remarkably DTL-stable up to t = 890, and it is the
best scoring method as far DTL-stability is concerned. Fi-
nally, range voting (Figure 2, bottom-center) and sum of
victories (Figure 2, bottom-right) are both DTL-stable up
to t = 850. In conclusion, while Borda count shows excel-
lent DTL-stability, YASM turns out to be the best among
some of the methods used in automated reasoning contests.
Overall, we notice that decreasing the time limit substan-
tially, even up to one order of magnitude, is not influencing
the stability of the scoring methods considered, except for
some minor perturbations for QBF/CASC and SAT meth-
ods. Moreover, independently from the scoring method
used and the amount of CPU time granted, the best solver
is always the same. A general consideration that may be
extracted from these results is that increasing the time limit
of a competition is useless, unless the increase is substan-
tial, i.e., orders of magnitude.

Figure 3 shows the plots with the results of the SBT-
stability measure for each scoring method (the layout is
the same as Figures 1 and 2). The x-axis reports the name
of the solver s used to compute the solver-biased test set Γs

and the y-axis reports the score value. For each of the Γs’s,
we report eight bars showing the scoring obtained by the
solvers using only the instances in Γs. The order of the bars
(and of the legend) corresponds to the ranking obtained
with the given scoring method considering the original test

Figure 2: DTL-stability plots.

CASC/QBF SAT YASM Borda r.v. s.v.

OPENQBF 0.43 0.57 0.36 0.79 0.79 0.71
QBFBDD 0.43 0.43 0.36 0.79 0.86 0.79
QMRES 0.64 0.86 0.76 0.71 0.86 0.71

QUANTOR 1 0.86 0.86 0.93 0.86 1
SEMPROP 0.93 0.71 0.71 0.93 0.86 0.93
SSOLVE 0.71 0.57 0.57 0.86 0.79 0.86

WALKQSAT 0.57 0.57 0.43 0.64 0.79 0.71
YQUAFFLE 0.71 0.64 0.57 0.86 0.86 0.86

Mean 0.68 0.65 0.58 0.81 0.83 0.82

Table 2: Comparing rankings on solver-biased test sets vs.
the original test set

set Γ.
As we can see from Figure 3 (top-left), CASC/QBF

scoring methods are SBT-stable with respect to their al-
leged winner QUANTOR, while they are not SBT-stable
with respect to all the other solvers: for each of the Γs

where s 6= QUANTOR, the original ranking is perturbed
and the winner becomes s. The SAT competition scor-
ing method (Figure 3, top-center) and YASM (Figure 3,
top-right) are not SBT-stable with respect to any solver,
not even with respect to their alleged winner. Borda count
(Figure 3, bottom-left) is not SBT-stable with respect to
any solver, but the alleged winner (QUANTOR) is always
the winner on the biased test sets. Moreover, the rankings
obtained on the test sets biased on QUANTOR and SEM-
PROP are not far from the ranking obtained on the original
test set. Also range voting (Figure 3, bottom-center), is not
SBT-stable with respect to any solver, but the solvers rank-
ing first and last do not change over the biased test sets.
Finally, sum of victories (Figure 3, bottom-right) is SBT-
stable only with respect to its alleged winner QUANTOR.

Looking at the results presented above, we can only con-
clude that all the scoring methods are sensitive to a bias in
the test set. However, some methods seem more robust
than others, e.g., the winner according to Borda count and

SOTA ranking
CASC 0.57
QBF 0.57
SAT 0.64

YASM 0.57
Borda 0.71

range voting 0.86
sum of victories 0.71

Table 3: Comparing scoring methods and SOTA con-
tributes.

range voting seems less bias-prone than the winner accord-
ing to other methods such as SAT or YASM. SBT-stability
is an on-off criteria which does not allow us to quantify
these subtle differences. In order to do so, in Table 2, for
each scoring method we compute the Kendall coefficient
between the ranking obtained on the original test set Γ and
each of the rankings obtained on the Γs test sets. In Table 2
each column, but the first, is relative to a scoring method,
and each row, but the first and the last, is relative to a spe-
cific Γs. The last row reports the mean value of the coeffi-
cients for each scoring method. Overall, YASM turns out
to be the method more sensitive to a bias in the test set, im-
mediately followed by CASC/QBF and SAT. On the other
hand, the methods based on voting theory are all more ro-
bust than automated reasoning contests scoring methods.
A general consideration that we can extract is that, what-
ever the choice of the scoring method, it is very important
to assemble a test set in such a way to minimize bias, e.g.,
by extracting random samples from a large instance base.

We conclude our analysis with Table 3, showing the re-
lationship between the ranking computed by each scoring
method, and the ranking induced by the contribution of

Figure 3: SBT-stability plots.

each solver to the SOTA solver. Column 2 of Table 3
shows the values of the Kendall coefficient for each scoring
method. Notice that the results of this table are very close
to those summarized in the last row of Table 2. This seems
to imply that robustness and SOTA relevance are somehow
related qualities of a scoring method. Under this point of
view, the methods based on voting theory seem to have an
edge over automated reasoning contests scoring methods.

5 Conclusions

Summing up, our analysis allowed us to put forth some
considerations that are independent of the specific scoring
method is used. First, a large test set is not necessarily a
better test set: the results about DRT-stability show that
there is no visible difference in rankings even when slash-
ing the original test by 70%. Second, increasing the time
limit does not seem to change the overall piucture, unless
you are prepared to increase it substantially, e.g., by orders
of magnitude: DTL-stability shows that there is no visible
difference in rankings even unless the initial time limit is
reduced substantially. Third, the composition of the eval-
uation test set may heavily influence the final ranking: the
results on SBT-stability tell us that no scoring method con-
sidered is immune from bias in the original test set. As
for the specific properties of the scoring methods, those
based on voting theory seem to have an edge over auto-
mated reasoning contests scoring methods, particularly for
SBT-stability and SOTA-relevance.

REFERENCES
[1] G. Sutcliffe and C. Suttner. The CADE ATP System Competition. http:

//www.cs.miami.edu/˜tptp/CASC.

[2] D. Le Berre and L. Simon. The SAT Competition. http://www.
satcompetition.org.

[3] M. Narizzano, L. Pulina, and A. Taccchella. QBF solvers competitive evalua-
tion (QBFEVAL). http://www.qbflib.org/qbfeval.

[4] D. Long and M. Fox. The 3rd International Planning Competition: Results
and Analysis. Artificial Intelligence Research, 20:1–59, 2003.

[5] J. N. Hooker. Testing Heuristics: We Have It All Wrong. Journal of Heuris-
tics, 1:33–42, 1996.

[6] D. G. Saari. Chaotic Elections! A Mathematician Looks at Voting. American
Mathematical Society, 2001.

[7] RangeVoting.org. http://math.temple.edu/˜wds/crv/.

[8] The Condorcet Method. Reference available on line from http://en.
wikipedia.org/wiki/Condorcet_method . Visited in April 2006.

[9] M. Narizzano, L. Pulina, and A. Tacchella. The third QBF solvers comparative
evaluation. Journal on Satisfiability, Boolean Modeling and Computation,
2:145–164, 2006. Available on-line at http://jsat.ewi.tudelft.
nl/.

[10] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas
satisfiability library (QBFLIB), 2001. www.qbflib.org.

[11] E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause-Term Resolution and
Learning in Quantified Boolean Logic Satisfiability. Artificial Intelligence
Research, 2006. Accepted for publication.

[12] Y. Yu and S. Malik. Verifying the Correctness of Quantified Boolean For-
mula(QBF) Solvers: Theory and Practice. In ASP-DAC, 2005.

[13] M. Benedetti. Extracting Certificates from Quantified Boolean Formulas. In
IJCAI 2005, 2005.

[14] A. Van Gelder, D. Le Berre, A. Biere, O. Kullmann, and L. Simon. Purse-
Based Scoring for Comparison of Exponential-Time Programs, 2006. Unpub-
lished draft.

[15] M. Kendall. Rank Correlation Methods. Charles Griffin & Co. Ltd., 1948.
Reference available on line from http://en.wikipedia.org/wiki/
Rank_correlation.

